
Document	 P0712R0	
Date	 2017-06-18	

Audience	 SG-7	
Reply-to	 Andrew	Sutton	<asutton@uakron.edu>	

Herb	Sutter	<hsutter@microsoft.com>	
	

Implementing	language	support	for	compile-time	
metaprogramming	

Table	of	Contents	

1	 INTRODUCTION	 2	

2	 STATIC	REFLECTION	 2	

2.1	 REFLECTING	OBJECTS	 2	
2.1.1	 IMMEDIATE	FUNCTIONS	 3	
2.1.2	 IMMEDIATE	TYPES	 4	
2.1.3	 COMPILE-TIME	STRING	CONSTANTS	 4	
2.1.4	 CONCLUSIONS	 5	
2.2	 REFLECTING	CLASS	OBJECTS	 5	
2.2.1	 HETEROGENEOUS	COLLECTIONS	 6	
2.2.2	 FILTERED	TUPLES	 6	
2.2.3	 EXPANSION	STATEMENTS	 6	
2.2.4	 CONCLUSIONS	 7	
2.3	 DEFLECTION	 7	
2.3.1	 THE	DECLNAME	ID	AND	HASNAME	OPERATORS	 7	
2.3.2	 THE	TYPENAME	SPECIFIER	 9	
2.3.3	 THE	NAMESPACE	SPECIFIER	 9	
2.4	 LIBRARY	SUPPORT	 9	
2.5	 INTRINSIC	API	 12	

3	 SOURCE	CODE	INJECTION	 13	

3.1	 CONSTEXPR	BLOCKS	 13	
3.2	 INJECTION	STATEMENTS	 14	
3.3	 UNPARSED	INJECTION	 17	

4	 COMPILER	INTERACTION	 18	

4.1	 DIAGNOSTICS	 18	
4.2	 DEBUGGING	 19	

5	 METACLASSES	 19	

5.1	 MODIFYING	DECLARATIONS	 20	
5.2	 METACLASS	APPLICATION	 20	

6	 ACKNOWLEDGEMENTS	 22	

	

1 Introduction	
This	 paper	 describes	 our	 experiences	 over	 the	 past	 year	 experimenting	 with	 and	 implementing	
metaclasses	 for	 C++:	 a	 facility	 for	 defining	 new	 class-type	 abstractions	 (e.g.,	interface).	 That	work,	
described	 in	 P0707R0,	 requires	 compile-time	 evaluation,	 static	 reflection,	 and	 programmable	 code	
synthesis	or	injection.	In	other	words,	to	implement	metaclasses,	we	had	to	implement	everything	else.	
This	also	means	that	we	had	to	design	a	number	of	new	features	from	scratch,	consider	their	impact,	and	
in	several	cases,	throw	them	away	and	start	over.	This	is	not	a	proposal—those	will	come	later.		

This	paper	is	presented	semi-chronologically	and	in	a	bottom-up	style.	We	worked	towards	a	definition	of	
metaclasses,	not	from	them.	

Here	is	a	brief	summary	of	our	conclusions	from	this	work:	

1. Current	approaches	(P0385	and	P0590)	to	static	reflection	are	inherently	flawed.	The	one-to-one	
mapping	of	reflection	to	class	consumes	a	lot	more	resources	in	the	compiler	than	is	desirable.	
For	 efficient	 computation	 involving	 metaprogramming,	 static	 reflection	 must	 be	 as	 cheap	 as	
possible.	

2. Vendors	should	informally	agree	on	a	common	set	of	compiler	intrinsics	to	support	reflection.	
3. Source	 code	 injections	 with	 tokens	 does	 not	 solve	 our	 metaprogramming	 problems	 and	 has	

serious	name	binding	issues.	
4. Source	code	injection	is	potentially	transformative.	Our	work	barely	scratches	the	surface	of	this	

feature;	we	suspect	it	will	be	a	rich	source	of	discussion	and	future	experiments	and	proposals.	
5. Metaclasses	are	an	abstraction	mechanism	based	on	source	code	injection,	but	there	are	some	

sticky	issues	in	how	they	should	be	applied	to	create	new	classes.	

2 Static	reflection	
The	ultimate	goal	of	metaclasses	is	to	modify	class	definitions	based	on	the	contents	of	an	original	class	
definition.	 This	 is	 not	 possible	 to	 do	 without	 some	 ability	 to	 reflect	 on—to	 access	 the	 compile	 time	
information	about—members	of	the	original	class	definition.	Even	as	a	standalone	feature,	reflection	is	a	
significant	new	feature	for	C++.	We	experimented	with	two	different	approaches.	

2.1 Reflecting	objects	
Although	 there	 had	 been	 an	 existing	 proposal	 for	 static	 reflection	 by	Matus	 and	 Axel.	 (P0385R0	 and	
P0194R1),	 our	 initial	 design	 called	 for	 a	 totally	 different	 approach.	 P0385R0	 was	 rooted	 in	 template	
metaprogramming;	the	reflection	operator	returns	a	class	type	whose	static	members	describe	properties	
of	the	reflected	entity.	Our	proposal	called	for	a	reflection	operator	that	returned	objects,	not	types.	This	
section	discusses	our	first	approach	to	static	reflection	and	the	issues	encountered.	

For	example,	testing	if	a	name	is	a	function	can	be	done	like	this:	

$x.is_function()

The	expression	$x	yields	some	class-type	object	and	its	member	is_function()	would	return	true	if	x	
is	indeed	a	function	of	some	kind.	In	our	current	compiler,	we	also	accept	reflexpr(x)	as	an	alternative	
spelling	of	$x.	

The	$	operator	is	designed	to	accept	an	 id-expression,	a	type-id,	or	a	namespace-name	as	an	operand.	
This	allows	reflection	to	be	applied	to	any	named	entity	in	the	language.	In	our	initial	implementation,	the	
expression	 $x	 expands	 to	 the	 expression	 cppx::meta::reflection{p}	 where	 p	 is	 the	 integer	

representation	of	an	 internal	AST	node	pointer	 for	x.	 In	other	words,	we	 simply	 replaced	 the	original	
expression	with	an	expression	to	construct	an	object	whose	data	member(s)	refer	to	the	reflected	entity.	

The	 reflection	 class	 is	 fairly	 straightforward,	 but	 its	 interaction	 with	 the	 compiler	 is	 a	 little	 more	
interesting.	Here	is	a	partial	definition	of	the	reflection	class	and	its	is_function	member.	

struct reflection {
 std::intptr_t node; // The AST node pointer

 constexpr bool is_function() const {
 return __reflect_is_function(node);
 }
};

The	 member	 function	 is	 constexpr	 because	 we	 expect	 to	 evaluate	 it	 at	 compile	 time;	 deferring	
evaluation	until	runtime	would	require	us	to	emit	AST	information	in	order	to	compute	the	query.	The	
definition	invokes	an	intrinsic	whose	value	is	true	of	false,	based	on	the	value	held	in	node.	The	design	of		
the	intrinsic	interface	is	discussed	in	Section	2.5.	

