

Document number: P1121R1
Date: 2019-01-20 (pre-KONA)
Project: Programming Language C++, WG21, LWG
Authors: Maged M. Michael, Michael Wong, Paul McKenney, Geoffrey Romer, Andrew Hunter,
Arthur O'Dwyer, David S. Hollman, JF Bastien, Hans Boehm, David Goldblatt, Frank Birbacher,
Mathias Stearn
Email: ​maged.michael@gmail.com​, ​michael@codeplay.com​, ​paulmck@linux.ibm.com​,
gromer@google.com​, ​andrewhhunter@gmail.com​, ​arthur.j.odwyer@gmail.com​,
dshollm@sandia.gov​, ​jfbastien@apple.com​, ​hboehm@google.com​, ​davidtgoldblatt@gmail.com​,
frank.birbacher@gmail.com​, ​redbeard0531+isocpp@gmail.com
Reply to: ​maged.michael@gmail.com​, ​michael@codeplay.com​, ​paulmck@linux.vnet.ibm.com
​

Hazard Pointers: Proposed Interface
and Wording for Concurrency TS 2

Introduction 1

History/Changes from Previous Release 2

Proposed Wording 3

Acknowledgments 12

References 12

1 Introduction

This paper contains proposed interface and wording for hazard pointers [1], a technique for safe
deferred reclamation. This wording is based on N4700 draft [2]. An implementation is in the
Folly open source library [3]

This paper needs review by LWG for inclusion in Concurrency TS 2.

The proposal was voted to be forwarded by SG1 to LEWG in Rapperswil in June 2018, and was
voted to be forwarded by LEWG to LWG in San Diego in November 2018.

1

mailto:maged.michael@acm.org
mailto:michael@codeplay.com
mailto:paulmck@linux.ibm.com
mailto:gromer@google.com
mailto:andrewhhunter@gmail.com
mailto:arthur.j.odwyer@gmail.com
mailto:dshollm@sandia.gov
mailto:jfbastien@apple.com
mailto:hboehm@google.com
mailto:davidtgoldblatt@gmail.com
mailto:frank.birbacher@gmail.com
mailto:redbeard0531+isocpp@gmail.com
mailto:maged.michael@gmail.com
mailto:michael@codeplay.com
mailto:paulmck@linux.vnet.ibm.com

2 History/Changes from Previous Release
Until the June 2018 Rapperswil meeting the interface and wording for hazard pointers were
presented together with those for RCU (Read-Copy-Update) [4] in P0566 [5] with associated
Bugzilla Bug #382. For the history of P0566 see the last revision P0566R5 (pre-Rapperswil).
Earlier interface proposals are in P0233 [6]. This paper is a revision of the hazard pointer
related parts of P0566. The RCU related parts are now in P1122, and the chapter headings
from P0566 are now in P0940.

2019-01 Changes in [P1121R1] (pre-Kona) from [P1121R0]
(pre-San Diego)

● Removed Section 3 of P1121R1, which provided detailed background for LEWG review
in San Diego.

● Changed instances of "Requires" to "Mandates" and "Expects" according to N4762
[structure.specifications].

2018-11 LEWG Review in San Diego
● LEWG voted to approve the API changes proposed in P1121R1 and to forward the

proposal to LWG for wording review towards inclusion in Concurrency TS 2.

2018-10 Changes in [P1121R0] (pre-San Diego) from [P0566R5]
(pre-Rapperswil)

● Edited the wording of hazard_pointer_obj_base retire(): Added a clarifying note.
Removed instances of the word "then". Added the word "reclaim" to clarify the meaning
of "expression".

● Changed "hazptr" to "hazard_pointer" in class and function names.
● Changed the class name "hazptr_holder" to "hazard_pointer".
● Changed the member function name "reset_protected" to "reset_protection".
● Changed the free function name "hazptr_cleanup" to "hazard_pointer_clean_up".

2018-06 LEWG Review in Rapperswil
● See details in Section 3 of P1121R0.

2

2018-06 SG1 Review in Rapperswil
● SG1 voted to forward the proposal to LEWG, provided that the following changes to the

wording of hazptr_obj_base retire are made: Add a clarifying note. Remove instances of
the word "then". Add the word "reclaim" to clarify the meaning of "expression".

