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Abstract

Microsoft has submitted P1364R0: Fibers under the magnifying glass.[1] Unfortunately that glass is not
entirely  clean.  Not  only  is  that  paper  misleading  by  implication,  but  it  contains  several  outright
misstatements. Since P1364 questions whether fiber technology belongs in the C++ Standard at all,1 it
is important to be aware of these unfortunate errors.

TL;DR

• Do not conflate the concept of a fiber with the Windows Fibers implementation. Its limitations

are not inherent to fibers in general.

• Most fibers do not require a megabyte of stack space.

• There is  existence proof  that  context-switching can  be more performant  than the Windows

Fibers implementation.

• A suite of stackless coroutines that outlives its initial invoker has memory characteristics more

extreme  than  a  fiber  based  on  segmented  stacks:  every stackless  function  call  requires  an
allocation; every return from such a function requires a release.

• Stackless coroutines are not immune to problems accessing thread_local.

• Stackless coroutines multiplexed within a  std::thread must refrain from performing any

operation that blocks the entire thread.  The same is  true of simple callback functions. That
problem is not unique to fibers.

• Stackless coroutines cannot be adopted incrementally. The transitive closure of every caller of

every such function must be modified.

1 P1364R0 §4
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• In an application already interleaving asynchronous operations within a kernel thread, fibers can

be  adopted  without  having  to  weed  out  blocking  operations  or  thread  synchronization
primitives. Such applications already avoid those.

Background

User-mode context switching has a long history.2 For present purposes, it is useful to distinguish two
kinds of use cases.

Let us say that a coroutine has a lifespan related to that of its invoker. For example, a function might
invoke a generator to produce values lazily: each value is computed only when requested. Once the
consuming function is satisfied, the generator is discarded.

Contrast this with a user-mode cooperative thread, which has a lifespan beyond that of its invoker. In
this phrase, “user mode” means that the kernel does not mediate context switching, while “cooperative”
means that context is switched explicitly rather than preemptively. This use of the term “thread” alludes
to the way such a thread of execution outlives its invoker.

For  example,  a  user  gesture  prompts  a  program to  perform an operation  requiring  a  sequence  of
different network requests. If the user gesture handler were to wait for each network result, the mouse
cursor would stop responding until the last such request had completed and the results were displayed.
Instead, the user gesture handler conceptually launches a separate thread of execution to process the
required operations, and then returns to the main event-processing loop.

A more succinct term for a user-mode cooperative thread is a fiber.

Nature of a Fiber

Since 1996, Microsoft has offered a user-mode cooperative thread facility called Windows Fibers.3 It is
plausible to assert that use of the general term fiber for user-mode cooperative threads originated with
this facility. Nonetheless, it  is important to recognize that the Windows Fibers facility is  a specific
implementation of the more general concept of user-mode cooperative threads.

P1364 regrettably conflates the concept of a  fiber with the specific Windows Fibers  implementation.
The concept of user-mode cooperative threads should not be judged solely on the characteristics of the
elderly Windows Fibers implementation.

P0876  presents  fibers  without  scheduler,[2] a  foundational  facility  on  which  libraries  such  as
Boost.Coroutine2[7] and Boost.Fiber[8] may be built  in portable  C++. At the request of WG21, that
facility is intentionally lower-level than the platonic ideal of a fiber. As the name suggests, much of the
delta is the lack of a scheduler: when switching context, a P0876 fiber must explicitly designate its
successor. In general, a fiber suspends (passes control to a scheduler) rather than explicitly resuming a
specific other fiber.

2 P1364R0 §1
3 P1364R0 §3.1
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That said, in responding to P1364, this paper is more about the concept of fibers than about the specific
facility proposed in P0876.

Points from P1364

Memory Footprint
P1364 asserts4 that a fiber stack requires a megabyte of address space. That may be true of Windows
Fibers; it is not true in general.

Fixed size very small stack
It is true that using a fixed-size stack smaller than a 4 kilobyte memory page must be attempted only
with specific knowledge of the stack consumption of that thread of execution.5 However, P1364 skips
lightly over the three orders of magnitude difference between 1 megabyte and 4 kilobytes. It works to
use a fixed-size stack considerably smaller than a megabyte. Focusing on very small fixed-sized stacks
is misleading.

