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I. Introduction 
C++11 introduced a comprehensive mechanism to manage generation of random numbers in the 

<random> header file. 

We propose to introduce an additional API based on iterators in alignment with algorithms definition. 

II. Revision history 
Key changes compared with R0: 

 Extended the list of possible approaches with simd type direct usage 

 Added performance data measured on the prototype 

 Changed the recommendation to a combined approach 

III. Motivation and Scope 
The C++11 random-number API is essentially a scalar one. Stateful nature of Engine algorithms and the 

scalar definition of underlying algorithms prevent auto-vectorization by compiler. 

However, most existing algorithms for generation of pseudo- or quasi-random numbers allow 

algorithmic rework to generate numbers in batches, which allows the implementation to utilize SIMD-

based HW instruction sets. 

Internal measurements show significant scaling over SIMD-size for key baseline Engines yielding an 

order of magnitude performance difference on the table on modern HW architectures. 

Extension and/or modification of the list of supported Engines and/or Distributions is out of the scope of 

this proposal. 

IV. Libraries and other languages 
Vector APIs are common for the area of generation random numbers. Examples: 

* Intel(R) Math Kernel Library (Intel® MKL) 

  - Statistical Functions component includes Random Number Generators C vector based API 

* Java* java.util.Random 

  - Has doubles(), ints(), longs() methods to provide a stream of random numbers 

* Python* NumPy* library 

  - NumPy array has a method to be filled with random numbers 

* NVIDIA* cuRAND 
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  - host API is vector based 

Intel MKL can be an example of the existing vectorized implementation for verity of engines and 

distributions. Existing API is C [1] (and FORTRAN), but the key property which allows enabling 

vectorization is vector-based interface.  

Another example of implementation can be intrinsics for the Short Vector Random Number Generator 

Library [2], which provides an API on SIMD level and can be considered an example of internal 

implementation for proposed modifications. 

V. Problem description 
Main flow of random number generation is defined as a 3-level flow. 

User creates Engine and Distribution and calls operator() of Distribution object, providing Engine as a 

parameter: 

 

operator() of a Distribution typically (but not necessarily so) implements scalar algorithm and calls 

generate_canonical(), passing Engine object further down: 

 

generate_canonical() has a main intention to generate enough entropy for the type used by 

Distribution, and it calls operator() of an Engine one or more times (number of times is a compile-time 

constant): 

 

 

operator() of an Engine is (almost) always stateful, with non-trivial dependencies between iterations, 

which prevents any auto-vectorization: 

 

uniform_real_distribution::operator()(_URNG& __gen)

{

return (b() - a()) * generate_canonical<_RealType>(__gen) + a();

}

_RealType generate_canonical(_URNG& __gen())

{

…

_RealType _Sp = __gen() - _URNG::min();

for (size_t __i = 1; __i < __k; ++__i, __base *= _Rp)

_Sp += (__gen() - _URNG::min()) * __base;

return _Sp / _Rp;

}

mersenne_twister_engine<…>::operator()()

{

const size_t __j = (__i_ + 1) % __n;

…

const result_type _Yp = (__x_[__i_] & ~__mask) | (__x_[__j] & __mask);

const size_t __k = (__i_ + __m) % __n;

__x_[__i_] = __x_[__k] ^ __rshift<1>(_Yp) ^ (__a * (_Yp & 1));

result_type __z = __x_[__i_] ^ (__rshift<__u>(__x_[__i_]) & __d);

__i_ = __j;

…

return __z ^ __rshift<__l>(__z);

}



Operator() of most distributions can be implemented in a way, which compiler can inline and auto-

vectorize. generate_canonical() adds additional challenge for the compiler due to loop, but it is 

resolvable. Operator() is the key showstopper for the auto-vectorization. 