3 Proposed wording
? Hazard Pointers [hazard_pointer]

1. The lifetime of each hazard pointer is split into a series of nonoverlapping epochs, with
each epoch associated with a particular ​pointer to a hazard_pointer_obj_base instance​ (or
NULL​). Consecutive epochs associated with the same instance are treated as distinct
epochs. The initial epoch of each hazard pointer is associated with NULL.

2. Certain ways of starting a hazard pointer epoch associated with a pointer to an object
will defer reclamation of that object until the end of the epoch.

3. The hazard pointer library allows for multiple hazard pointer domains, where the
reclamation of objects in one domain is not affected by the hazard pointers in different
domains. It is possible for the same thread to participate in multiple domains
concurrently.

4. Operations on hazard pointers are exposed through the ​hazard_pointer​ class. Each
instance of ​hazard_pointer​ owns and operates on at most one hazard pointer. Each
hazard_pointer call to ​protect​, ​try_protect​, or ​reset_protection​ begins a new
epoch and ends the previous one for the owned hazard pointer. Non-empty construction
begins an epoch associated with NULL, and destruction of a non-empty hazard_pointer
ends its epoch.

5. A hazard pointer domain contains a set of hazard pointers. A domain is responsible for
reclaiming objects retired to it (by calling ​hazard_pointer_obj_base retire​), when
such objects are not protected by hazard pointers that belong to this domain (including
when this domain is destroyed).

6. A ​hazard_pointer_obj_base​ O is ​definitely reclaimable​ in domain D at program point
P if:

a. there is a call to O.​retire​(reclaim, D), and it happens before P, and
b. For each epoch E in D associated with O, the end of E happens before P.

7. A ​hazard_pointer_obj_base​ O is ​possibly reclaimable​ in domain D at program point P
if:

a. There is a call to O.​retire​(reclaim, D) and P does not happen before the call,
and

b. For each epoch E in D associated with O, P does not happen before the end of
E.

3

[Note— The following example shows how hazard pointers allow updates to be carried out in
the presence of concurrent readers. Each ​hazard_pointer​ instance in ​print_name​ is used
through the call to ​protect​ to start an epoch associated with ​ptr​ to protect the object *ptr from
being reclaimed by ​ptr->retire​ until the end of the epoch.

struct Name : public hazard_pointer_obj_base<Name> { /* details */ };

atomic<Name*> name;

// called often and in parallel!

void print_name() {

 hazard_pointer h = make_hazard_pointer();

 Name* ptr = h.protect(name);

 /* ... safe to access *ptr ... */

}

// called rarely

void update_name(Name* new_name) {

 Name* ptr = name.exchange(new_name);

 ptr->retire();

}

—end note]

Header <hazard_pointer> synopsis

namespace std {

namespace experimental {

// ?.?, Class hazard_pointer_domain:

class hazard_pointer_domain;

// ?.?, Default hazard_pointer_domain:

hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

// ?.?, Clean up

void hazard_pointer_clean_up(

 hazard_pointer_domain& domain = hazard_pointer_default_domain());

// ?.?, Class template hazard_pointer_obj_base:

template <typename T, typename D = default_delete<T>>

 class hazard_pointer_obj_base;

4

// ?.?, Class hazard_pointer

class hazard_pointer;

// ?.?, Construct non-empty hazard_pointer

hazard_pointer make_hazard_pointer(

 hazard_pointer_domain& domain = hazard_pointer_default_domain());

// ?.?, Hazard pointer swap

void swap(hazard_pointer&, hazard_pointer&) noexcept;

} // namespace experimental

} // namespace std

?.? Class hazard_pointer_domain [hazard_pointer.domain]

1. The number of unreclaimed possibly reclaimable objects retired to a domain is bounded.
The bound is implementation-defined. The bound is independent of other domains and
may be a function of the number of hazard pointers in the domain, the number of threads
that retire objects to the domain, and the number of threads that use hazard pointers that
belong to the domain.

class hazard_pointer_domain {

 public:

