
Range constructors for standard containers and views
Document #: P1206R0
Date: 2018-10-07
Project: Programming Language C++
Audience: LWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Christopher Di Bella <cjdb.ns@gmail.com>

1 Abstract

Most standard containers and views can be constructed from an iterators-pair. This paper, comple-
menting [P0896R3], proposes that all standard views, containers and string classes be constructible
from a range.

2 Tony tables

Before After
std::list<int> lst = /*...*/ ;
std::vector<int> vec

{std::begin(lst), std::end(lst)};

std::vector<int> vec{lst};

auto view = ranges::iota(42);
vector <

iter_value_t<
iterator_t<decltype(view)>

>
> vec;
if constexpr(SizedRanged<decltype(view)>) {

vec.reserve(ranges::size(view)));
}
ranges::copy(view, std::back_inserter(vec));

std::vector vec = ranges::iota(42);

std::map<int, widget> map = get_widgets_map();
std::vector<

typename decltype(map)::value_type
> vec;
vec.reserve(map.size());
ranges::move(map, std::back_inserter(vec));

std::map<int, widget> map = get_widgets_map();
std::vector vec{std::move(map)};
//vector<const int, widget>

void foo(string_view);
vector<char8_t> vec = get_some_unicode();
foo(string_view{vec.data(), vec.size()});

void foo(string_view);
vector<char8_t> vec = get_some_unicode();
foo(vec);

1

mailto:corentin.jabot@gmail.com
mailto:cjdb.ns@gmail.com

3 Non-goal

As explained in the "Design consideration", this proposal focuses on explicit construc-
tion and does not propose implicit container conversion.

4 Motivation

Most containers of the standard library provide a constructors taking a pair of iterators.
std::list<int> lst;
std::vector<int> vec{std::begin(lst), std::end(lst)};
//equivalent too
std::vector<int> vec;
std::copy(it, end, std::back_inserter(vec));

While, this feature is very useful, as converting from one container type to another is a frequent
use-case, it can be greatly improved by taking full advantage of the notions and tools offered by
ranges.

Indeed, given all containers are ranges (ie: an iterator-sentinel pair) the above example can be
rewritten, without semantic of performance changes, as:

std::list<int> lst;
std::vector<int> vec{lst};

The above example is a common pattern as it is frequently preferable to copy the content of
a std::list to a std::vector before feeding it an algorithm and then copying it back to a
std::vector.

As all containers and views are ranges, it is logical they can themselves be built out of ranges. Note
that most containers and views already provide constructors for iterator-pairs, which themselves
represent a range. They also provide copy and move constructors for ranges of the same type
(std::vector provide a copy constructor from another std::vector, etc). This proposal is a
generalization of these existing features.

4.1 View Materialization

The main motivation for this proposal is what is colloquially called view materialization. A view can
generate its elements lazily (upon increment or decrement), such as the value at a given position of
the sequence iterated over only exist transiently in memory if an iterator is pointing to that position.
(Note: while all lazy ranges are views, not all views are lazy).

View materialization consists in committing all the elements of such view in memory by putting
them into a container.

2

The following code iterates over the numbers 0 to 1023 but only one number actually exists in
memory at any given time.
std::iota_view v{0, 1024};
for (auto i : v) {

std::cout << i << ' ';
}

While this offers great performance and reduced memory footprint, it is often necessary to put the
result of the transformation operated by the view into memory. The facilities provided by [P0896R3]
allow to do that in the following way:

std::iota_view v{0, 1024};
std::vector<int> materialized;
std::ranges::copy(v, std::back_inserter(materialized));

This proposal allows rewriting the above snippet as:
std::vector materialized = std::iota_view{0, 1024};

Perhaps the most important aspect of view materialization is that it allows simple code such as:
namespace std {

split_view<std::string_view> split(std:std::string_view);
}
std::vector<std::string> words = std::split("Splitting strings made easy");

Indeed, a function such as split is notoriously hard to standardize ([P0540], [N3593]), because
without lazy views and std::string_view, it has to allocate or expose an expert-friendly interface.
The view materialization pattern further let the caller choose the best container and allocation
strategy for their use case (or to never materialize the view should it not be necessary). And while it
would not make sense for a standard-library function to split a string into a vector it would allocate,
it’s totally reasonable for most applications to do so.