A fixed-size stack:

• must be allocated large enough for the maximum stack consumption for that thread of execution

• has no “safety net,” therefore its pre-specified size should include some cushion

• optimizes for speed, since each function activation frame is allocated with an increment and

freed with a decrement.

Stack with guard page
Engaging the operating system to manage stack memory:6

• still reserves the address range for that stack, whatever its pre-specified size might be

• need not commit physical memory until required

• can be specified smaller, since the operating system can detect overrun

• incurs operating-system overhead, at initial stack creation to construct the guard page and every

time stack use exceeds the physical memory committed thus far.

It’s worth noting that a guard page does not map to physical memory: it exists only as a page-sized
address range.

In fact there is another useful point on this spectrum – a fixed-size stack with a guard page, which:

• reserves the address range

4 P1364R0 §2.1
5 P1364R0 §2.1.1
6 P1364R0 §2.1.2
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• commits the whole size at allocation

• can be specified smaller, since the operating system can detect overrun

• incurs operating-system overhead only on initial allocation.

Optimize for speed Optimize for space

Fixed-size stack Fixed-size stack with guard page Dynamic stack with guard page

Split/segmented stacks
A further refinement is an approach in which user-mode library code, rather than the operating system,
is responsible for growing and shrinking the execution stack as needed.

Avoiding  operating  system  involvement  requires  a  linked  list  of  stack  segments,  rather  than  a
continuous but only partially committed address range. It also rules out use of a guard page to detect
segment overrun. With this technique, each function prologue is instrumented to check whether the
current segment can hold its new activation frame. If not, a new stack segment is allocated and linked
onto the list to become the new current segment.

The function epilogue is similarly instrumented to detect destruction of the only remaining activation
frame in the current segment. At that point, the previous current segment is made current again.

The size of the stack segments is a possible tuning knob in the time/space tradeoff. Larger segments
mean fewer allocations and segment hops, but typically more unused memory in the current segment.
Smaller segments are more conservative of memory, at the cost of more allocations and segment hops.

Whether to release a newly-empty segment is another tuning knob in the time/space tradeoff.7

P1364 points out8 that a stackless coroutine allocates only the space required for its own activation
frame. Moreover, much has been made of the potential for the compiler to optimize away even that
allocation.9

A stackless coroutine used as a coroutine, with a lifespan bounded by that of its invoker, is potentially
subject to that optimization – though there are questions10 about the extent to which consumer code can
rely on such optimization.

However, a stackless coroutine  simulating a user-mode cooperative thread must  always allocate its
activation frame. Heap Allocation eLision Optimization (HALO) places the coroutine’s local variables
in its invoker’s stack frame. If the lifespan of the coroutine can possibly exceed the lifespan of its

7 P0876R5 does not present stack allocation tuning knobs. At the committee’s request, that feature is being proposed in a 
separate paper.

8 P1364R0 §2.1.2
9 P0981R0
10 P1063R1
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invoker, correctness requires that those local variables be owned by the coroutine itself rather than by
its invoker.

A notional thread of execution composed of stackless coroutines is, in effect, using a segmented stack –
in which each segment can fit only one activation frame. The time/space slider is unconditionally set all
the  way  to  “optimize  for  space.”  Every  entry  to  any  such  stackless  coroutine  performs  a  heap
allocation; every return necessarily performs a release.

One might reasonably ask: what about a memory pool? That is a good idea. A memory pool of function
activation frames is called a “stack.”

A thread of execution based on a segmented stack will incur less “hot split” overhead than a notional
thread of execution based on stackless coroutines.

Context Switching Overhead
P1364 presents a table11 reporting Windows Fibers context-switching overhead. This may be a quality-
of-implementation issue. Comparable Boost.Context12 metrics and Boost.Fiber13 are markedly smaller.

Context switching overhead is important, and P0876’s fiber_context facility can switch context in 6ns.
That said, it’s worth remembering that actual business logic does not spend most of its time switching
context: it spends most of its time calling functions and returning from them.