 // ?.?.? constructor:

 explicit hazard_pointer_domain(

 std::pmr::polymorphic_allocator<byte> poly_alloc = {});

 // disable copy and move constructors and assignment operators

 hazard_pointer_domain(const hazard_pointer_domain&) = delete;

 hazard_pointer_domain(hazard_pointer_domain&&) = delete;

 hazard_pointer_domain& operator=(const hazard_pointer_domain&) = delete;

 hazard_pointer_domain& operator=(hazard_pointer_domain&&) = delete;

 // ?.?.? destructor:

 ~hazard_pointer_domain();

 private:

 std::pmr::polymorphic_allocator<byte> alloc_; // ​exposition only
};

?.?.? ​hazard_pointer_domain​ constructors [hazard_pointer.domain.constructor]

5

explicit hazard_pointer_domain(

 pmr::polymorphic_allocator<byte> poly_alloc = {});

1. Effects: Sets ​alloc_​ to ​poly_alloc​.
2. Throws: Nothing.
3. Remarks: All allocation and deallocation of hazard pointers in this domain will use

alloc_​.

?.?.? ​hazard_pointer_domain​ destructor [hazard_pointer.domain.destructor]
~hazard_pointer_domain();

1. Expects: The destruction of all hazard pointers in this domain (including hazard pointers

whose epochs are associated with NULL) and all ​retire()​ calls that take this domain
as argument must happen before the destruction of the domain.

2. Effects: Deallocates all hazard pointer storage used by this domain. Reclaims any
remaining objects that were retired to this domain.

3. Complexity: Linear in the number of objects retired to this domain that have not been
reclaimed yet plus the number of hazard pointers contained in this domain.

?.? Default ​hazard_pointer_domain
[hazard_pointer.default_domain]
hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

1. Returns: A reference to the default ​hazard_pointer_domain​.

?.? Cleanup
[hazard_pointer.cleanup]
void hazard_pointer_clean_up(hazard_pointer_domain& domain =

hazard_pointer_default_domain());

1. Effects: For a set of hazard_pointer_obj_base objects O in ​domain​ for which

O.retire(reclaim, domain) has been called, ensures that O has been reclaimed. The set
contains all definitely reclaimable objects at the point of cleanup, and may contain some
possibly reclaimable objects.

2. Synchronization: The end of evaluation of each reclaim expression of objects in the set
synchronizes with the return from this call.

[​Note:​ To avoid deadlock, this function must not be called while holding resources that may be
required by such expressions. — ​end note​]

?.? Class template ​hazard_pointer_obj_base​ [hazard_pointer.base]
The base class template of objects to be protected by hazard pointers.

6

template <typename T, typename D = default_delete<T>>

class hazard_pointer_obj_base {

 public:

 // retire

 void retire(

 D reclaim = {},

 hazard_pointer_domain& domain = hazard_pointer_default_domain());

 void retire(hazard_pointer_domain& domain);

 protected:

 hazard_pointer_obj_base() = default;

};

1. If this template is instantiated with a ​T​ argument that is not publicly derived from
hazard_pointer_obj_base<T,D>​ for some ​D​, the program is ill-formed.

2. A client-supplied template argument ​D​ shall be a function object type for which, given a
value ​d​ of type ​D​ and a value ​ptr​ of type ​T*​, the expression ​d(ptr)​ is valid and has the
effect of disposing of the pointer as appropriate for that deleter.

3. A client-supplied template argument ​D​ shall be a function object type ([function.object])
for which, given a value ​d​ of type ​D​ and a value ​ptr​ of type ​T*​, the expression ​d(ptr)​ is
valid and has the effect of disposing of the pointer as appropriate for that deleter.

4. A program may not add specializations of this template.

 void retire(

D reclaim = {},

 hazard_pointer_domain& domain = hazard_pointer_default_domain());

1. Mandates: ​D​ shall be ​Cpp17MoveConstructible.​ The ​reclaim expression

reclaim(static_cast<T*>(this))​ shall be well-formed.
2. Expects:​ ​The move constructor of ​D​ shall not throw an exception. The ​reclaim expression

reclaim(static_cast<T*>(this))​ shall have well-defined behavior and shall not
throw an exception.