This paper does not propose to standardize such split function - a split_view exist in [P0896R3],
however, view materialization is something the SG-16 working group is interested in. Indeed, they
have considered APIs that could rely heavily on this idiom, as it has proven a natural way to handle
the numerous ways to iterate over Unicode text. Similar ideas have been presented in [P1004].

std::vector<std::u8string> sentences =
text(blob)
normalize<text::nfc> |
graphemes_view |
split<sentences>;

3

5 Design considerations

5.1 Ranges and sentinels

Iterators from the Ranges TS are not always compatible with iterators from the std namespace.
Namely,

• They do not have the same set of requirements.

• std’s iterator do not support unbounded ranges and Sentinel

• Work is being done to allow Ranges’s iterators to be move only

Therefore, in the general case, the iterator-pair constructor offered by standard containers cannot be
used, but instead the ranges::copy should be used. Deferring to the design decisions of [P0896R3],
we think it’s better avoided not to have support for both type of iterator-pairs in the same overload
set as to avoid breaking code in subtle ways.

Therefore, adding support for ranges::’s ranges seem the best solution to make std:: containers
constructible from objects meeting the requirements specified in the ranges:: namespace.

Ranges are also a better, safer, stronger abstraction compared to iterator-pairs.

5.2 explicit

Because copy of containers is costly, the authors of this paper believe it is important that the
range-based constructors for containers be explicit. However, there is a strong interest for this
syntax to be supported:

container c = view | transform;

But, at the same time, the following pitfalls should be avoided:
auto map m = /∗...∗/;
vector a = m; //implicit conversion map -> vector (O(n))
vector b = m; //implicit conversion map -> vector (O(n))

—
void foo(const vector<type> &);
deque a = /∗...∗/;
foo(a); //implicit conversion deque -> vector (O(n))
foo(a); //implicit conversion deque -> vector (O(n))

—
std::list<type> foo();
void bar(const vector<type> &);
bar(foo()); //implicit conversion vector -> list (O(n))

—

4

void foo(const vector<type> &);
auto view = zip(...);
foo(view); // View materialized once
foo(view); // View materialized twice

All the above example crystallize concerns over performances traps that would indubitably arise.
Therefore we think it is to best follow the existing practice not to allow implicit copy construction
from objects of different types.

But because expiring views can only be materialized once and can therefore not be considered a copy,
we think it is reasonable that containers can be constructed implicitly from rvalue-reference
views.

This compromise leads to some oddity because of the inability to distinguish between views over
existing non-transformed data (span, string_view) from generators (iota_view, transform_view,
etc).

Notably,
{

vector<int> ints(42);
deque dq = ints; // error, implicit conversion of container

}
{

vector<int> ints(42);
span view = ints; //Ok, no copy => implicit
deque dq = std::move(view); //Ok, implicit construction from a view, but does a copy

}

This oddity, arise from an expressed desire to eat our cake and have it too, or more accurately, offer
a convenient syntax for view materialization while avoiding implicit conversion of containers.

5.3 Movability

Beside being desirable to have different explicit-ness policies for containers and views, the content
of rvalue-reference Containers can be moved-from, as if per std::move_iterator rather than
copied. This is however generally undecidable for views which may not own the underlying data,
and so views should only be copied-from.

Concerns were raised circa 2014 that constructors are proposed here would copy data from the view
more often than necessary and that something akin to
view.to_container<vector>();

might be more suitable.

However, the authors think this question is worth reexamining given the evolution of the ranges TS
over the past 4 years. Notably:

• It would be possible for lazy views to indicate that they can be moved from (through a tag).

5

• Alternatively, it might be worth considering whether deferencing an iterator over a lazy view
should be recommended to return by value.

• The case can be made that for non-forward InputIterator, it is always reasonable to move-
from the elements rather than copying them. This is explored at length in [P1207]

• In the general case, non-owning views don’t have any knowledge of whether they can be
moved-from.

5.4 Range constructor for views

Views (span, basic_string_view), can only be constructed from a ContiguousRange of the same
type. Because they don’t copy the data, they do not need to be explicit as constructing a view is
cheap. On the other end, because they don’t own the data, we must take care to only construct
them from lvalue reference.

5.5 constexpr

Views (std::span, std::basic_string_view) constructors can be constexpr and so, they shall
be. Other containers are currently not constexpr-constructible, but work is being down in this
area. As more containers gain constexpr constructors, the range-based constructors as proposed
here should be made constexpr too.

6 Existing practices

6.1 Abseil

View materialization is a technique notably adopted by the [Abseil] library. As per their documen-
tation:

One of the more useful features of the StrSplit() API is its ability to adapt its result
set to the desired return type. StrSplit() returned collections may contain std::string,
absl::string_view, or any object that can be explicitly created from an absl::string_-
view. This pattern works for all standard STL containers including std::vector, std::list,
std::deque, std::set, std::multiset, std::map, and std::multimap, and even std::pair, which
is not actually a container.

