
P1235R0: Implicit ​constexpr
ISO/IEC JTC1 SC22/WG21 - Programming Languages - C++

Authors:

Bryce Adelstein Lelbach <​brycelelbach@gmail.com​>
Hana Dusíková <​hana.dusikova@avast.com​>

Audience:
Evolution Working Group (EWG)

Motivation
Over the course of the last 8 years, ​constexpr​ has evolved and proliferated
throughout the C++ standard library and wider C++ ecosystem. Over time, ​constexpr
restrictions have been relaxed as we’ve realized that the original restrictions were too
conservative, compiler technology has matured, and the benefits of ​constexpr​ for
compile time programming became apparent.

As we continue to expand the subset of C++ that is allowed in ​constexpr​ code:

● The quantity of functions that cannot be ​constexpr​ is decreasing.
● The quantity of functions we want to use in constant expressions is increasing.

In C++17, we took a step towards making ​constexpr​ the default when we started
implicitly treating lambda call operators as ​constexpr​. While this is an improvement,
there is now an artificial inconsistency between functions and lambdas.

Consider ​the following code​:

auto​ add0 = [] (​int​ a, ​int​ b) { ​return​ a + b; };
auto​ add1(​int​ a, ​int​ b) { ​return​ a + b; }

constexpr​ ​int​ x = add0(​17​, ​42​);
constexpr​ ​int​ y = add1(​17​, ​42​); ​// COMPILE FAILURE.

The need to manually annotate functions as ​constexpr​ is starting to become
burdensome, both within the C++ standard library and in 3rd party C++ libraries.

mailto:brycelelbach@gmail.com
mailto:hana.dusikova@avast.com
https://godbolt.org/z/z9cY80

Design
We propose that when a function is called in a constant expression, if it is not marked
as ​constexpr​, and it is defined in the current translation unit, it should be treated as if
it was declared ​constexpr​.

double​ reciprocal(​int​ v) {
 if​ (v == ​0​) ​throw​ invalid_argument{​"divide by zero"​};
 else​ ​return​ ​1.0​ / v;
}

constexpr​ ​double​ w = reciprocal(​0​); ​// COMPILE FAILURE.
constexpr​ ​double​ x = reciprocal(​2​); ​// Ok.
double​ y = reciprocal(​0​); ​// Throws at runtime.
double​ z = reciprocal(​2​); ​// Ok.

However, an opt-out mechanism is needed to ensure that library designers can prevent
users from relying on their functions being implicitly ​constexpr​. For example, suppose
I had this function in my library:

auto​ add(array<​int​, ​4​> a, array<​int​, ​4​> b) {
 for​ (​int​ i = ​0​; i < ​4​; ++i)
 a[i] += b[i];

 return​ a;
}

constexpr​ array<​int​, ​4​> a = ...;
constexpr​ array<​int​, ​4​> b = ...;

array<​int​, ​4​> c = add(a, b);
// Not implicitly constexpr.

constexpr​ array<​int​, ​4​> c = add(a, b);
// Implicitly treated as constexpr, ok.

Under the proposed implicit ​constexpr​ mechanism, this function could be called in
constant expressions. If users of this function started to take advantage of this, I would
be unable to later change this function in a way that made it impossible to evaluate as
constexpr​:

auto​ add(array<​int​, ​4​> a, array<​int​, ​4​> b)
{

 // __simd_add is a non-constexpr extern function.

 ​__simd_add(a.data(), b.data());
 return​ a;
}

constexpr​ array<​int​, ​4​> a = ...;
constexpr​ array<​int​, ​4​> b = ...;

array<​int​, ​4​> c = add(a, b);
// Not implicitly constexpr.

constexpr​ array<​int​, ​4​> c = add(a, b);
// Implicitly treated as constexpr, COMPILE FAILURE.

To prevent a function from being implicitly treated as ​constexpr​, we propose allowing
a function author to opt-out with a syntax such as:

constexpr​(​false​)​ auto​ add(array<​int​, ​4​> a, array<​int​, ​4​> b);

This syntax could also be used to express a desire for a function to be callable only
from constant expressions - ​constexpr​(​true​)​- similar to ​the proposed ​constexpr!​.

A summary of how constexpr specifiers would work with the proposed changes:

No specifier Can be called in a constant expression as if it was declared
as a ​constexpr​ function and has a definition in this
translation unit.

constexpr Works as it does today.

constexpr​(​false​) Cannot be called in a constant expression.

constexpr​(​true​) Can only be called in constant expressions.

http://wg21.link/P1073
http://wg21.link/P1073

