Document number: P0892R1
Date: 2018-03-30
Audience: Evolution Working Group
Reply-To: Barry Revzin <barry.revzin@gmail.com>
Stephan T. Lavavej <stl@exchange.microsoft.com>

explicit(bool)

Contents

Motivation

When writing a class template which wraps a member of template parameter type, it's useful to expose constructors that allow the user to construct the member in place. In order to do this properly, fulfilling the usage that the class designer expects, such constructors need to be explicit or not based on whether the corresponding class's constructor is explicit or not. Conditionally explicit constructors appear throughout the standard library in some of the most commonly used utility types - std::pair, std::tuple, and now std::optional and std::variant too, among others. This permits very natural code:

pair<string, string> safe() {
    return {"meow", "purr"}; // ok
}

pair<vector<int>, vector<int>> unsafe() {
    return {11, 22}; // error
}

Despite being very useful functionality, it is quite cumbersome to implement. While conceptually we talk about a constructor being "conditionally explicit," the only way to implement that functionality is to write two constructors that are mutually disjoint - both of which beyond that do exactly the same thing. This gets a little better with concepts, where at least we don't have to duplicate the convertibility trait, but either way we have two duplicated constructors, and you just have to know why they're written the way they are. Here is an example from std::pair:
C++17 today (SFINAE)With Concepts
template <typename T1, typename T2>
struct pair {
    template <typename U1=T1, typename U2=T2,
        std::enable_if_t<
            std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2> &&
            std::is_convertible_v<U1, T1> &&
            std::is_convertible_v<U2, T2>
        , int> = 0>
    constexpr pair(U1&&, U2&& );
    
    template <typename U1=T1, typename U2=T2,
        std::enable_if_t<
            std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2> &&
            !(std::is_convertible_v<U1, T1> &&
              std::is_convertible_v<U2, T2>)
        , int> = 0>
    explicit constexpr pair(U1&&, U2&& );    
};
template <typename T1, typename T2>
struct pair {
    template <typename U1=T1, typename U2=T2>
        requires std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2> &&
            std::is_convertible_v<U1, T1> &&
            std::is_convertible_v<U2, T2>
    constexpr pair(U1&&, U2&& );
    
    template <typename U1=T1, typename U2=T2>
        requires std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2>
    explicit constexpr pair(U1&&, U2&& );    
};

These aren't conceptually two constructors and they aren't meaningfully two constructors. The intent of the design is to have one single, conditionally explicit constructor. While this trick works, it's a fairly tedious, verbose, repetitive solution. How many third party libraries have code that should follow this idiom but doesn't due to the difficulty? Let's do better.

Proposal

The proposal is simply to allow for the direct declaration of conditionally explicit constructors (and conversion operators) in the same way that we currently specify that a function is conditionally noexcept: with an extra boolean constant argument. That would allow the above example to be written much more directly as:
SFINAESFINAE + explicit(bool)
template <typename T1, typename T2>
struct pair {
    template <typename U1=T1, typename U2=T2,
        std::enable_if_t<
            std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2> &&
            std::is_convertible_v<U1, T1> &&
            std::is_convertible_v<U2, T2>
        , int> = 0>
    constexpr pair(U1&&, U2&& );
    
    template <typename U1=T1, typename U2=T2,
        std::enable_if_t<
            std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2> &&
            !(std::is_convertible_v<U1, T1> &&
              std::is_convertible_v<U2, T2>)
        , int> = 0>
    explicit constexpr pair(U1&&, U2&& );    
};
template <typename T1, typename T2>
struct pair {
    template <typename U1=T1, typename U2=T2,
        std::enable_if_t<
            std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2>
        , int> = 0>
    explicit(!std::is_convertible_v<U1, T1> ||
        !std::is_convertible_v<U2, T2>)
    constexpr pair(U1&&, U2&& );   
};
ConceptsConcepts + explicit(bool)
template <typename T1, typename T2>
struct pair {
    template <typename U1=T1, typename U2=T2>
        requires std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2> &&
            std::is_convertible_v<U1, T1> &&
            std::is_convertible_v<U2, T2>
    constexpr pair(U1&&, U2&& );
    
    template <typename U1=T1, typename U2=T2>
        requires std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2>
    explicit constexpr pair(U1&&, U2&& );    
};
template <typename T1, typename T2>
struct pair {
    template <typename U1=T1, typename U2=T2>
        requires std::is_constructible_v<T1, U1> &&
            std::is_constructible_v<T2, U2>
    explicit(!std::is_convertible_v<U1, T1> ||
        !std::is_convertible_v<U2, T2>)
    constexpr pair(U1&&, U2&& );
};

In both cases, the constructor at the right is explicit if the condition in parentheses is true, otherwise it's not. One truly, conditionally explicit constructor - finally a direct way to express our intent.