Because they can not modify existing containers, view materialization in Abseil is done by the mean
of a conversion operator:

template<Container C>
operator C();

However, because it stands to reason to expect that there are many more views than containers
and because conversions between containers are also useful, it is a more general solution to accept
ranges in container constructors than it is to make each view convertible to a container.

6

6.2 Range V3

The range-v3 offers a to_<Container> method which copy a Range into a Container c. It is
interesting to note that, to the best understanding of the authors, this methods always perform a
deep copy of each element, rather than a move, when it can.

auto vec = view::ints
| view::transform([](int i) {

return i + 42;
})
| view::take(10)
| to_<std::vector>();

6.3 Previous work

[N3686] explores similar solutions and was discussed by LEWG long before the Ranges TS.

7 Future work

Whether std::vector can be converted to and from std::string in O(1) is an area of interest,
notably for SG-16 - see [P1072R1]. Should such conversion exist, it should take precedence over the
generic range-constructor proposed here.

8 Proposed wording

A more complete wording will ve provided in a subsequent revision

Change in [basic.string] 20.3.2:
namespace std {
template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>
class basic_string {

public:

[...]

basic_string() noexcept(noexcept(Allocator())) : basic_string(Allocator()) { }
explicit basic_string(const Allocator& a) noexcept;
basic_string(const basic_string& str);
basic_string(basic_string&& str) noexcept;
basic_string(const basic_string& str, size_type pos, const Allocator& a = Allocator());
basic_string(const basic_string& str, size_type pos, size_type n,
const Allocator& a = Allocator());
template<class T>
basic_string(const T& t, size_type pos, size_type n, const Allocator& a = Allocator());

7

template<class T>
explicit basic_string(const T& t, const Allocator& a = Allocator());
basic_string(const charT* s, size_type n, const Allocator& a = Allocator());
basic_string(const charT* s, const Allocator& a = Allocator());
basic_string(size_type n, charT c, const Allocator& a = Allocator());
template<class InputIterator>
basic_string(InputIterator begin, InputIterator end, const Allocator& a = Allocator());
basic_string(initializer_list<charT>, const Allocator& = Allocator());
basic_string(const basic_string&, const Allocator&);
basic_string(basic_string&&, const Allocator&);

template<InputRange C>
explicit basic_string(C&&, const Allocator& = Allocator());

template<InputRange R>
requires InputView<R>
explicit(see-below)
basic_string(R&&, const Allocator& = Allocator());
~basic_string();

[...]
};

template<class InputIterator,
class Allocator = allocator<typename iterator_traits<InputIterator>::value_type>>
basic_string(InputIterator, InputIterator, Allocator = Allocator())
-> basic_string<typename iterator_traits<InputIterator>::value_type,
char_traits<typename iterator_traits<InputIterator>::value_type>,
Allocator>;

template<InputRange R,
class Allocator = allocator<iter_value_t <iterator_t< R>>>>
explicit() basic_string(R&& b, Allocator a = Allocator())
-> basic_string<
iter_value_t<iterator_t<R>>,
char_traits<iter_value_t<iterator_t<R>>>,
Allocator
>;

template<class charT,
class traits,
class Allocator = allocator<charT>>
explicit basic_string(basic_string_view<charT, traits>, const Allocator& = Allocator())
-> basic_string<charT, traits, Allocator>;

template<class charT,
class traits,
class Allocator = allocator<charT>>
basic_string(basic_string_view<charT, traits>,
typename see below ::size_type, typename see below ::size_type,
const Allocator& = Allocator())

8

-> basic_string<charT, traits, Allocator>;

}

Change in [string.cons] 20.3.2.2:

Add after 23

template<InputRange C>
requires Constructible<charT, iter_value_t<iterator_t<C>>>
explicit basic_string(C&& r, const Allocator& = Allocator());

Effects: In a move constructor, constructs a string by moving from the elements of
r in a way equivalent to

ranges::move(r, std::back_inserter(*this));

Otherwise, constructs a string from the values in the range [ranges::begin(r),
ranges::end(r)).

Complexity: Linear in ranges::size(r).

—

template<InputRange R>
requires InputView<R>
requires Constructible<charT, iter_value_t<iterator_t<C>>>
explicit(see below)
basic_string(R&& r, const Allocator& = Allocator());

Effects: Constructs a string from the values in the range [ranges::begin(r),
ranges::end(r))

Remarks: This constructor shall not participate in overload resolution unless

• is_array<R> is false.