VI. Possible approaches to address the problem 
There are several approaches to address vectorization gap: 

a) Internal bufferization 
operator() of an Engine implementation can generate values in chunks of predefined size and store 

chunk in internal buffer. If buffer is not empty, implementation can pop value from the chunk and 

return it, otherwise generate next chunk and return first value from it.  

std::array<float, arrayLength> stdArray; 

std::minstd_rand0                       genStd(555); 

std::uniform_real_distribution<float>   disFloat(0.0f, 1.0f); 

for (int j = 0; j < arrayLength; ++j) 

    stdArray[j] = disFloat(genStd); 

Pros 

 Existing standard API is not modified 

 Optimization details are hidden from user space 

Cons 

 Compiler may not be always able to optimize out intermediate memory storage  

 Low-level user code tuning is hard, due to no control on user level 

 Instable performance of operator() (requirement of amortized constant complexity is fulfilled 

though) 

b) Explicit iterators-based API 
API of Engines and Distributions is extended with iterators based API. 

std::array<float, arrayLength> stdArray; 

std::experimental::minstd_rand0                     genStd(555); 

std::experimental::uniform_real_distribution<float> disFloat(0.0f, 1.0f); 

disFloat(stdArray.begin(), stdArray.end(), genSvrng); 

Note: Additional design considerations section address additional questions of naming and member-

functions vs. standalone function aspects of iterators-based API. 

Note: Additional design considerations section address additional questions of scalar-API values 

consistency. 

Pros 

 Optimization details are hidden from user space 

 This API does not enforce any specific underlying implementation and can result in several 

possible optimization strategies to achieve vectorization 

 Interface is similar to existing iterators-based API for algorithms with straightforward user-level 

optimization strategy 

 API matches important use case of generation random numbers in block 

Cons 

 Low-level user code tuning is hard, due to no control on user level 



 Changes required on generate_canonical() level may become a guarantee of Distribution 

API (as opposed to require Distribution to call generate_canonical() internally), which 

makes API less consistent. 

c) Explicit simd-based API 
API of Engines and Distributions is extended to allow simd-like type from Parallelism TS part 2 as a base 

type. 

std::array<float, arrayLength > stdArray; 

using simd32f = std::experimental::fixed_size_simd<float, 32>; 

std::experimental::minstd_rand0                       genSvrng( 555 ); 

std::experimental::uniform_real_distribution<simd32f> disSimd(0.0f,1.0f); 

for (int j= 0; j < arrayLength; j += simd32f::size()) 

{ 

    simd32f s = disSimd(genSvrng); 

    for (int k = 0; k < simd32f::size(); k++) 

        stdArray[j+k] = s[k]; 

} 

int tail = arrayLength % simd32f::size(); 

if( tail > 0 ) 

{ 

    simd32f s = disSimd(genSvrng); 

    for (int k = 0; k < tail; k++) 

        stdArray[arrayLength – tail + k] = s[k]; 

} 

Pros 

 Optimizations details are very explicit, which allows low-level user code tuning 

Cons 

 User is responsible for dealing with blocking and tail calculation 

 Changes required on generate_canonical() level may become a guarantee of Distribution 

API, which makes API less consistent. 

d) Teach compiler to recognize specific engines and distributions 
Intel® C/C++ compiler implements intrinsic functions in the Short Vector Random Number Generator 

Library [2]. These intrinsic functions can be used underneath existing C++ Standard Library scalar APIs 

and result in vectorization of the code without changing API. 

std::array<float, arrayLength> stdArray; 

std::minstd_rand0                       genStd(555); 

std::uniform_real_distribution<float>   disFloat(0.0f, 1.0f); 

for (int j = 0; j < arrayLength; ++j) 

    stdArray[j] = disFloat(genStd); 

Pros 

 Existing standard API is not modified 

 Optimization details are hidden from user space 

Cons 

 Implementation is based on compiler-specific extensions, which are not expressible in current 

state of OpenMP* #pragma simd APIs, which makes it vendor-specific 

 Low-level user code tuning is hard, due to no control on user level 



VII. Additional design considerations 

a) Numerical results considerations 
There is an open question, whether the results generated by vectorized implementation shall be 

equivalent to the sequence of scalar APIs. 

It is natural to expect from user perspective, but things become more complicated, when 

generate_canonical() results in several calls to the underlying Engine. 

Assuming we have a simd size equal simd_size, generate_canonical() enforces using 2 Engine 

values per one distribution value, engine values e[i=0..7] and distribution values d[j=0..3]. 

Scalar implementation will use values e[k*2] and e[k*2+1] for d[k] value. 

