
Adjuncts to std::hash

Document #: WG21 P0549R5
Date: 2019–01–20
Project: JTC1.22.32 Programming Language C++
Audience: LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Proposals 2

2.1 is_enabled_hash 2
2.2 hash_for and is_hashable 2
2.3 hash_value 3
2.4 is_nothrow_hashable 3

3 Alternatives 3

3.1 Non-{en,dis}abled hashes 3
3.2 About hash_value 4

4 Proposed wording 5
5 Acknowledgments 6
6 Bibliography 7
7 Document history 7

Abstract

Inspired by Lippincott’s paper [P0513R0] and subsequent correspondence with her, this paper
proposes, for the standard library, a few templates of general use in connection with std::hash.

HASH, x. There is no definition for this word—nobody knows what hash is.

— AMBROSE BIERCE

He took the Who’s feast,
he took the Who pudding, he took the roast beast.
He cleaned out that ice box as quick as a flash.
Why, the Grinch even took their last can of Who hash.

— DR. SEUSS (né THEODOR SEUSS GEISEL)

1 Introduction

Lippincott’s paper [P0513R0], adopted1 for C++17 in Issaquah, introduced new vocabulary to
describe specializations of std::hash. Each is now “either disabled (‘poisoned’) or enabled
(‘untainted’).”2

The paper also suggested “a standard trait hash_enabled<T>.” No such trait was formally
proposed, however, because WG21 was at the time focussed on ballot resolution and other C++17
preparations.

To remedy that lack, this paper proposes that trait (under a slightly different name, however).
It also proposes a few other adjuncts that seem generally useful to std::hash users.

Copyright c© 2017, 2018 by Walter E. Brown. All rights reserved.
1Addressing the following issues and National Body comments: LWG 2543, FI 15, GB 69, and LWG 2791.
2While it is possible to code a hash specialization that is neither enabled nor disabled, such a specialization does not

meet the std::hash requirements. See §3 for details.

1

mailto:webrown.cpp@gmail.com

2 P0549R5: Adjuncts to std::hash

2 Proposals

2.1 is_enabled_hash3

The requirements for an enabled std::hash specialization are specified in [unord.hash]/4. We
propose a corresponding new trait, is_enabled_hash, to decide at compile time whether a given
specialization meets those specifications.

The following expository implementation illustrates the trait’s proposed semantics:

1 template< typename H >
2 struct is_enabled_hash : false_type { };

4 template< typename T >
5 requires is_default_constructible_v<hash<T>>
6 and is_copy_constructible_v <hash<T>>
7 and is_move_constructible_v <hash<T>>
8 and is_copy_assignable_v <hash<T>>
9 and is_move_assignable_v <hash<T>>

10 and is_destructible_v <hash<T>>
11 and is_swappable_v <hash<T>>
12 and is_invocable_v <hash<T>, T>
13 and is_same_v<size_t, decltype(hash<T>{}(declval<T >()))>
14 and is_same_v<size_t, decltype(hash<T>{}(declval<T &>()))>
15 and is_same_v<size_t, decltype(hash<T>{}(declval<T const&>()))>
16 struct
17 is_enabled_hash< hash<T> > : true_type { };

19 template< typename H >
20 inline constexpr bool is_enabled_hash_v = is_enabled_hash<H>::value;

As part of this proposal, user specialization of this template is not permitted, just as is the case
for nearly all type traits.

2.2 hash_for and is_hashable
Upon reviewing and approving a draft of the above-proposed trait, Lippincott commented:4

Also, the question I imagine most people will want answered is “Can I hash T?” rather
than “Is H an enabled hasher?” I’d like to add is_hashable as a shortcut . . .

The following expository implementation, a slight expansion of Lippincott’s code, illustrates the
intended semantics of this proposed “shortcut”:

1 template< class T >
2 using hash_for = hash< remove_cvref_t<T> >;

4 template< class T >
5 using is_hashable = is_enabled_hash< hash_for<T> >;

7 template< class T >
8 inline constexpr bool is_hashable_v = is_hashable<T>::value;

3See §3 for alternative designs.
4Lisa Lippincott: “Re: Follow-up to P0513R0.” Personal correspondence, 2016–12–09.