Every call to a nontrivial stackless coroutine function performs a heap allocation. Every return from
such a function releases that heap block. By contrast, on a fiber, even with segmented stacks, most
function calls only increment and decrement the processor’s stack pointer.

And that’s  considering only pure overhead. With either approach, typical business logic will swamp
that overhead.

Dangers of N : M model
Whenever  a  process  runs  more  than  one  std::thread,  any  libraries  or  standard  facilities  that
internally may use  static storage could result in undefined behavior such as corrupting memory,
reading garbage or both.

Despite that danger, std::thread was introduced anyway because it’s useful.

This is exactly analogous to the situation with fibers and  thread_local storage. We introduce a
kind of execution agent finer-grained than before. A storage class sufficient for older kinds of execution
agents may no longer be appropriate for the newer one.

Note that P0772 introduces the notion of “execution agent local storage.”

11 P1364R0 §2.2
12 https://www.boost.org/doc/libs/release/libs/context/doc/html/context/performance.html
13 https://www.boost.org/doc/libs/release/libs/fiber/doc/html/fiber/performance.html
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P1364 asserts14 that stackless coroutines have no problems using thread_local storage. This is not
entirely true.

For  a  given  thread_local variable,  every invocation of  a  stackless  coroutine within the same
thread shares the same instance. With fibers, this problem could be solved by introducing a “fiber
local” or “execution agent local” storage class. But with stackless coroutines, it’s not clear that such a
solution is possible at all, because the mapping of stackless coroutine to execution agent is not well-
defined.

Since a stackless coroutine can be resumed on a thread other than the one on which it suspended, it may
unexpectedly find itself sharing a  thread_local instance it has never before encountered. This is
true  of  any  function  that  might  migrate  to  another  thread  during  suspension.  It  is  a  problem for
stackless coroutines as well as functions running on a fiber.

Hazards of 1 : N model
P1364 states:15 “any blocking call completely stops progress of all N fibers.” More generally, any call
that blocks the running thread blocks every activity on that thread.

This  is  true  of  fibers.  It’s  true  of  callbacks.  It  is  true  of  stackless  coroutines  as  well. It  is  not a
differentiator between stackless coroutines and fibers.

Any application attempting to multiplex different activities within a std::thread, regardless of the
mechanism, must scrupulously avoid making any system call or library call that blocks the current
thread. That specifically includes applications written to use stackless coroutines for concurrency.

P1364 further states16 that a user mode scheduler is required for fibers. This is a good thing. Scheduling
of stackless coroutines is accidental and prone to starvation.

P1364 notes17 that “.NET’s garbage collector captures the user mode stack location of a thread and uses
[it] to look for roots. If a [Windows] fiber switches the user mode stack, roots will not be scanned, and
the memory may be reclaimed, resulting in use after free.” This is a quality-of-implementation issue.

Case Studies
P1364 admonishes,18 in bold all-caps: “DO NOT USE FIBERS!”

We respectfully submit that this injunction should be interpreted to mean Windows Fibers specifically,
rather than fibers as framework and conceptual tool.

14 P1364R0 §2.3.1
15 P1364R0 §2.3.2
16 Ibid.
17 Ibid.
18 P1364R0 §3
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Fiber use on Windows
P1364  quotes19 an  earlier  Microsoft  blog  post:[9] “In  fact,  the  recommendation  is  that  instead  of
spending your time rewriting your app to use fibers (and it IS a rewrite), instead it's better to rearchitect
your app to use a ‘minimal context’ model - instead of maintaining the state of your server on the stack,
maintain it in a small data structure, and have that structure drive a small one-thread-per-cpu state
machine. You'll still have the issue of unexpected blocking points (you call malloc and malloc blocks
accessing the heap critical section), but that issue exists regardless of how your app's architected.”

With all due respect, it is less work to adapt an application to use fibers than it would be to rearchitect it
entirely.

It is less work to adapt an application to use fibers than to sprinkle requisite stackless coroutine markup
throughout the code base.