Throughout	the	remainder	of	this	document,	we	refer	to	any	expression	whose	type	is	the	result	of	the	
reflection	operator	as	a	reflection.	In	a	section	below,	the	type	of	the	reflection	operator	depends	on	the	
entity	reflected.	This	term	applies	in	both	contexts.	Certain	constructs,	especially	in	later	sections,	discuss	
declaration	reflections	(a	reflection	of	a	variable,	function,	or	class),	type	reflections	(a	reflection	of	a	type	
name),	and	namespace	reflections	(a	reflection	of	a	namespace).	

The	approach	seems	very	straightforward,	until	you	write	a	simple	little	test	program:	

int main() {
 auto x = $main;
 std::cout << x.is_function() << ‘\n’;
}

This	didn’t	work	out	quite	the	way	we	would	have	liked:	the	compiler	crashed	when	trying	to	generate	
code	 for	 the	is_function	member	 function.	 This	 is	 because	we	 didn’t	 implement	 code	 generation	
behavior	for	the	__reflect_is_function	intrinsic	(oops).		

On	the	other	hand,	you	can’t	actually	implement	it.	The	problem	you	run	into	is	that,	at	the	time	we	try	
to	 generate	 code	 for	 that	 expression,	 there	 is	 no	 AST	 information	 to	 evaluate!	We	 just	 have	 a	this	
parameter.	To	make	this	work,	we	have	two	options:	

1. Emit	AST	information	as	part	of	an	object	reachable	from	this,	which	allows	reflection	queries	
to	be	evaluated	at	runtime.	

2. Add	a	new	annotation	to	the	language	that	guarantees	a	function	is	evaluated	at	compile	time.	

Adopting	#1	has	serious	issues.	In	particular,	we	would	be	implementing	dynamic	reflection.	Our	goal	of	
manipulating	 class	 definitions	 at	 compile	 time	 relies	 on	 our	 ability	 statically	 compute	 properties	 of	
declarations.	Therefore,	we	adopted	solution	#2.	

2.1.1 Immediate	functions	
To	make	this	work,	we	added	a	new	declaration	specifier	immediate,	which	can	be	used	with	(or	without)	
constexpr	 to	 ensure	 compile-time	 evaluation	 of	 function	 calls.	 Here’s	 the	 new	 definition	 of	 the	
reflection	class.	

struct reflection {
 std::intptr_t node; // The AST node pointer

 immediate bool is_function() const {
 return __reflect_is_function(node);
 }
};

The	immediate	function	specifier	alone	implies	constexpr.	We	can	also	write	function	this	way:	

immediate constexpr bool is_function() const {
 return __reflect_is_function(node);
}

They	have	the	same	meaning.	However,	now	our	simple	example	fails	to	compile.	

int main() {
 auto x = $main;
 std::cout << x.is_function() << ‘\n’; // error: x is not constant
}

This	is	better.	If	the	arguments	to	is_function	are	not	constant	(as	here),	then	the	expression	is	not	a	
constant	 expression,	 and	 the	program	 is	 ill-formed.	 	Note	 that	 declaring	x	constexpr	will	make	 the	
program	well	defined.	

2.1.2 Immediate	types	
One	of	 the	more	peculiar	aspects	of	 this	extension	 is	 it	 allows	 the	reflection	 type	 to	be	used	as	a	
function	parameter:	

void f(reflection x);

That	might	seem	reasonable	until	you	realize	that	f’s	definition	might	live	in	a	different	translation	unit,	
which	 implies	 that	AST	data	 is	 being	 passed	between	 functions	 at	 runtime.	 That	 is	 unlikely	 to	 yield	 a	
meaningful	program.	

We	didn’t	implement	this,	or	even	discuss	it	much,	but	it	seems	imminently	useful	introduce	a	new	kind	
of	literal	type:	an	immediate	type,	which	can	only	be	used	as	a	parameter	of	an	constexpr	or	possibly	
immediate	function.	However,	we	did	not	pursue	that	design	at	the	time.	

2.1.3 Compile-time	string	constants	
Returning	strings	from	immediate	functions	has	proven	to	be	difficult,	and	is	in	fact,	one	reason	we	moved	
to	a	different	approach.	One	of	the	simplest	metaprograms	that	somebody	can	write	(and	will)	is	to	simply	
print	the	name	of	a	type.	Like	this:	

std::cout << $x.name() << ‘\n’;

Unfortunately,	implementing	that	turned	out	to	be	somewhat	tricky.	Here	is	a	potential	implementation	
of	the	name	member	function.	

struct reflection {
 immediate const char* name() {
 return __reflect_name(node);
 }
};

So	far	so	good…	But	what	happens	when	you	evaluate	__reflect_name?	It	needs	to	return	a	compile-
time	lvalue	that	points	to	a	character	array	containing	the	characters	of	the	name.	The	question	that	needs	
to	be	answered	is:	where	is	that	array	stored?	

We	did	not	have	a	good	answer	to	this	question	at	the	time.	However,	Richard	Smith	suggested	that	we	
could	add	a	new	string	literal	to	a	cache	in	the	AST	context	(Clang’s	“global”	repository	of	AST	information)	
that	could	be	emitted	as	string	constants	in	the	resulting	object	file.	This	approach	has	a	nice	property	
that	only	names	requested	would	be	added	to	the	object	file.	We	don’t	need	to	proactively	dump	every	
identifier	in	the	translation	unit	into	the	object	file.	That	would	be	madness.	

2.1.4 Conclusions	
Ultimately,	we	moved	away	 from	 this	 approach.	 There	were	 some	deep	questions	about	 the	 library’s	
design.	In	particular,	if	$	has	a	single	type,	how	does	a	metapogram	determine	what	set	of	operations	are	
valid	for	a	reflection.	For	example,	the	set	of	queries	on	a	variable	are	different	than	those	on	a	class.		

We	eventually	decided	to	work	 in	a	direction	that	was	more	in	 line	with	the	proposal	P0385	proposal,	
although	retaining	the	object-like	syntax.	

2.2 Reflecting	class	objects	
The	approach	we	ultimately	adopted	for	static	reflection	is	to	cause	the	reflection	operator	to	generate	
reflection	objects	whose	type	is	determined	by	the	kind	of	entity	reflected.	In	particular,	the	type	of	each	
reflection	is	a	class	template	specialization	whose	template	argument	is	the	encoded	AST	node	pointer.	