P0549R5: Adjuncts to std::hash 3

2.3 hash_value
Finally, Lippincott suggested:5

And if it’s not there already, we could use a function for calculating hashes. Making
every user instantiate, construct, and call the right specialization is for the birds.

The following expository implementation is adapted from Lippincott’s code; user specialization of
this template, too, is not permitted. By design, attempted instantiation of this template for a type
without an enabled hash yields an ill-formed program:

1 template< class T >
2 requires is_hashable_v<T>
3 size_t
4 hash_value(T&& t)
5 noexcept(noexcept(hash_for<T>{}(std::forward<T>(t))))
6 {
7 return hash_for<T>{}(std::forward<T>(t));
8 }

Note that this proposed template shares its name with a seemingly-similar Boost facility.
However, the corresponding Boost documentation states6, in pertinent part:

• “Generally shouldn’t be called directly by users”

• “This hash function is not intended for general use, and isn’t guaranteed to be equal during
separate runs of a program”

The version proposed herein has no such design restrictions.

2.4 is_nothrow_hashable
Recent adoption of [P0599R1] has emphasized the noexcept nature of most of the library-provided
hash specializations. Because this status may be of special interest in the case of operator(),
we propose a corresponding is_nothrow_hashable trait:

1 template< class T >
2 inline constexpr bool is_nothrow_hashable_v = is_hashable_v<T>
3 and noexcept(hash_value(declval<T>()));

5 template< class T >
6 using is_nothrow_hashable = bool_constant< is_nothrow_hashable_v >;

3 Alternatives

3.1 Non-{en,dis}abled hashes
As we cited in §1, it is convenient to think of std::hash specializations as “either disabled
(‘poisoned’) or enabled (‘untainted’).” However, it is technically possible to code a specialization
that meets neither definition. Of course, a program with such a specialization runs afoul of
[namespace.std]:

1 A program may add a template specialization for any standard library template to
namespace std only if . . . the specialization meets the standard library requirements
for the original template

5Ibid.
6 See http://www.boost.org/doc/libs/1_63_0/doc/html/hash/reference.html#boost.hash_value_idp743313104.

http://www.boost.org/doc/libs/1_63_0/doc/html/hash/reference.html#boost.hash_value_idp743313104

4 P0549R5: Adjuncts to std::hash

To what lengths, if any, should the standard library go to diagnose such undefined behavior?

1. Should we respecify the proposed is_enabled_hash trait as follows?

• Have a BaseCharacteristic of true_type if template parameter H is an enabled special-
ization of hash;

• have a BaseCharacteristic of false_type if H is a disabled specialization of hash; and

• be ill-formed7, otherwise.

2. Alternatively, instead of altering the is_enabled_hash specification, should we provide, in
addition, an is_disabled_hash trait, specified as follows?

• Have a BaseCharacteristic of true_type if template parameter H is a disabled special-
ization of hash;

• have a BaseCharacteristic of false_type, otherwise.

Update: LEWG expressed no opinion on this issue during this paper’s review in San Diego.
We therefore provide no accommodation for std::hash specializations that are neither
enabled nor disabled.

3.2 About hash_value
Arthur O’Dwyer raised8 an objection to the above design for function template hash_value on the
grounds that “it is a function (template), and so ADL kicks in.” Therefore, he demonstrated, there
is code that “builds before, fails to build after” as well as code that “builds both before and after,
but with a silent breaking change in behavior.”

Moreover, O’Dwyer opined that “WG21 needs to avoid creating ADL situations on userspace
names that are in that sweet spot of ‘uncommon, yet plausible,’ which is exactly where [he
believes] hash_value falls.” He proposed three designs, paraphrased below, that he would find
acceptable alternatives:

• implementation as a member function, e.g., std::hash<void>::operator()(T&& t);
• implementation as a Customization Point Object instead of as a function; or
• renaming “with a less ‘user-space’ spelling,” e.g., __hash_value or apply_enabled_hash.

However, others have strong reservations even while agreeing with O’Dwyer’s premise. For
example, Lisa Lippincott writes9 that “Arthur’s objection is certainly a valid one; adding a function
to namespace std can change the meaning of programs. But the breadth of its applicability
gives me pause: at its heart, I think it is an argument against adding almost any function to the
library.”