Linux
P1364 quotes20 a Red Hat document[10] that states: “Huge numbers of threads are no issue since the
scheduler and all the other core routines have constant execution time (O(1)) as opposed to linear time
with respect to the number of active processes and threads.”

That may or may not be true with respect to time. Empirically, however, kernel threads consume more
of  other  resources  than  fibers.  On  a  recent  Linux  system,  an  attempt21 to  run  the  skynet
microbenchmark[11] – which spawns one million threads of execution to evaluate an implementation of
threads of execution – utterly failed with both pthread and std::thread due to resource exhaustion.
Those test runs had to be trimmed back to ten thousand threads of execution instead.

That test ran with the full million Boost.Fiber fibers, with execution times from one to three orders of
magnitude less than the pthread or std::thread threads of execution.

POSIX
P1364 notes22 that POSIX.1-2008 deprecated its ucontext facility, without mentioning the reason. The
reason  is  simply  that  they  could  no  longer  express  the  historical  API  with  a  modern  C  function
signature. It is erroneous to conclude that the feature isn’t useful.

Facebook experience
P1364 states23 that Facebook wants to move away from their internal fiber library because:

• a sparingly-allocated fiber stack can overflow when calling a stack-hungry known-synchronous

API. This can be avoided by explicitly switching back to the main thread stack to perform such

19 P1364R0 §3.1
20 P1364R0 §3.3
21 https://www.boost.org/doc/libs/release/libs/fiber/doc/html/fiber/performance.html
22 P1364R0 §3.4
23 P1364R0 §3.5
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calls, but any such call not wrapped that way is at risk. P0876 does not (yet) suggest or require
compiler  involvement:  it  is  a  library  proposal.  However,  the  compiler  could  be  taught  to
implicitly switch to the main thread stack for deep synchronous calls.

• the need to use fiber-aware synchronization primitives rather than standard primitives that block

the whole thread. This stated reason is perplexing, since stackless coroutines must similarly
avoid blocking the current thread.

• unintentional  sharing  of  a  given  thread_local instance  between  fibers.  But  stackless

coroutines multiplexed onto a single thread face the same issue.

That said, in some use cases fibers are a better fit, in others stackless coroutines may be.

“Data” is not the plural of “anecdote.”

Dubious conclusions
P1364 claims24 that fibers are not an appropriate solution for writing scalable concurrent software. This
is a matter of opinion, arguably biased opinion. We counter that fibers are the best available way to
organize asynchronous code.

We have already noted the viral cost of retrofitting an application to use stackless coroutines to manage
asynchronous operations. Less obvious, but even more important, is the danger of forgetting to mark up
a stackless coroutine call as required.25,[3] The compiler doesn’t recognize that as a problem. It will
silently emit incorrect code.

Even use of  [[nodiscard]] isn’t foolproof, as the caller might capture the returned value in a
variable rather than using co_await.

P1364  describes  fibers  as  a  highly  platform-dependent  facility.  True!  That  is  the  best  reason  to
introduce them into the C++ Standard: so that each vendor can provide an appropriate implementation
for their platform. Fibers are inherently platform-dependent in the same way that the code emitted by
the C++ compiler, and its library intrinsics, are platform-dependent.

P0876 presents  an  API  very  deliberately  cast  at  a  low level,  to  minimize  the  complexity  of  each
platform-dependent implementation. Richer layers can be built on that API in portable C++.

24 P1364R0 §4
25 P0114R0[4] §12.7
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Stackless vs Stackful
A few more corrections to P1364:26

Creation cost: stackful coroutines require a system
call for guard page and expandable stack?

False. That’s an option, not a requirement.

Thread local: use by stackful coroutines is 
undefined behavior?

False. One compiler’s current implementation has
a problem if a suspended fiber that uses thread-
local storage migrates to another thread. Use of 
thread-local within a consistent thread has the 
same characteristics as for multiplexed stackless 
coroutines.

Platform dependence: needs OS support for 
dynamically-growing stack?

False. A viable fiber implementation does not 
require that particular stack implementation.

Platform dependence: stack switching is highly 
dependent on OS/CPU architecture?