For	example:	

void foo(int n) {
 int x;
 auto r1 = $int; // r1 has type meta::fundamental_type<X>
 auto r2 = $foo; // r2 has type meta::function<X>
 auto r3 = $n; // r3 has type meta::parameter<X>
 auto r4 = $x; // r4 has type meta::variable<X>
}

In	contrast	to	the	approach	above,	we	simply	moved	the	node	pointer	from	reflection’s	state	to	its	type.	
For	example,	here	is	a	possible	implementation	of	the	meta::variable	class.	

template<std::intptr_t X>
struct variable {
 static constexpr const char* get_name() {
 return __reflect_name(X);
 }
 static constexpr auto get_type() {
 return __reflect_type(X);
 }
 // ...
};

Each	 reflect	 property	 is	 a	 static	constexpr	member	 function	 that	 evaluates	 some	 compiler	 intrinsic.	
When	 called	 the	member	 function	 is	 instantiated,	 and	 the	 intrinsic	 is	 replaced	 by	 an	 expression	 that	
represents	the	computed	value.	In	the	case	of	get_type,	the	return	type	is	deduced	from	the	type	of	the	
intrinsic.	That	function	could	return	fundamental_type,	class_type,	etc.		

Note	 that	 all	 questions	 about	 compile-time	 evaluation	 fall	 away	 in	 this	model.	 Because	 the	 intrinsics	
expand	 to	 expressions	during	 instantiation,	 they	 implicitly	 compute	 their	 values	 at	 compile	 time.	 This	
means,	as	shown	in	the	example	above,	that	reflections	can	be	treated	as	normal	objects;	they	don’t	need	
to	be	constxpr	variables.	The	net	result	of	this	approach	is	that	it	makes	metaprogramming	look	and	

feel	just	like	normal	programs,	which	we	felt	was	a	Good	Thing.	In	retrospect,	however,	this	doesn’t	quite	
live	up	to	expectations.	

This	 approach	 is	 equivalent	 to	 that	 described	 in	 P0385.	 The	primary	differences	 are	 a)	 how	 the	node	
pointer	is	encoded,	and	b)	the	syntax	used	to	access	properties.	Otherwise,	the	core	of	both	approaches	
can	be	considered	equivalent.	This	is	well-documented	in	P0590.	

2.2.1 Heterogeneous	collections	
One	of	the	biggest	problems	we	encountered	in	this	approach	is	the	representation	of	collections.	The	
original	 metaclass	 proposals	 require	 us	 to	 iterate	 over	 the	 members	 of	 a	 class	 in	 order	 to	 compute	
properties	and	manipulate	definitions.	However,	because	each	member	of	a	class	may	have	a	different	
kind	and	therefore	reflection,	the	set	of	members	defines	a	heterogeneous	container.	Programming	with	
heterogeneous	has	not	typically	been	for	the	faint	of	heart,	although	there	are	few	libraries	that	make	it	
much	easier	(e.g.,	Louis	Dionne’s	Boost.Hana).	

Rather	than	computing	a	std::tuple	directly	from	the	members	of	a	class,	we	simply	exposed	enough	
compiler	information	to	implement	overloads	of	get	and	a	specialization	of	tuple_size.	In	particular,	
the	we	rely	on	a	pair	of	intrinsics:	

- __reflect_num_members(X)	expands	to	the	number	of	members	in	the	AST	node	X.	
- __reflect_member(X, I)	expands	to	the	Ith	member	of	X.	

These	are	used	to	define	a	simple	tuple-like	class	that	can	be	used	with	e.g.,	Boost.Hana.	However,	the	
programming	model	 with	 heterogeneous	 containers	 can	 still	 be	 non-intuitive	 and	 can	 require	 some	
template	metaprogramming.	

2.2.2 Filtered	tuples	
The	biggest	pain	point	of	this	approach	is	filtering	or	selecting	a	subset	of	members.	For	example,	most	
metaprograms	don’t	want	to	look	at	all	members	of	a	class;	they	may	want	to	examine	just	the	member	
functions	or	member	variables.	We	implemented	this	as	a	wrapper	around	our	simple	compile-time	tuple	
class.	

Unfortunately,	the	implementation	has	quadratic	complexity	when	iterating	elements	of	a	tuple,	which	is	
not	 particularly	 good.	 In	 fact,	 it	 is	 particularly	 awful.	 It	 is	 actually	 possible	 to	 observe	 (visually)	 the	
slowdown	caused	by	 the	algorithm’s	quadratic	behavior	when	 iterating	over	even	relatively	small	 lists	
(e.g.,	20	members	or	so).	

There	may	be	better	approaches	to	implementing	a	filtered	tuple,	or	there	may	simply	be	a	bug	in	the	
current	 implementation.	 However,	 creating	 a	 std::tuple	 have	 been	 a	 better	 choice	 for	 the	
implementation	since	that	can	be	done	in	linear	time.	

2.2.3 Expansion	statements	
In	order	to	simplify	the	programming	model,	we	designed	a	new	language	feature	that	would	allow	us	to	
“iterate”	over	the	elements	of	a	tuple.	For	example,	we	can	print	the	names	of	each	member	like	this:	

for... (auto m : $C.members())
 std::cout << m.name();

The	“loop”	expands	to	a	set	statements	that	would	print	the	name	of	each	member	in	turn.	That	idea	is	
presented	in	P0589,	although	for	loop	does	not	include	the	ellipsis.	

While	this	feature	does	make	it	easier	to	implement	certain	algorithms	on	containers,	it	is	incomplete.	In	
particular,	it	was	determined	that	we	need	additional	mechanisms	better	control	substitution	in	the	body	
of	templates.	

2.2.4 Conclusions	
In	general,	 this	approach	yields	a	reasonable	programming	style	for	metaprogramming.	 Improvements	
could	probably	be	found	for	working	with	heterogeneous	collections	and	their	subsets.	

That	said,	C++	cannot	continue	with	either	this	approach	to	static	reflection	or	the	equivalent	approach	
described	in	P0385.	Both	approaches	require	the	introduction	of	a	new	class	for	each	unique	reflection.	
Our	approach	does	this	by	instantiating	a	template,	the	P0385	approach	does	this	by	internally	stamping	
out	new	classes.	

The	problem	with	these	approach	is	that	classes	are	expensive	data	structures	inside	the	compiler;	they	
require	 a	 significantly	 larger	 amount	 of	 memory	 than	 almost	 any	 other	 object	 within	 the	 compiler.	
Consider	that	each	class	has	a	set	of	members	that	is	never	empty	(e.g.,	 injected	class	name).	Building	
classes	is	also	not	a	free	operation.	The	compiler	must	select	and	select	and/or	generate	special	member	
functions	which	can	involve	overload	resolution.	Finally,	classes	never	go	away.	Once	synthesized,	they	
must	be	maintained	for	the	duration	of	the	translation.	