Given such divergent opinions, this paper proposes no wording for any of the cited alternatives,
so that LEWG can first decide whether it agrees with O’Dwyer’s stated concern. If LEWG does
agree, we will then follow LEWG’s chosen design policy, once established. We ask only that
any such decisions be made promptly so as to avoid further delay, already considerable, in this
paper’s progress toward C++20.

Update: During this paper’s review in San Diego, LEWG addressed this issue by changing
this template’s name to hashed_value. The proposed wording, below, is consistent with
this decision and with the other minor LEWG change requests.

7This can be implemented via a judiciously-placed static_assert, for example.
8Arthur O’Dwyer: “[isocpp-lib-ext] Priorities in San Diego?” Personal correspondence, 2018–10–26. (Alas, an earlier

draft of this paper’s R5 incorrectly described this correspondence as a posting to the WG21 lib-ext reflector; we deeply
regret that mischaracterization.)

9Lisa Lippincott: “[isocpp-lib-ext] D0549R5: ‘Adjuncts to std::hash’.” lib-ext reflector message, 2018–11–04.

P0549R5: Adjuncts to std::hash 5

4 Proposed wording10

4.1 Insert the following row into Table 35 — Standard library feature-test macros. Adjust the
placeholder Value as needed so as to denote this proposal’s date of adoption.

Macro name Value Header(s)
...
__cpp_lib_hash_adjuncts 201903L <bitset> <functional>

<memory> <optional>
<string> <string_view>
<system_error> <thread>
<typeindex> <variant>
<vector>

...

4.2 Insert into the synopsis in [functional.syn] as shown.

namespace std {
...
// 19.14.18, hash function primary template and adjuncts
template<class T> struct hash;

template<class T> struct is_enabled_hash;
template<class T> inline constexpr bool is_enabled_hash_v

= is_enabled_hash<T>::value;

template<class T> using hash_for = hash< remove_cvref_t<T> >;

template<class T> struct is_hashable;
template<class T> inline constexpr bool is_hashable_v

= is_hashable<T>::value;

template<class T>
size_t hashed_value(const T& t) noexcept(see below);

template<class T> struct is_nothrow_hashable;
template<class T> inline constexpr bool is_nothrow_hashable_v

= is_nothrow_hashable<T>::value;
...

}

4.3 Retitle [unord.hash] as shown. (Note that there is a pre-existing discrepancy between this
title and the corresponding entry in the synopsis (see above); we recommend that the Project
Editor determine whether and how this mismatch should be resolved.)

19.14.18 Class template hash and adjuncts [unord.hash]

10Proposed additions and deletions are based on [N4791]. Editorial instructions and drafting notes look like this .

6 P0549R5: Adjuncts to std::hash

4.4 As shown, reword the last sentence of paragraph 2 to take advantage of recently-improved
terminology. (This is a drive-by fix.)

2 . . . For any type Key for which there is neither the library nor the user provides an explicit
or partial a library-provided nor a program-provided specialization of the class template hash,
hash<Key> is disabled.

4.5 Append the following new text to the retitled [unord.hash].

6 The behavior of a program that adds a specialization hash<T> is undefined unless is_same_v<
T, decay_t<T>> is true.

template<class T> struct is_enabled_hash;

7 Remarks: Each specialization of this template shall meet the Cpp17UnaryTypeTrait require-
ments ([meta.rqmts]) with a BaseCharacteristic of true_type if T is an enabled specialization
of hash ([unord.hash]) and a BaseCharacteristic of false_type otherwise. [Note: The latter
does not necessarily imply that T is a disabled specialization of hash. — end note] The behavior
of a program that adds specializations for this template is undefined.

template<class T> struct is_hashable;

8 Remarks: Each specialization of this template shall meet the Cpp17UnaryTypeTrait require-
ments ([meta.rqmts]) with a BaseCharacteristic of true_type if hash_for<T> is an enabled
specialization of hash ([unord.hash]) and a BaseCharacteristic of false_type otherwise. The
behavior of a program that adds specializations for this template is undefined.