Optimal vector implementation will use e[(k/simd_size)*simd_size*2 + k%simd_size] and 

e[(k/simd_size)*simd_size*2 + k%simd_size + simd_size] (we use k-th value of first 

generated simd and k-th value of second generated simd), which is not only different from previous one, 

but also simd_size dependent. 

Several options to address that: 

 Explicitly allow different sequence for Distribution results (but enforce the same sequence for 

Engine results). 

o generate_canonical() can be extended with simd-based interface and/or iterators-

based interface, but internal logic stays mostly similar to existing one  

 Explicitly the same sequence with either: 

o Extend generate_canonical() logic to add values transposition, which may limit 

freedom of optimization strategies with predefined computational flow 

o Vector-centric APIs to take responsibility of ensuring generate_canonical-like 

implementation underneath without explicit calls of generate_canonical() 

o Drop the requirement to use more than one result of underlying Engine for single 

Distribution value 

 Add user level switch to enable/disable same sequence requirement: 

o Iterators-based API can be extended with Execution policy with seq and unseq policies 

supported. 

b) Implementation options for iterator-based interface 
There are several API considerations for iterators based API 

 Member function operator() 

dist(stdArray.begin(), stdArray.end(), engine); 

o API described in previous chapter 

o Aligned with existing way to use scalar API via operator() 

 Member function generate() 

dist.generate(stdArray.begin(), stdArray.end(),engine); 

o Brings some connection with std::generate function, which has similar intention of 

filling a container with values 

 Reuse std::generate() 

o Current API of std::generate() is insufficient to use with Distribution API directly, 

because the latter does not accept arguments for passing to operator()  

std::generate(data.begin(), data.end(), [&]() {return dist(engine);}); 



o This limits opportunities, for customization of behavior for the given Engine and/or 

Distribution with specific optimizations  

 Introduce a new standalone function std::generate_rng(), which will pass the required 

argument to operator() of the distribution 

std::generate_rng(data.begin(), data.end(), dist, engine); 

o This implementation leaves opportunities for customization on a library level, having 

both types of Engine and Distribution in the function template arguments 

VIII. Performance results 
Possible implementation approaches were prototyped in part of Distribution API (and Engine API, where 

required for the usecase). Short Vector Random Number Generator Library [2] was used as an 

underlying vectorization engine. LLVM* libc++ 8.0 implementation was used as a baseline 

implementation. 

std::minstd_rand0 was chosen as an Engine (generated numbers were verified to be bit-to-bit 

identical with LLVM baseline implementation). 

std::uniform_real_distribution<float> was chosen as a Distribution (generate_canonical() 

for this pair of Engine and Distribution shall result in single Engine operator() call, and thus avoids 

complexity described in Additional design considerations section). 

Two benchmarks were chosen to collect performance data. 

Benchmarks compiled with Intel® C++ Compiler 19.0, measured on Intel® Xeon® Silver 4116 CPU @ 

2.10GHz. 

a) Fill std::array benchmark 
This is an implementation of reference benchmark: 

std::array<float, 128> stdArray; 

std::minstd_rand0                       genStd(555); 

std::uniform_real_distribution<float>   disFloat(0.0f, 1.0f); 

for (int j=0; j < 128; ++j) 

    stdArray[j] = disFloat(genStd); 

The difference in implementation of the benchmark is discussed in possible approaches chapter. 
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The results show up to 6x speedup, with options a-d) show comparable performance. 

b) Monte Carlo Pi estimation benchmark 
This is an implementation of reference benchmark: 

    int nsamples = 128000000; 

    std::minstd_rand0                       genStd( 555 ); 

    std::uniform_real_distribution<float>   disFloat( 0.f, 1.f ); 

 

    int dbUnderCurve = 0; 

 

    for (int i = 0; i < nsamples; ++i) 

    { 

        float dbX = disFloat(genStd); 

        float dbY = disFloat(genStd); 

        if ( dbX*dbX + dbY*dbY <= 1.0 ) 

            dbUnderCurve++; 

    } 

 

    float dbPiEst = 1.f * dbUnderCurve / nsamples * 4.f; 

 

 

This benchmark showed different requirements needed for user level tuning of the implementation: 