3. Effects: Registers the expression ​reclaim(static_cast<T*>(this))​ to be evaluated
asynchronously. For every hazard pointer in the domain, for epoch E associated with the
value ​static_cast<T*>(this)​:
a. If the beginning of E happens before this call, the end of E strongly happens before
the evaluation of the reclaim expression.
b. If E began as part of an evaluation of ​try_protect(ptr, src)​ returning ​true​ (for
some ​src​ and ​ptr == static_cast<T*>(this)​), let its associated atomic load
operation be labelled A. If there exists an atomic modification B on src such that A
observes a modification that is modification-ordered before B, and B happens before this
call, the end of E strongly happens before the evaluation of the reclaim expression. [
Note: in typical use, a store to src sequenced before this call will be such atomic
operation B.]

7

[Note: Both of these preconditions convey the informal notion that the hazard pointer
epoch begins before the retire() call occurs, as implied either by the happens-before
relation or the coherence order of some source.]

The reclaim expression will be evaluated only once, and it will be evaluated by the
evaluation of a ​retire()​ or ​hazard_pointer_clean_up()​ operation on ​domain​.

This function may also evaluate any number of reclaim expressions for
hazard_pointer_obj_base​ objects possibly reclaimable in domain.

[​Note:​ To avoid deadlock, this function must not be called while holding resources
required by such reclaim expressions. — ​end note​]

 void retire(hazard_pointer_domain& domain);

1. Effects: Equivalent to

retire({}, domain);

?.? Class hazard_pointer [hazard_pointer.holder]
A ​hazard_pointer​ object acts as a local handle on a hidden hazard pointer, which can be used
to protect at most a single ​hazard_pointer_obj_base​ object at a time. Every object of type
hazard_pointer ​is either empty or ​owns​ exactly one hazard pointer, and has no protection
against data races other than what is specified for the library generally ([res.on.data.races]).
Every hazard pointer is owned by exactly one ​hazard_pointer​ object.

class hazard_pointer {

 public:

 hazard_pointer() noexcept;

 hazard_pointer(hazard_pointer&&) noexcept;

 hazard_pointer& operator=(hazard_pointer&&) noexcept;

 hazard_pointer(const hazard_pointer&) = delete;

 hazard_pointer& operator=(const hazard_pointer&) = delete;

 ~hazard_pointer();

 bool empty() const noexcept;

 template <typename T>

 T* protect(const atomic<T*>& src) noexcept;

 template <typename T>

8

 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

 template <typename T>

 void reset_protection(const T* ptr) noexcept;

 void reset_protection(nullptr_t = nullptr) noexcept;

 void swap(hazard_pointer&) noexcept;

};

?.?.? ​hazard_pointer​ constructors [hazard_pointer.holder.constructors]
hazard_pointer() noexcept;

1. Effects: Constructs an empty hazard_pointer.

hazard_pointer(hazard_pointer&& other) noexcept;

1. Effects: If ​other​ is empty, constructs an empty ​hazard_pointer​. Otherwise, constructs

a hazard_pointer that owns the hazard pointer originally owned by ​other​. ​other
becomes empty.

?.?.? ​hazard_pointer​ destructor [hazard_pointer.holder.destructor]
~hazard_pointer();

1. Effects: If ​*this​ is not empty, destroys the owned hazard pointer which ends its current
epoch.

?.?.? hazard_pointer assignment [hazard_pointer.holder.assignment]
hazard_pointer& operator=(hazard_pointer&& other) noexcept;

1. Effects: If ​this == &other​, no effect. Otherwise, if ​other​ is not empty, ​*this​ takes
ownership of the hazard pointer originally owned by ​other​, and ​other​ becomes empty.
If ​*this​ was not empty before the call, destroys the owned hazard pointer which ends
its current epoch

2. Returns: ​*this.

?.?.? hazard_pointer empty [hazard_pointer.holder.empty]
bool empty() const noexcept;

1. Returns: ​true​ if and only if ​*this​ is empty. [​Note:​ An empty ​hazard_pointer​ is
different from a nonempty ​hazard_pointer​ that owns a hazard pointer with epoch
associated with NULL. An empty ​hazard_pointer​ does not own any hazard pointers. —
end note​]