Complexity: Linear in ranges::size(r).

The expression inside explicit is equivalent to:
!is_rvalue_reference_v<V&&>

Add after 28

template<InputRange R, class Allocator = allocator<iter_value_t <iterator_t< R>>>>
explicit(see below) basic_string(R&& b, Allocator a = {})

-> basic_string<
iter_value_t<iterator_t<R>>,
char_traits<iter_value_t<iterator_t<R>>>,
Allocator>;

Remarks: Shall not participate in overload resolution if Allocator is a type that
does not qualify as an allocator.

The expression inside explicit is equivalent to:

9

!View<R&&> && !is_rvalue_reference_v<V&&>

Change in [string.view] 20.4.2:

template<class charT, class traits = char_traits<charT>>
class basic_string_view {
public:

[...]

// construction and assignment
constexpr basic_string_view() noexcept;
constexpr basic_string_view(const basic_string_view&) noexcept = default;
constexpr basic_string_view& operator=(const basic_string_view&) noexcept = default;
constexpr basic_string_view(const charT* str);
constexpr basic_string_view(const charT* str, size_type len);

template <ContiguousRange R>
requires Same<iter_value_t<iterator_t<R>>, charT>
constexpr basic_string_view(const R& r);

[...]
};

template<ContiguousRange R>
basic_string_view(const R& b)

-> basic_string_view<
iter_value_t<iterator_t<R>>,
char_traits<iter_value_t<iterator_t<R>>>

>;

Change in [string.view.cons] 20.4.2.1:

Add after 7

template <ContiguousRange R>
requires Same<iter_value_t<iterator_t<R>>, charT>
constexpr basic_string_view(const R& r);

Requires: r is a valid range. Effects: Constructs a basic_string_view, with the
over ContiguousRange r.

Remarks: This constructor shall not participate in overload resolution unless

• is_array<R> is false.

8.1 Yet to be provided wording for

• vector

• deque

10

• list

• forward_list

• priority_queue

• map

• multimap

• set

• multiset

• unordered_map

• unordered_set

• unordered_multiset

• unordered_multimap

• span (notably, we wish to modify span to be constructed from a ContiguousRange rather than
a container, for the sake of consistency.)

9 Acknowledgements

We would like to thank the people who gave feedback on this paper, notably Casey Carter, Arthur
O’Dwyer, Barry Revzin and Tristan Brindle.
We would also further acknowledge that this paper can only exist because of the incredible body of
work constituting the Ranges TS.

10 References

[P0896R3] Eric Niebler, Casey Carter, Christopher Di Bella The One Range Ts Proposal
https://wg21.link/P0896

[P1004] Louis Dionne Making std::vector constexpr
https://wg21.link/P1004

[P1004] Tom Honermann Text_view: A C++ concepts and range based character encoding and
code point enumeration library
https://wg21.link/P0244

[P0540] Laurent Navarro A Proposal to Add split/join of string/string_view to the Standard Library
https://wg21.link/P0540

[N3593] Greg Miller std::split(): An algorithm for splitting strings
https://wg21.link/N3593

11

https://wg21.link/P0896
https://wg21.link/P1004
https://wg21.link/P0244
https://wg21.link/P0540
https://wg21.link/N3593

[P1035] Christopher Di Bella Input range adaptors
https://wg21.link/P1035

[Abseil] https://abseil.io/docs/cpp/guides/strings

[N3686] Jeffrey Yasskin [Ranges] Traversable arguments for container constructors and methods
https://wg21.link/n3686

[P1207] Corentin Jabot Movability of Single-pass Iterators
https://wg21.link/P1207

[P1072R1] Chris Kennelly, Mark Zeren Vector as allocation transfer device https://wg21.link/
P1072

12

https://wg21.link/P1035
https://abseil.io/docs/cpp/guides/strings
https://wg21.link/n3686
https://wg21.link/P1207
https://wg21.link/P1072
https://wg21.link/P1072

	1 Abstract
	2 Tony tables
	3 Non-goal
	4 Motivation
	4.1 View Materialization

	5 Design considerations
	5.1 Ranges and sentinels
	5.2 c++explicit
	5.3 Movability
	5.4 Range constructor for views
	5.5 c++constexpr

	6 Existing practices
	6.1 Abseil
	6.2 Range V3
	6.3 Previous work

	7 Future work
	8 Proposed wording
	8.1 Yet to be provided wording for

	9 Acknowledgements
	10 References