 Internal bufferization inside engine, leaves vectorization on low-level loop, which limits 

vectorization opportunities of user–level loops 

 Straightforward usage of iterators-based API results in generation of all required random 

numbers in the intermediate buffer, which improves the performance from the baseline, but 

has additional potential for results bufferization on user side to reuse CPU L1 cache 

 Simd-based API requires low-level programming by API definition 

 Straightforward usage of intrinsics-based version, meets implementation limitation, were 

compiler cannot auto-vectorize generation of 2 random numbers in a loop, because of 

requirement to maintain scalar-like RNG sequence. Additional bufferization is needed to 

overcome this limitation 

The results show up to 8.5x speedup with options c),  a 6.3x speedup for options b) and d), up to 3.3x 

with option a). 
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IX. Recommendation 
Options b) Iterators-based API and c) Simd-based API are not mutually exclusive and can be 

recommended for implementation in the standard: 

 c) simd-based API addresses request of low level optimization, when user is willing to get 

maximum performance for the price of additional coding; 

 b) iterators-based API addresses the common use case of generating numbers in blocks with 

straightforward performance achieving strategy. 

Options a) and d) do not require standard modifications to be applied, but have significant downsides, 

which does not allow them replacing options with explicit API extensions: 

 a) internal bufferization option is sub-par performance-wise by design; 

 d) compiler intrinsics-options required non-standard compiler modifications and prevents 

portable library-only implementations. 

X. Impact On the Standard 
This is a library-only extension. It adds new member functions to some classes but does not change any 

existing functions, nor enforce adding additional data members or virtual functions. It can, therefore, be 

ABI compatible with existing implementations. 

XI. Summary of changes 
The following wording is relative to the C++17 standard. Future revisions of this proposal will include 

exact sections and deltas. 

The engine classes are modified with an additional member function in generating functions section 

  class linear_congruential_engine; 

  class mersenne_twister_engine; 

  class subtract_with_carry_engine; 

  class discard_block_engine; 

  class independent_bits_engine; 

  class shuffle_order_engine; 

Added function (with example of trivial implementation): 

template<class OutputIt> 

void operator()(OutputIt first, OutputIt last) { 

    for (; first != last; ++first) { 

        *first = operator()(); 

    } 

} 

Additional iterator version of generate canonical function (with example of trivial implementation): 

template<class RealType, size_t bits, class URBG, class OutputIt> 

void generate_canonical(OutputIt first, OutputIt last, URBG& g) { 

    for (; first != last; ++first) { 

        *first = generate_canonical<RealType, bits, URBG>(g); 

    } 

} 

The distribution classes are modified with two additional member functions in generating functions 

section 

  class uniform_int_distribution; 

  class uniform_real_distribution; 



  class bernoulli_distribution; 

  class binomial_distribution; 

  class geometric_distribution; 

  class negative_binomial_distribution; 

  class poisson_distribution; 

  class exponential_distribution; 

  class gamma_distribution; 

  class weibull_distribution; 

  class extreme_value_distribution; 

  class normal_distribution; 

  class lognormal_distribution; 

  class chi_squared_distribution; 

  class cauchy_distribution; 

  class fisher_f_distribution; 

  class student_t_distribution; 

  class discrete_distribution; 

  class piecewise_constant_distribution; 

  class piecewise_linear_distribution; 

Added functions (with example of trivial implementation): 

template<class OutputIt, class URBG> 

result_type operator()(OutputIt first, OutputIt last, URBG& g) { 

    for (; first != last; ++first) { 

        *first = operator()(g); 

    } 

} 

     

template<class OutputIt, class URBG> 

result_type operator()(OutputIt first, OutputIt last, URBG& g, const 

param_type& parm) { 

    for (; first != last; ++first) { 

        *first = operator()(g, parm); 

    } 

} 

An optimized implementation should ensure exactly the same result as trivial implementation based on 

scalar function calls. 

Existing library components do not depend on the proposed change, only new APIs added. 

XII. References 
1. Intel MKL documentation: 

https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators 

2. Intrinsics for the Short Vector Random Number Generator Library 

https://software.intel.com/en-us/node/694866 
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