This is a pure language extension, such syntax is ill-formed today, and no existing code will break.

This proposal also suggests the creation of a feature-test macro for this language feature: __cpp_explicit_bool.

Proposed Wording

Language

In 10.1.2 [dcl.fct.spec] paragraph 1:

Function-specifiers can be used only in function declarations.
function-specifier:
virtual
explicit
explicit-specifier
explicit-specifier:
explicit (constant-expression)
explicit
In 10.1.2 [dcl.fct.spec] paragraph 3:
The explicit specifierAn explicit-specifier shall be used only in the declaration of a constructor or conversion function within its class definition [...]
Insert new paragraph after 10.1.2 [dcl.fct.spec] paragraph 3:
In an explicit-specifier, the constant-expression, if supplied, shall be a contextually converted constant expression of type bool. The explicit-specifier explicit without a constant-expression is equivalent to the explicit-specifier explicit(true). If the constant expression is true, the function is explicit. Otherwise, the function is not explicit. A ( token that follows explicit is part of the explicit-specifier.

In 11.3 [dcl.meaning], paragraph 2:

A static, thread_local, extern, mutable, friend, inline, virtual, constexpr, explicit, or typedef specifier or an explicit-specifier applies directly to each declarator-id in an init-declarator-list or member-declarator-list; [...]

In 11.6.1 [dcl.init.aggr], paragraph 1, change explicit to not use code font:

An aggregate is an array or a class with

In 15.1 [class.ctor], paragraph 1:

In a constructor declaration, each decl-specifier in the optional decl-specifier-seq shall be friend, inline, explicit, or constexpr or an explicit-specifier.

In 15.3.1 [class.conv.ctor], paragraph 1:

A constructor that is not explicit (10.1.2 [dcl.fct.spec]) declared without the function-specifier explicit specifies a conversion from the types of its parameters (if any) to the type of its class. Such a constructor is called a converting constructor.

Insert into 16.3.1 [over.match.funcs], paragraph 7, explaining how to handle value-dependent explicit-specifiers:

In each case where a candidate is a function template, candidate function template specializations are generated using template argument deduction ([temp.over], [temp.deduct]). In certain contexts, only converting constructors or non-explicit conversion functions are considered. If a constructor template or conversion function template has an explicit-specifier whose constant-expression is value-dependent ([temp.dep]), template argument deduction is performed first. The generated specialization is only considered a candidate if it is not explicit ([dcl.fct.spec]). Those candidates are then handled as candidate functions in the usual way.125 A given name can refer to one or more function templates and also to a set of overloaded non-template functions. In such a case, the candidate functions generated from each function template are combined with the set of non-template candidate functions.

In 16.3.1.7 [over.match.list], paragraph 1, change explicit to not use code font:

If the initializer list has no elements and T has a default constructor, the first phase is omitted. In copy-list-initialization, if an explicit explicit constructor is chosen, the initialization is ill-formed.

In 16.3.1.8 [over.match.class.deduct], paragraph 2, rewrite:

Each such notional constructor is considered to be explicit if the function or function template was generated from a constructor or deduction-guide that was declared explicit. If the function or function template was generated from a constructor or deduction-guide that had an explicit-specifier, each such notional constructor is considered to have the same explicit-specifier.

In 17.9.2 [temp.deduct], insert an extra case for SFINAE:

Only invalid types and expressions in the immediate context of the function type and, its template parameter types, and its explicit-specifier can result in a deduction failure. [Note: The substitution into types and expressions can result in effects such as the instantiation of class template specializations and/or function template specializations, the generation of implicitly-defined functions, etc. Such effects are not in the “immediate context” and can result in the program being ill-formed. —end note]

Library

In 20.4.2.2 [functions.within.classes], remove paragraph 2:

For the sake of exposition, the library clauses sometimes annotate constructors with EXPLICIT. Such a constructor is conditionally declared as either explicit or non-explicit (15.3.1 [class.conv.ctor]). [Note: This is typically implemented by declaring two such constructors, of which at most one participates in overload resolution. —end note]

In 23.4.2 [pairs.pair], synopsis should use explicit(see below):

namespace std {
  template<class T1, class T2>
    struct pair {
      pair(const pair&) = default;
      pair(pair&&) = default;
      EXPLICIT explicit(see below) constexpr pair();
      EXPLICIT explicit(see below) constexpr pair(const T1& x, const T2& y);
      template<class U1, class U2> EXPLICIT explicit(see below) constexpr pair(U1&& x, U2&& y);
      template<class U1, class U2> EXPLICIT explicit(see below) constexpr pair(const pair<U1, U2>& p);
      template<class U1, class U2> EXPLICIT explicit(see below) constexpr pair(pair<U1, U2>&& p);
      template<class... Args1, class... Args2>
        pair(piecewise_construct_t, tuple<Args1...> first_args, tuple<Args2...> second_args);
    };
}