True. So are the parts of the standard library that 
interface with the OS and CPU in other ways. 
Each vendor provides a suitable implementation, 
which is the reason to standardize those parts.

26 P1364R0 §7
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Fiber Motivation

Asynchronous Code
If operating-system kernel threads provided sufficient concurrency, we would need no asynchronous
system calls.  All  system and library calls  would be synchronous (blocking).  A synchronous API is
always  simpler  than  the  corresponding  asynchronous  API.  All  concurrency  would  be  effected  by
spawning kernel threads.

Yet the world continues to trend towards more asynchronous APIs, not fewer.

It is therefore evident that applications require more concurrency than is provided by kernel threads.
We must  be able  to  interleave operations  within  a  single  thread.  The question is,  how should we
organize the code that initiates and responds to such asynchronous operations?

Traditionally, classic C and C++ provided little help. This led to such patterns as chains of callbacks
(whether  free functions  or  virtual  methods),  functions  containing  voluminous switch  statements  or
more complex state-machine implementations.

Two  recent  technologies  are  under  consideration  for  the  C++  Standard:  Coroutines  TS  stackless
coroutines,[5] and fibers-without-scheduler  fiber_context.[2] Either  can be used to  organize the
code in an asynchronous application. Each allows coding a function that performs some setup and
suspends to wait for a result – without blocking the thread on which that function was called.

P1364 states27 that  “In 2018, with the further improvement to the NT kernel, even with the very good
user mode scheduler, there are no significant performance improvements when using UMS...”

But the major benefit to using either of the technologies cited above is code organization, clarity and
maintainability. Performance may be similar to chains of classic callback functions, but there is real
cost, in both money and time, to maintaining badly-organized code.

Scalability
Empirically, even with modern operating systems, hardware and compiler technology, kernel threads
cannot support the same volume of concurrency as fibers. In one documented case,28 the Boost.Fiber
implementation ran two orders of magnitude more fibers than the operating system could run threads.

Scalability is one of the strengths of stackless coroutines as well. Given that entry to each stackless
coroutine allocates exactly the space required for its own activation frame, it seems safe to say that an
application  based  on stackless  coroutines  will  generally  consume less  memory than  an  equivalent
application based on fibers. For the same reason, it seems safe to say that the fiber-based application
will generally run faster.

27 P1364R0 §3.1
28 https://www.boost.org/doc/libs/release/libs/fiber/doc/html/fiber/performance.html
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Coexistence
We stipulate that there are use cases better suited to stackless coroutines than to fiber technology. For
example, a case often cited is a heavily-loaded 32-bit Windows server process. In that environment,
segmented stacks are not an option because Windows doesn’t support them: Windows stacks must be
contiguous. Every such stack must reserve a range of the available address space, even if less than the
full range is backed by real memory. In a 32-bit process, address space becomes the scarce resource.

We assert, however, that there are use cases in which fiber technology is the better fit.

Consider a large application already written to interleave concurrent asynchronous operations within a
single kernel thread. Such an application necessarily avoids any operation that blocks the entire thread.
Moreover, within any completion handler, regardless of structure – for instance, a callback function –
thread_local is no better than static for storing data that must persist between calls.

These things are already true, even before the introduction of fibers.

P1364 asserts29 that  in  the async use case,  stackless  coroutines  can be  adopted incrementally,  one
function at a time. That is simply untrue. If maintenance to some function requires that it suspend –
when it did not previously suspend – every one of its callers must be modified; every one of  their
callers must be modified. The transitive closure of every function that calls any function that might call
the modified function must itself be modified. Stackless coroutine markup is viral.

P1364 further asserts30 that in the async use case, adopting fibers requires wholesale changes to all
synchronization primitives and blocking calls.  This is  also untrue,  because – as  noted above – an
application  already  interleaving  asynchronous  operations  within  a  thread  already  avoids  blocking
operations and synchronization.

Summary

P1364 questions whether fibers should become part of the C++ Standard. But given P1364’s faulty
premises, that conclusion must itself be challenged.

29 P1364R0 §7
30 Ibid.
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