These	 are	 the	 reasons	 that	 compiling	 translation	units	 involving	 significant	 template	metaprograms	 is	
slow.	Static	reflection	and	other	elements	of	this	work	have	the	potential	to	replace	most	(many?	all?)	
uses	 of	 template	 metaprogramming.	 We	 have	 an	 opportunity	 to	 significantly	 improve	 compile-time	
performance,	but	we	cannot	do	that	using	these	approaches.	

2.3 Deflection	
The	reflection	operator	lets	us	get	information	about	an	expression	or	entity.	However,	we	also	want	to	
go	the	other	way:	from	a	reflection	to	an	entity.	How	you	do	this	depends	on	the	kind	of	entity.	

For	reflections	of	(static)	variables	and	functions,	you	may	want	a	pointer	to	that	object.	For	such	objects,	
that	associated	value	can	be	accessed	by	writing	$x.pointer().	For	 reflections	of	enumerators,	you	
might	want	the	value,	which	can	be	accessed	by	writing	$e.value().	That	could	likely	be	extended	for	
any	constexpr	variable.	

In	 order	 to	 interoperate	 with	 other	 parts	 of	 the	 language	 (e.g.,	 generating	 a	 type	 name),	 we	 need	
additional	facilities.	We	designed	4	and	implemented	3.	The	typename	and	namespace	specifier	were	
motivated	by	discussions	with	Daveed	Vandevoorde.	

2.3.1 The	declname	id	and	hasname	operators	
The	declname	id	is	a	new	kind	of	unqualified-id	that	transforms	its	operands	into	an	id-expression.	

unqualified-id:	
	 identifier	
	 operator-function-id	
	 conversion-function-id	
	 literal-operator-id	
	 ~	class-name	
	 ~	decltype-specifier	
	 template-id	
	 declname-id	
	
declname-id:	

declname	(id-component-seq)	
	
id-component-seq:	
	 id-component-seq	id-component	

	 id-component	
	
id-component:	
	 constant-expression	

The	declname	operator	takes	a	sequence	of	constant	expressions,	evaluates	them,	transforms	them	into	
strings,	and	concatenates	them.	The	components	of	an	id	can	be:	

• string	literals,	
• integers,	and	
• a	declaration	reflection.	

When	the	id-component	is	a	declaration	reflection,	its	unqualified	name	is	appended	to	the	id.	

There	is	no	operator	separating	the	operands	of	a	sequence.	Adjacency	is	interpreted	as	concatenation.	
Note	that	each	name	component	can	involve	arbitrarily	complex	computations.	

When	used	as	an	expression,	the	id-expression	names	the	object	that	it	refers	to.	This	can	be	used,	for	
example,	to	call	a	function	through	its	reflection.	

void foo() { ... }
void foo_bar() { ... }
void g() {
 auto x = $foo;
 return declname(x “_bar”)();
}

In	the	return	statement,	declname(x “_bar”)	yields	a	reference	to	the	function	foo_bar,	which	is	
then	called.	

When	 used	within	 a	 declaration,	 the	declname	 operator	 generates	 an	 id-expression	 that	 becomes	 a	
declarator-id.	This	can	be	used	to	generate	declarations	with	new	names.	For	example:	

void declname($foo “_” 2)(int n);

This	generates	a	function	declaration	with	the	name	foo_2.	

Note	that	this	is	closely	related	to	the	idreflexpr	operator	in	P0385R1	and	$identifier	operator	in	
P0385R2.	The	operator	name	declname	is	largely	a	placeholder	for	a	better	name.	The	name	idexpr	is	
a	reasonable	alternative.	

The	 hasname	 operator	 is	 closely	 related	 to	 the	 declname	 operator,	 and	 allows	 a	 programmer	 to	
determine	if	a	declaration	has	a	particular	name.	It	takes	two	operands:	an	 id-expression	referring	to	a	
declaration	and	unqualified-id	representing	the	name	being	tested	for.	

postfix-expression:	
	 ...	

hasname	(id-expression	,	unqualified-id)	

The	first	operand	refers	to	a	declaration,	and	the	second	is	an	unresolved-id	(lookup	is	not	performed).	
The	expression	is	true	if	the	referenced	declaration’s	unqualified	name	matches	the	unqualified-id.		

The	hasname	operator	is	largely	a	workaround	for	the	lack	of	support	for	compile-time	strings	and	string	
manipulation.	We	would	prefer	something	more	elegant.	

2.3.2 The	typename	specifier	
The	typename	specifier	 is	a	simple-type-specifier	used	to	generate	a	type	from	a	reflection.	 It	has	the	
syntax:	

simple-type-specifier:	
	 ...	
	 typename-specifier	
	
typename-specifier:	

hasname	(id-expression	,	unqualified-id)	

It	accepts	a	type	reflection	and	is	the	type	reflected	by	that	expression.	For	example:	

struct S { };
typename($S)* s; // equivalent to ‘S* s’;

The	typename	specifier	should	also	be	available	as	part	of	a	nested-name-specifier,	although	we	have	not	
yet	specified	this.	

An	 alternative	 approach	was	 to	 define	 a	 nested	 type	member	within	 the	 reflection.	 That	would	 have	
allowed	this:	

using X = typename decltype($int)::type;

We	chose	to	extend	the	language	for	obvious	reasons.	

2.3.3 The	namespace	specifier	
The	namespace	specifier	is	a	form	of	qualified-id	used	to	generate	a	scope	as	part	of	another	name.	In	
other	words,	it	acts	as	a	computed	nested-name-specifier.	It	has	the	syntax:	

qualified-id:	
	 nested-name-specifier	templateopt	unqualified-id	
	 namespace	(constant-expression)	templateopt	unqualified-id	

The	namespace	specifier	is	replaced	by	the	qualified	id	of	the	reflected	namespace.	For	example:	

auto estd = $std::experimental;
using foo = namespace(estd)::optional<int>;

This	is	not	yet	implemented.	

2.4 Library	support	
Static	reflection	is	not	just	a	language	feature;	there	is	a	non-trivial	library	component	as	well.	In	particular,	
we	define	a	set	of	classes	that	are	instantiated	by	the	reflection	operator.	The	library	consists	of	the	set	
of	class	templates	instantiated	by	the	reflection	operator,	based	on	the	kind	of	entity	reflected.	

Entity	 Reflection	type	

Variable	 meta::variable<X>

Member	variable	 meta::member_variable<X>

Function	 meta::function<X>

Constructor	 meta::constructor<X>

Destructor	 meta::destructor<X>

Member	function	 meta::member_function<X>

Conversion	operator	 meta::conversion<X>

Function	parameter	 meta::parameter<X>

Enumerator	 meta::enumerator<X>

Class	type	 meta::class_type<X>

Union	type	 meta::union_type<X>

Enum	type	 meta::enum_type<X>

Fundamental	type	 meta::fundamental_type<X>

Qualified	type	 meta::qualified_type<X>

Namespace	 meta::ns<X>

Translation	unit	 meta::tu<X>

	

Note	that	this	list	only	represents	the	current	set	of	reflections.	It	is	likely	that	this	list	will	grow.	