In 23.4.2 [pairs.pair], paragraph 3-4:

EXPLICIT explicit(see below) constexpr pair();

Remarks: [...] The constructor is explicit The expression inside explicit shall evaluate to true if and only if either first_type or second_type is not implicitly default-constructible. [Note: This behavior can be implemented with a trait that checks whether a const first_type& or a const second_type& can be initialized with {}. —end note]

In 23.4.2 [pairs.pair], paragraph 5-6:

EXPLICIT explicit(see below) constexpr pair(const T1& x, const T2& y);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<const first_type&, first_type> is false or is_convertible_v<const second_type&, second_type> is false. The expression inside explicit is equivalent to:

!is_convertible_v<const first_type&, first_type> || !is_convertible_v<const second_type&, second_type>

In 23.4.2 [pairs.pair], paragraph 7-8:

template<class U1, class U2> EXPLICIT explicit(see below) constexpr pair(U1&& x, U2&& y);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<U1&&, first_type> is false or is_convertible_v<U2&&, second_type> is false. The expression inside explicit is equivalent to:

!is_convertible_v<U1, first_type> || !is_convertible_v<U2, second_type>

In 23.4.2 [pairs.pair], paragraph 9-10:

template<class U1, class U2> EXPLICIT explicit(see below) constexpr pair(const pair<U1, U2>& p);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<const U1&, first_type> is false or is_convertible_v<const U2&, second_type> is false. The expression inside explicit is equivalent to:

!is_convertible_v<const U1&, first_type> || !is_convertible_v<const U2&, second_type>

In 23.4.2 [pairs.pair], paragraph 11-12:

template<class U1, class U2> EXPLICIT explicit(see below) constexpr pair(pair<U1, U2>&& p);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<U1&&, first_type> is false or is_convertible_v<U2&&, second_type> is false. The expression inside explicit is equivalent to:

!is_convertible_v<U1, first_type> || !is_convertible_v<U2, second_type>

In 23.5.3 [tuple.tuple], synopsis should use explicit(see below):

namespace std {
  template<class... Types>
    class tuple {
    public:
      // [tuple.cnstr], tuple construction
      EXPLICIT explicit(see below) constexpr tuple();
      EXPLICIT explicit(see below) constexpr tuple(const Types&...);         // only if sizeof...(Types) >= 1
      template<class... UTypes>
        EXPLICIT explicit(see below) constexpr tuple(UTypes&&...);           // only if sizeof...(Types) >= 1

      tuple(const tuple&) = default;
      tuple(tuple&&) = default;
      
      template<class... UTypes>
        EXPLICIT explicit(see below) constexpr tuple(const tuple<UTypes...>&);
      template<class... UTypes>
        EXPLICIT explicit(see below) constexpr tuple(tuple<UTypes...>&&);

      template<class U1, class U2>
        EXPLICIT explicit(see below) constexpr tuple(const pair<U1, U2>&);   // only if sizeof...(Types) == 2
      template<class U1, class U2>
        EXPLICIT explicit(see below) constexpr tuple(pair<U1, U2>&&);        // only if sizeof...(Types) == 2

      // allocator-extended constructors
      template<class Alloc>
        tuple(allocator_arg_t, const Alloc& a);
      template<class Alloc>
        EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, const Types&...);
      template<class Alloc, class... UTypes>
        EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, UTypes&&...);
      template<class Alloc>
        tuple(allocator_arg_t, const Alloc& a, const tuple&);
      template<class Alloc>
        tuple(allocator_arg_t, const Alloc& a, tuple&&);
      template<class Alloc, class... UTypes>
        EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);
      template<class Alloc, class... UTypes>
        EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
      template<class Alloc, class U1, class U2>
        EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);
      template<class Alloc, class U1, class U2>
        EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);
  };
}

In 23.5.3.1 [tuple.cnstr], paragraphs 5-6:

EXPLICIT explicit(see below) constexpr tuple();

Remarks: [...] The constructor is explicit The expression inside explicit shall evaluate to true if and only if Ti is not implicitly default-constructible for at least one i. [Note: This behavior can be implemented with a trait that checks whether a const Ti& can be initialized with {}. —end note]

In 23.5.3.1 [tuple.cnstr], paragraphs 7-8:

EXPLICIT explicit(see below) constexpr tuple(const Types&...);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<const Ti&, Ti> is false for at least one i. The expression inside explicit is equivalent to:

disjunction_v<negation<is_convertible<const Types&, Types>>...>

In 23.5.3.1 [tuple.cnstr], paragraphs 9-10:

template<class... UTypes> EXPLICIT explicit(see below) constexpr tuple(UTypes&&...);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<Ui&&, Ti> is false for at least one i. The expression inside explicit is equivalent to:

disjunction_v<negation<is_convertible<UTypes, Types>>...>

In 23.5.3.1 [tuple.cnstr], paragraphs 15-16:

template<class... UTypes> EXPLICIT explicit(see below) constexpr tuple(const tuple<UTypes...>& u);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<const Ui&, Ti> is false for at least one i. The expression inside explicit is equivalent to:

disjunction_v<negation<is_convertible<const UTypes&, Types>>...>

In 23.5.3.1 [tuple.cnstr], paragraphs 17-18:

template<class... UTypes> EXPLICIT explicit(see below) constexpr tuple(tuple<UTypes...>&& u);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<Ui&&, Ti> is false for at least one i. The expression inside explicit is equivalent to:

disjunction_v<negation<is_convertible<UTypes, Types>>...>

In 23.5.3.1 [tuple.cnstr], paragraphs 19-21:

template<class U1, class U2> EXPLICIT explicit(see below) constexpr tuple(const pair<U1, U2>& u);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<const U1&, T0> is false or .is_convertible_v<const U2&, T1> is false. The expression inside explicit is equivalent to:

!is_convertible_v<const U1&, T0> || !is_convertible_v<const U2&, T1>

In 23.5.3.1 [tuple.cnstr], paragraphs 22-24:

template<class U1, class U2> EXPLICIT explicit(see below) constexpr tuple(pair<U1, U2>&& u);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<U1&&, T0> is false or .is_convertible_v<U2&&, T1> is false. The expression inside explicit is equivalent to:

!is_convertible_v<U1, T0> || !is_convertible_v<U2, T1>

In 23.5.3.1 [tuple.cnstr], paragraphs 25:

template<class Alloc>
  tuple(allocator_arg_t, const Alloc& a);
template<class Alloc>
  EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, const Types&...);
template<class Alloc, class... UTypes>
  EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, UTypes&&...);
template<class Alloc>
  tuple(allocator_arg_t, const Alloc& a, const tuple&);
template<class Alloc>
  tuple(allocator_arg_t, const Alloc& a, tuple&&);
template<class Alloc, class... UTypes>
  EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);
template<class Alloc, class... UTypes>
  EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
template<class Alloc, class U1, class U2>
  EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);
template<class Alloc, class U1, class U2>
  EXPLICIT explicit(see below) tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

In 23.6.3 [optional.optional], synopsis should use explicit(see below):

template<class T>
  class optional {
  public:
    using value_type = T;

    // [optional.ctor], constructors
    constexpr optional() noexcept;
    constexpr optional(nullopt_t) noexcept;
    constexpr optional(const optional&);
    constexpr optional(optional&&) noexcept(see below);
    template<class... Args>
      constexpr explicit optional(in_place_t, Args&&...);
    template<class U, class... Args>
      constexpr explicit optional(in_place_t, initializer_list<U>, Args&&...);
    template<class U = T>
      EXPLICIT explicit(see below) constexpr optional(U&&);
    template<class U>
      EXPLICIT explicit(see below) optional(const optional<U>&);
    template<class U>
      EXPLICIT explicit(see below) optional(optional<U>&&);
  };

In 23.6.3.1 [optional.ctor], remove paragraph 19:

[Note: The following constructors are conditionally specified as explicit. This is typically implemented by declaring two such constructors, of which at most one participates in overload resolution. —end note]

In 23.6.3.1 [optional.ctor], paragraphs 20-23:

template<class U = T> EXPLICIT explicit(see below) constexpr optional(U&& v);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<U&&, T> is false. The expression inside explicit is equivalent to:

!is_convertible_v<U, T>

In 23.6.3.1 [optional.ctor], paragraphs 24-27:

template<class U> EXPLICIT explicit(see below) constexpr optional(const optional<U>& rhs);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<const U&, T> is false. The expression inside explicit is equivalent to:

!is_convertible_v<const U&, T>

In 23.6.3.1 [optional.ctor], paragraphs 28-31:

template<class U> EXPLICIT explicit(see below) constexpr optional(optional<U>&& rhs);

Remarks: [...] The constructor is explicit if and only if is_convertible_v<U&&, T> is false. The expression inside explicit is equivalent to:

!is_convertible_v<U, T>

Acknowledgements

Thanks to Titus Winters, whose EWG Wishlist thread led to the creation of this proposal.