?.?.? hazard_pointer protect [hazard_pointer.holder.protect]

9

template <typename T>
 T* protect(const atomic<T*>& src) noexcept;

1. Expects: ​*this​ is not empty.
2. Effects: Equivalent to

T* ptr = src.load(memory_order_relaxed);

while (!try_protect(ptr, src)) {}

return ptr;

?.?.? hazard_pointer try_protect [hazard_pointer.holder.try_protect]
template <typename T>
 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

1. Expects: ​*this​ is not empty.
2. Effects:

a. Ends the owned hazard pointer’s current epoch, and starts a new one.
b. Performs an atomic acquire load on ​src​. If ​src == ptr​, the hazard pointer’s

new epoch is associated with the value ​ptr​, and ​try_protect() ​returns true.
Otherwise, the new epoch is associated with ​NULL​, and ​try_protect() ​returns
false.

c. Sets ptr to the value read from src.
3. Returns: The result of the comparison. [​Note:​ It is possible for ​try_protect​ to return

true​ when ​ptr​ is a null pointer. — ​end note​]
4. Complexity: Constant.

?.?.? hazard_pointer reset_protection [hazard_pointer.holder.reset]
template <typename T>
void reset_protection(const T* ptr) noexcept;

1. Expects: ​*this​ is not empty.
2. Effects: Ends the owned hazard pointer’s current epoch, and begins a new one

associated with ​ptr​.

void reset_protection(nullptr_t = nullptr) noexcept;

1. Expects: ​*this​ is not empty.
2. Effects: Ends the owned hazard pointer’s current epoch, and begins a new one

associated with NULL..

?.?.? hazard_pointer swap[hazard_pointer.holder.swap]
void swap(hazard_pointer& other) noexcept;

10

1. Effects: Swaps the hazard pointer ownership and the associated domain of this object
with those of ​other​. [​Note:​ The owned hazard pointers, if any, remain unchanged
during the swap and continue to protect the respective objects that they were protecting
before the swap, if any. — ​end note​]

2. Complexity: Constant.

?.? make_hazard_pointer [hazard_pointer.make]
hazard_pointer make_hazard_pointer(

 hazard_pointer_domain& domain = hazard_pointer_default_domain());

1. Effects: Constructs a hazard pointer from ​domain​, and returns a ​hazard_pointer​ that
owns it​.

2. Throws: Any exception thrown by ​domain.alloc_.allocate()​.

?.? hazard_pointer specialized algorithms [hazard_pointer.holder.special]
void swap(hazard_pointer& a, hazard_pointer& b) noexcept;

1. Effects: Equivalent to ​a.swap(b)​.

11

5. Acknowledgements
The authors thank Keith Bostic, Olivier Giroux, Pablo Halpern, Davis Herring, Lee Howes,
Bronek Kozicki, Nathan Myers, Xiao Shi, Viktor Vafeiadis, Tony Van Eerd, Dave Watson,
Anthony Williams and other members of SG1 and LEWG for useful discussions and
suggestions that helped improve this paper and its earlier versions.

6. References
[1] Maged M Michael. "Hazard pointers: Safe memory reclamation for lock-free objects."
Parallel and Distributed Systems, IEEE Transactions on​ 15.6 (2004): 491-504.

[2] N4700 ​http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4700.pdf

[3] Hazard Pointer Implementation:
https://github.com/facebook/folly/blob/master/folly/synchronization/Hazptr*

[4] P0461 Proposed RCU C++ API ​http://wg21.link/P0461

[5] P0566 Proposed Wording for Concurrent Data Structures: Hazard Pointer and
Read​Copy​Update (RCU). ​http://wg21.link/P0566

[6] P0233 Hazard Pointers: Safe Resource Reclamation for Optimistic Concurrency.
 ​http://wg21.link/P0233

12

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4700.pdf
https://github.com/facebook/folly/blob/master/folly/synchronization
http://wg21.link/P0461
http://wg21.link/P0566
http://wg21.link/P0233