The	properties	of	 reflected	entity	depend	on	 its	declaration,	 its	definition,	 the	 language,	and	compiler	
options.	In	general,	there	are	three	kinds	of	information	that	can	be	requested	of	any	reflection	

• Specifiers	are	flags	and	values	that	indicate	how	a	declaration	was	written.	
• Attributes	correspond	to	the	written	C++	attributes	of	a	declaration.	
• Traits	are	the	computed	from	specifiers,	attributes,	and	language	rules.	

The	implementation	does	not	currently	support	queries	for	specifiers	or	attributes.	Only	queries	for	traits	
are	supported.	We	will	eventually	want	to	add	support	for	written	specifiers	and	attributes.	

Reflection	classes	have	no	non-static	data	members.	All	properties	are	defined	as	static	member	functions	
and	variables.	The	properties	of	a	reflection	class	depend	on	the	entity	they	reflect.	These	can	be	grouped	
into	concepts,	defined	by	the	table	below.	

Concept	 Members	

NamedEntity

const char* name()
const char* qualified_name()
ScopeEntity declaration_context()
ScopeEntity lexical_context()
linkage_t linkage()
access_t access()

ScopeEntity Tuple members()

Type NamedEntity
typename type;

UserDefinedType Type, ScopedEnity

MemberType
bool is_complete()
Tuple member_variables()
Tuple member_functions()

Tuple constructors()
Destructor destrutors()

ClassType

MemberType
bool is_polymorphic()
bool is_abstract()
bool is_final()
bool is_empty()

UnionType

EnumType
UserDefinedType
bool is_complete()
bool is_scoped()

TypedEntity auto type()

Variable

NamedEntity, TypedEntity
storage_t storage()
bool is_inline()
bool is_constexpr()
T* pointer()

MemberVariable
NamedEntity, TypedEntity
bool is_mutable()
T C::* pointer()

Function

NamedEntity, TypedEntity
bool is_constexpr()
bool is_noexcept()
bool is_defined()
bool is_inline()
bool is_deleted()
Tuple parameters()
T(*)(...) pointer()

Method

NamedEntity, TypedEntity
bool is_noexcept()
bool is_defined()
bool is_inline()
bool is_deleted()
Tuple parameters()
T (C::*)(...) pointer()

PolymorphicMethod

MemberFunction
bool is_virtual()
bool is_pure_virtual()
bool is_final()
bool is_override()

Constructor
MemberFunction
bool is_constexpr()
bool is_explicit()

bool is_defaulted()
bool is_trivial()

Destructor
PolymorphicMemberFunction
bool is_defaulted()
bool is_trivial()

MemberFunction PolymorphicMethod
bool is_constexpr()

ConversionFunction MemberFunction
bool is_explicit()

Parameter NamedEntity, TypedEntity

Enumerator NamedEntity, TypedEntity
T value()

	
Again,	this	is	incomplete.	As	the	proposals	evolve,	we	will	determine	what	properties	are	available	in	
reflected	source	code.	
2.5 Intrinsic	API	
The	reflection	library	communicates	with	the	compiler	through	a	set	of	compiler	intrinsics	that	compute	
the	values	of	queries	(e.g.,	__reflect_name).	We	went	through	several	iterations	of	design	for	this	API.		

In	each	iteration,	however,	the	first	operand	of	these	traits	is	always	an	integer	constant	containing	an	
encoded	AST	node	pointer.	During	evaluation,	that	argument	is	converted	back	into	an	AST	node,	and	the	
corresponding	query	evaluated.	That’s	the	easy	part.	

The	harder	part	is	designing	a	balanced	API	so	that:	

- it	is	not	an	expansive	new	collection	of	intrinsics	
- it	does	not	create	synchronization	challenges	between	the	compiler	and	library,	and	
- multiple	vendors	would	be	able	to	provide	those	facilities.	

Naturally,	it	also	needs	to	be	complete.			

The	first	approach	was	to	simply	create	new	intrinsics	for	each	query.	This	is	certainly	the	easiest	design,	
but	it	does	result	in	a	lot	of	new	intrinsics.	It’s	not	clear	if	that’s	good	or	bad.	

A	second	design	tried	to	minimize	the	interface	by	taking	a	second	integer	parameter	that	determined	
what	query	to	run.	For	example,	you	could	request	the	name	of	a	node	by	writing:	

__reflect(node, get_name)

The	 get_name	 expression	 is	 an	 enumeration	 value	 that	 tells	 the	 compiler	 to	 return	 the	 name.	 This	
approach	 does	 not	 work	 with	 the	 reflection	model	 described	 above,	 because	 the	 type	 of	 expression	
depends	on	the	value	of	the	2nd	argument.	Moreover,	it	requires	the	library	and	the	compiler	to	agree	on	
the	mapping	of	“query	selectors”	to	values,	which	we	found	to	be	burdensome	in	practice.	

The	current	design	is	a	closer	to	the	first.	We	have	a	small	set	of	intrinsics	that	return	computed	values	
for	nodes.	When	instantiated,	these	are	replaced	by	an	expression	representing	the	computed	value.	

Intrinsic	 Description	

__reflect_name(x) Expands	to	a	string	 literal	containing	the	unqualified	name	
of	an	entity	

__reflect_qualified_name(x) Expands	to	a	string	literal	containing	the	qualified	name	of	
an	entity.	

__reflect_traits(x) Expands	 to	 an	 integer	 literal	 that	 encodes	 the	 computed	
traits	 of	 an	 entity.	 The	 encoding	 depends	 on	 the	 kind	 of	
entity,	 but	 includes	 linkage,	 storage,	 accesss,	 whether	
defined,	whether	virtual,	etc.		

__reflect_num_members(x) Expands	 to	 an	 integer	 literal	 determining	 the	 number	 of	
members	in	a	declaration	(class,	namespace,	etc.).	

__reflect_member(x, i) Expands	to	a	reflection	of	the	 ith	member	of	a	declaration.	
The	type	of	the	reflection	is	determined	by	the	kind	of	the	
member.	

__reflect_num_parameters(x) Expands	to	an	integer	literal	that	determines	the	number	of	
parameters	of	a	function.	

__reflect_parameter(x, i) Expands	to	a	reflection	of	the	ith	parameter.	

3 Source	code	injection	
One	of	the	other	pillars	of	the	metaclass	proposal	is	the	ability	to	generate	or	inject	code.	We	addressed	
this	issue	by	creating	a	general-purpose	facility	for	source	code	injection,	which	takes	on	two	components:	
the	 ability	 to	 execute	 constexpr	 in	 (nearly)	 any	 context,	 and	 the	 ability	 to	 specify	 what	 code	 gets	
injected.	