template<class T>
size_t hashed_value(const T& t) noexcept(see below);

9 Constraints: is_hashable_v<T> is true.

10 Effects: Equivalent to: return hash_for<T>{}(t);

11 Remarks: The expression inside noexcept is equivalent to: noexcept(hash_for<T>{}(t)).

template<class T> struct is_nothrow_hashable;

12 Remarks: Each specialization of this template shall meet the Cpp17UnaryTypeTrait require-
ments ([meta.rqmts]) with a BaseCharacteristic of true_type if is_hashable_v<T> &&
noexcept(hashed_value(declval<const T&>())) is true and a BaseCharacteristic of
false_type otherwise. The behavior of a program that adds specializations for this template
is undefined.

5 Acknowledgments

Special thanks to Lisa Lippincott, who inspired essentially all of this proposed functionality.
Thanks also to Andrey Semashev and the other readers of this paper’s pre-publication drafts for
their thoughtful comments.

P0549R5: Adjuncts to std::hash 7

6 Bibliography

[N4659] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4659 (post-Kona mailing), 2017–03–21. http://wg21.link/n4659.

[N4687] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4687 (post-Toronto mailing), 2017–07–30. http://wg21.link/n4687.

[N4713] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4713 (post-Albuquerque mailing), 2017–11–27. http://wg21.link/
n4713.

[N4762] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4762 (corrected post-Rappersville mailing), 2018–07–07. http://wg21.
link/n4762.

[N4791] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4791 (post-San Diego mailing), 2018–12–07. https://wg21.link/
n4791.

[P0513R0] Lisa Lippincott: “Poisoning the Hash.” ISO/IEC JTC1/SC22/WG21 document P0513R0 (post-
Issaquah mailing), 2016–11–10. http://wg21.link/p0513r0.

[P0599R1] Nicolai Josuttis: “noexcept for Hash Functions.” ISO/IEC JTC1/SC22/WG21 document
P0599R1 (post-Kona mailing), 2017–03–02. http://wg21.link/p0599R1.

7 Document history

Version Date Changes

0 2017–02–01 • Published as P0549R0, pre-Kona.

1 2017–06–11 • Added is_nothrow_hashable (§2.4, etc.). • Updated relative to the post-Kona Work-
ing Draft [N4659]. • Made minor editorial improvements. • Published as P0549R1,
pre-Toronto.

2 2017–10–10 • Updated relative to the post-Toronto Working Draft [N4687]. • Revised citations to
use wg21.link. • Made minor technical and editorial improvements. • Published as
P0549R2, pre-Albuquerque.

3 2018–02–03 • Updated relative to the post-Albuquerque Working Draft [N4713]. • Added feature-test
macro recommendation. • Published as P0549R3, pre-Jacksonville.

4 2018–10–07 • Rebased on [N4762], taking advantage of recent new library specification elements
and new blanket prohibition on specializing library function templates. • Published as
P0549R4, pre-San Diego.

5 2019–01–20 • Rebased on [N4791] (post-San Diego). • Added §3.2. • Tweaked/corrected exam-
ple code and proposed wording. • Applied LEWG’s and LWG’s guidance from San
Diego. • Published as P0549R5, pre-Kona.

http://wg21.link/n4659
http://wg21.link/n4687
http://wg21.link/n4713
http://wg21.link/n4713
http://wg21.link/n4762
http://wg21.link/n4762
https://wg21.link/n4791
https://wg21.link/n4791
http://wg21.link/p0513r0
http://wg21.link/p0599R1
wg21.link

	Title
	Contents
	Abstract
	1 Introduction
	2 Proposals
	2.1 is_enabled_hash
	2.2 hash_for and is_hashable
	2.3 hash_value
	2.4 is_nothrow_hashable

	3 Alternatives
	3.1 Non-{en,dis}abled hashes
	3.2 About hash_value

	4 Proposed wording
	– feature-test macro
	– Synopsis
	– Heading
	– hash<cv>
	– is_enabled_hash
	– is_hashable
	– hashed_value
	– is_nothrow_hashable

	5 Acknowledgments
	6 Bibliography
	7 Document history