The	goal	(eventually)	was	to	identify	and	design	small	features	that	could	more	easily	support	the	notion	
of	 metaclasses.	 The	 two	 features	 discussed	 in	 this	 section	 define	 the	 core	 feature	 set	 needed	 for	
metaprogramming	in	general,	not	just	metaclasses.	

3.1 Constexpr	blocks	
A	constexpr	block	allows	the	execution	of	compile-time	code	in	namespace,	class,	and	block	scope.	Here	
is	an	example	of	a	namespace-scoped	constexpr	block.	

constexpr {
 for... (auto x : $X.members())
 // Do something with x
}

The	constexpr	keyword	is	followed	by	a	compound-statement.	Those	statements	are	executed	at	when	
the	closing	brace	is	reached.	

Internally,	this	is	parsed	as	if	it	were	a	function:	

constexpr void __unnamed_fn() {
 for... (auto x : $X.members())
 // Do something with x
}

That	function	is	immediately	evaluated	as	if	initializing	a	constexpr	variable,	like	this:	

constexpr int __unnamed_var = (__unnamed_fn(), 0);

Class-scoped	 constexpr	 blocks	 have	 similar	 semantics,	 except	 that	 the	 synthesized	 functions	 and	
variables	are	also	static.	

struct Foo {
 constexpr {
 for... (auto x : $X.members())
 // Do something with x
 }
}

Again	the	block	is	executed	at	the	closing	brace	of	the	compound-statement.	

Block	scope	constexpr	are	a	little	different;	they	are	internally	modeled	as	lambda	functions	with	no	
capture.	For	example,	this	code	

void f() {
 constexpr {
 /* constexpr block body */
 }
}

Is	approximately	equivalent	to	this:	

void f() {
 auto __lambda = []() constexpr { /* constexpr block body */ };
 constexpr int __var = (__lambda(), 0);
}

We	had	considered	whether	a	non-empty	capture	list	would	be	useful	–	and	it	might.	However,	it	could	
only	capture	constexpr	declarations.	That	still	might	be	useful.	We	currently	have	no	mechanism	for	
controlling	capture	in	a	block-scoped	constexpr	block.		

On	the	surface,	this	might	not	make	much	sense.	Constant	expressions	can’t	have	side	effects,	so	it	seems	
like	there	would	be	little	value	in	supporting	a	feature	that	evaluates	side-effect-free	void	functions.	That	
changes	when	we	start	injecting	source	code.	

3.2 Injection	statements	
An	injection	statement	defines	a	fragment	of	code	at	some	point	in	a	program,	called	the	injection	site.	It	
has	the	following	syntax:	

injection-statement:	
	 ->	namespace	identifieropt	{	declaration-seq	}	
	 ->	class	identifieropt	{	member-specification	}	
	 ->	do	compound-statement	
	 ->	{	expression	}	

Each	 alternative	 defines	 a	 fragment	 of	 something	 that	 can	 be	 injected.	 A	 namespace	 fragment	 is	 a	
sequence	of	namespace-scoped	declarations	to	be	injected.	A	class	fragment	is	a	sequence	of	class-scoped	
declarations	to	be	 injected.	A	block	 fragment	 is	a	sequence	of	statements	to	be	 injected.	A	statement	
fragment	is	a	single	expression	to	be	injected.	

These	fragments	are	parsed	and	analyzed.	The	keyword	is	needed	to	tell	the	compiler	how	to	parse	the	
contents	within	the	block.	Namespace	and	class	injections	support	an	optional	identifier,	which	can	be	
used	within	the	fragment	for	self-references.	More	on	that	later.	

Injection	statements	can	appear	in	a	constexpr	block.	For	example:	

namespace N {
 constexpr {
 -> namespace { int f() { return 0; } }
 }
} // namespace N

This	block	contains	a	namespace	fragment	injection.	When	the	block	executes,	the	injection	statement	is	
queued	as	a	kind	of	side	effect	of	evaluation.	Otherwise,	the	statement	has	no	observable	behavior.	After	
execution	completes	(assuming	no	errors	are	encountered)	queued	injections	are	applied.	The	injection	
site	is	immediately	after	the	constexpr	block	where	they	were	queued.	

Currently,	 source	 code	 injections	 are	 applied	 only	 at	 the	 end	 of	 a	constexpr	 block;	 a	 program	 that	
produces	injections	from	the	evaluation	of	any	other	constant	expression	is	ill-formed.	However,	this	is	
not	currently	enforced	by	the	compiler.	

Source	code	injection	transforms	the	fragment	of	code	by	substituting	its	original	context	with	that	of	the	
constexpr	block.	In	this	case,	no	such	substitutions	are	needed;	a	new	version	of	the	function	f	is	injected	
into	the	namespace	N.	The	resulting	program	is:	

namespace N {
 int f() { return 0; }
} // namespace N

Consider	another	example:	

constexpr void make_links() {
 -> class C {
 C* next;
 C* prev;
 }
}
struct list {
 constexpr { make_links(); }
};

Here,	we	have	a	class	fragment	injection	within	a	namespace-scoped	function.	This	is	fine.	In	this	case,	
we’ve	provided	a	name	for	the	fragment	because	we	need	to	refer	to	the	type	of	the	enclosing	class.	

The	 list	 class	 contains	 a	 constexpr	 block	 that	 calls	 make_links.	 When	 that	 executes,	 the	 class	
fragment	will	be	queued,	and	later	applied	at	the	closing	brace	of	the	constexpr	block	(the	injection	
site).	When	the	 injection	 is	applied,	we	transform	the	 injected	members,	substituting	C	 for	list.	The	
resulting	class	is:	

struct list {
 list* next;
 list* prev;
};

Statement	injection	works	similarly.	Note	that	statement	injections	are	parsed	as	compound-statements.	
The	entire	block	is	injected,	creating	a	new	scope.	This	is	necessary	to	prevent	nested	declarations	from	
leaking	into	the	call	site.	

Here	is	a	slightly	more	involved	example	that	applies	a	polymorphic	function	object	(with	call	operator	
overloads)	to	an	object	in	a	class	hierarchy	rooted	at	expr.	

template<typename F>
decltype(auto) apply(expr* e, F fn) {
 switch (e->get_node_kind()) {
 constexpr {
 for (auto x : $expr::kind) {
 -> do {
 case x.value():
 return fn(static_cast<expr_type_t<$x.value>*>(e));
 }
 } // for
 } // constexpr
 } // switch
}

The	body	of	 the	switch	statement	 is	a	constexpr	block.	When	executed,	 that	block	will	 inject	a	case	
statement	 for	 each	 enumerator	 in	 the	 hierarchy’s	 discriminator	 type,	 expr::kind.	 Each	 statement	
invokes	the	function	call	operator	on	the	node,	statically	cast	to	its	most	derived	type.	

This	does	assume	an	external	facility,	expr_type_t,	which	defines	the	mapping	of	enumerators	to	types.	
Note	that	this	could	also	be	generated	(elsewhere)	by	injecting	the	type	trait	specializations	that	define	
the	mapping.	

When	instantiated,	the	resulting	specialization	is:	

struct print_fn {
 void operator()(expr* e) { } // Don’t actually print
};

void apply<print_fn>(expr* e, print_fn fn) {
 switch (e->get_node_kind()) {
 case expr::bool_literal_kind:
 return fn(static_cast<bool_literal*>(e));
 case expr::int_literal_kind:
 return fn(static_cast<int_literal*>(e));
 ...
 }
}

Note	that	statements	are	embedded	in	block	statements.	

The	complexity	of	the	original	example	can	be	improved	by	factoring	parts	of	the	code	generation	into	
separate	functions.	For	example:	

template<typename F, Enumerator K>
constexpr void make_apply_case(expr* e, F fn, K kind) {
 -> do {
 case kind.value():
 return fn(static_cast<expr_type_t<kind.value()>*>(e));
 }
}

template<typename F>
constexpr void make_apply_cases(expr* e, F fn) {
 for... (auto x : $expr::kind.enumerators())
 make_apply_case(e, fn, x)
}

template<typename F>
decltype(auto) apply(expr* e, F fn) {
 switch (e->get_node_kind()) {
 constexpr { make_apply_cases(); }
 }
}

We	have	not	implemented	expression	injection	yet	and	are	still	exploring	its	design.	

The	implementation	requires	injections	to	match	the	context	at	the	injection	site.	For	example,	you	cannot	
inject	statements	into	a	namespace:	

constexpr {
 -> do { while (false) ; }
} // error: applying statement-fragment in a namespace

There	was	 some	discussion	 in	 Kona	 that	would	 allow	more	broadly	 scoped	 injections	 to	 “float”	 to	 an	
injection	site	in	an	enclosing	context.	At	the	time	of	writing,	we	determined	to	restrict	injection	to	work	
only	on	matching	contexts.	

This	 construct	gives	a	 rich	 set	of	 tools	 for	programmatically	 generating	 source	 code.	 It	 is	 also	 ripe	 for	
extension	and	experiments.	 In	particular,	 this	 feature	 is	made	dramatically	more	powerful	 if	we	allow	
injections	to	be	named	to	capture	or	names	from	their	enclosing	contexts.	We	have	just	begun	exploring	
those	ideas.	

3.3 Unparsed	injection	
Our	initial	attempt	at	source	code	injection	was	to	treat	the	content	in	the	braces	as	unparsed	tokens.	
When	the	injection	was	applied,	we	would	then	parse	those	tokens	based	on	the	current	context	at	the	
injection	site.	This	proved	to	be	enormously	problematic,	but	there	were	really	two	language	issues	that	
make	this	undesirable:	

It	doesn’t	allow	injected	fragments	to	refer	to	(and	depend	on)	declarations	in	an	enclosing	local	scope.	
For	example:	

struct S {
 int a, b, c;
 constexpr {
 for... (auto x : $S.member_variables())
 -> { void declname(“get_” $x.name())() const; }
 }
};

If	 the	 injection	 statement	 is	 simply	 a	 list	 of	 tokens,	 then	 the	 expression	$x	 is	 not	meaningful	 at	 the	
injection	site.	It	would	be	as	if	we	were	trying	to	parse	this	class	definition:	

struct S {
 int a
 void declname(“get_” $x.name())() const;

 void declname(“get_” $x.name())() const;
 void declname(“get_” $x.name())() const;
};

Clearly,	this	is	not	what	we	want.	Instead,	we	need	the	declname()	operator	to	be	applied	at	the	time	
we	parse	the	fragment.	In	other	words,	we	need	this	to	emit:	

struct S {
 int a
 void get_a() const;
 void get_b() const;
 void get_c() const;
};

We	tried	to	fix	in	the	context	of	metaclasses	by	trying	to	define	a	token	replacement	for	certain	constructs,	
but	 this	 turned	 out	 to	 add	 other	 problems.	 In	 particular,	 this	 replacement	 allows	 names	 to	 be	
unintentionally	captured	if	the	happen	to	share	a	name	with	nominated	replacement.	

In	the	face	of	these	issues,	we	moved	to	the	parsed	fragments	described	above.		

4 Compiler	interaction	
Certain	 features	of	 the	metaclass	 facility	 require	more	 interaction	with	 the	 compiler.	We	need	better	
support	 for	 generating	 compile-time	 diagnostics	 and	 debugging	metaprograms	 and	metaclasses.	 Our	
work	here	is	very	immature;	much	more	can	be	done	in	this	space.	

4.1 Diagnostics	
Our	metaclass	design	requires	that	we	be	able	to	emit	user-defined	error	diagnostics.	We	implemented	a	
minimal	interface	for	emitting	these	diagnostics.	These	are	packaged	in	a	compiler	object.	For	example,	
emitting	a	diagnostic	works	like	this:	

compiler.error(loc, “some error message”);

Unsurprisingly,	the	compiler	emits	“some	error	message”	at	the	indicated	location.	At	least,	 it	would	if	
source	 code	 locations	 were	 actually	 implemented.	 The	 current	 implementation	 omits	 the	 location	
parameter.		

Under	the	hood,	this	function	invokes	a	compiler	intrinsic	that	accepts	the	given	arguments		

struct compiler_type {
 static constexpr void
 error(source_location loc, const char* msg) {
 __compiler_error(loc, msg);
 }
} compiler;

The	semantics	of	__compiler_error	are	interesting.	First,	it	is	syntactically	allowed	within	a	constant	
expression.	 When	 executed,	 the	 program	 aborts.	 This	 means	 that	 any	 compile-time	 evaluation	 that	
reaches	 this	 expression	 will	 stop	 evaluating.	 At	 that	 point,	 the	 implementation	 is	 required	 to	 emit	 a	
diagnostic	containing	the	given	message.		

We	also	provide	a	simple	assert-like	wrapper:	

compiler.require(loc, cond, msg);

This	calls	error(loc, msg)	if	cond	is	false.	

4.2 Debugging		
The	ability	to	inject	arbitrary	code	allows	source	code	to	be	constructed	programmatically.	Programmers	
need	some	mechanism	to	debug	the	output	of	these	programs.	We	added	a	small	new	feature	that	allows	
the	compiler	to	emit	the	generated	code.	This	is	also	invoked	through	the	compiler	object.	

struct S { };

constexpr {
 compiler.debug($S);
}

	When	executed,	the	compiler	pretty	prints	the	reflected	declaration	to	standard	error.	

The	implementation	is	similar	to	that	of	compiler	error.	

struct compiler_type {
 template<Reflection T>
 static constexpr void debug(T refl) {
 __compiler_debug(refl);
 }

It	 invokes	an	 intrinsic,	passing	a	 reflection	object	as	an	argument.	Behaviorally,	 the	expression	has	no	
effect.	

5 Metaclasses	
Having	established	all	of	this	infrastructure,	we	can	now	easily	describe	metaclasses.	Here	is	one	of	our	
motivating	examples:	

$class interface {
 virtual ~interface() = default;

 constexpr {
 for... (auto x : $interface.member_functions()) {
 x.make_pure_virtual();
 x.make_public();
 }
 compiler.require($interface.member_variables().empty(),
 “an interface cannot have member variables”);
 }
}

We	represent	interfaces	as	a	named	class	injection.	The	interface	metaclass	is	a	fragment	to	be	injected	
into	its	subscribing	class.	But,	it	does	have	some	other	properties.	

A	metaclass	is	applied	to	a	class	declaration	or	definition	by	using	its	name	instead	of	the	traditional	class	
key	(class	or	struct).	For	example:	

interface IFoo {
 void foo();
 void bar();
};

We	call	the	written	definition	of	IFoo	the	prototype.	The	metaclass	modifies	the	contents	and	semantics	
a	prototype	 to	produce	a	new	class.	 In	particular,	 the	 compiler	disables	all	 default	 generation	 for	 the	
prototype,	and	using	the	metaclass	to	apply	its	own	user-defined	defaults	by	source	code	injection.	

The	metaclass	 is	 injected	 into	 the	prototype	 just	 before	 the	 closing	brace	of	 the	 class	 definition.	 This	
means	that	its	rules	apply	to	all	elements	of	the	class.	The	resulting	class	is:	

class IFoo {
 public: virtual void foo() = 0;
 public: virtual void bar() = 0;
 virtual ~IFoo() = default;
};

When	 a	 metaclass	 is	 injected,	 each	 declaration	 within	 the	 metaclass	 is	 injected	 into	 the	 prototype,	
including	any	constexpr	blocks	in	the	order	of	declaration,	using	the	transformation	process	described	
above.	 When	 a	 constexpr	 block	 is	 injected,	 it	 is	 evaluated	 as	 if	 it	 had	 been	 written	 in	 place.	 The	
mechanics	are	straightforward	and	easy	to	describe.	

5.1 Modifying	declarations	
There	a	small	number	of	operations	that	can	modify	members	of	a	class	(e.g.,	make_public).	These	are	
implemented	as	compiler	intrinsics.	For	example:	

template<std::intptr_t X>
struct member_function {
 // ...
 static constexpr void make_public() {
 __make_public(X);
 }
};

These	 expressions	 are	 queued	 just	 like	 source	 code	 injections.	 They	 represent	 a	 request	 to	 change	 a	
declaration.	The	current	implementation	simply	modifies	the	internal	state	of	the	node,	and	updates	any	
extra	information	maintained	by	the	class.	

That	said,	modifying	declarations	is…	tricky.	Changing	an	access	specifier	is	nearly	trivial.	Making	a	function	
virtual	affects	properties	of	the	entire	class:	 it	becomes	polymorphic	or	abstract	and	its	virtual	table	 is	
created	or	changed.	Fortunately,	that	wasn’t	too	hard	in	Clang.		

Making	 a	 member	 variable	 static	 is	 very	 challenging,	 because	 Clang	 represents	 static	 and	 non-static	
member	variables	as	different	AST	nodes.	Making	a	member	static	would	entail	building	replacing	the	old	
node	with	a	new	one.	This	seems	particularly	brittle	and	would	require	the	specification	to	encode	special	
rules	for	certain	modifications	(e.g.,	you	can’t	make	something	static	if	you’ve	already	referred	to	it).	

We	also	have	serious	concerns	about	implementability	in	other	compilers.	

This	points	to	the	idea	that	current	approach	is	not,	perhaps,	the	best	solution.		

5.2 Metaclass	application	
As	noted,	our	implementation	modifies	a	subscribing	class	in	place;	it	does	not	produce	a	new	class.	This	
is	 largely	due	to	the	fact	that	we	chose	to	model	metaclasses	as	 injections:	that’s	 just	how	they	work.	
However,	as	mentioned	above,	modifying	individual	declarations	may	have	serious	technical	restrictions.	

We	had	originally	considered	an	approach	where	we	instantiate	an	entirely	new	class	from	the	original,	
applying	rules	as	needed.	But	the	name	of	that	class	is	somewhat	problematic.	It	has	been	suggested	to	

name	the	prototype	some	internal	name	like	__blah_blah_blah,	and	then	to	create	the	final	class	with	
the	name	given	by	prototype.	

Unfortunately,	this	doesn’t	work	well	when	self-references	are	used.	For	example:	

interface IFoo {
 IFoo* get_foo();
};

We	want	 to	parse	prototype	as	 a	normal	 class.	After	 all,	metaclasses	affect	 class	 semantics,	 not	 their	
syntax.	Ostensibly,	resolved	type	names	would	point	to	the	wrong	class	type:	get_foo	should	return	a	
pointer	to	the	prototype,	not	the	final	type.	Maybe	that	isn’t	a	big	deal	because	we’re	eventually	going	to	
replace	that	with	a	pointer	to	the	final	type	during	injection.	

One	alternative	is	to	create	define	the	prototype	in	a	hidden	and	inaccessible	namespace,	and	then	to	
synthesize	the	final	class	at	the	original	point	of	definition.	

namespace look_away {
 interface IFoo { ... }; // prototype definition
}
// synthesize final IFoo here

This	approach	is	actually	very	similar	to	how	our	compiler	parses	metaclasses.	The	“class	part”	is	defined	
within	the	context	of	a	“metaclass”.	

We	had	also	considered	synthesizing	the	final	class	on	top	of	the	original	class:	that	is,	replace	the	internal	
representation	of	the	node	with	the	new.	That	would	preserve	any	external	references	to	the	class	(i.e.,	
uses	of	a	forward	declaration).	However,	this	feels	a	little	too	sneaky.	

The	other	issue	to	consider	is,	when	creating	a	final	class	separate	from	the	prototype	is	how	modifications	
are	ordered	and	when	their	effects	are	visible.	For	example:	

$class mc {
 constexpr {
 for... (auto x: $mc.member_variables())
 x.make_static(); // Assuming this works
 }
 constexpr {
 compiler.require($mc.member_variables().empty(),
 “too many member variables!”);
 }
 int y;
}
mc some_class {
 int x;
}; // error?

In	our	current	model,	this	is	well-formed.	The	first	constexpr	block	makes	the	member	x	static.	That	
effect	is	visible	after	the	before	the	execution	of	the	second	constexpr	block.	When	that	executes,	there	
are	no	static	members,	so	compilation	succeeds.	Finally,	the	non-static	member	variable	y	is	injected.		

We	had	considered	other	formulations	of	metaclass	application	semantics.	One	thought	was	to	transfer	
all	members	first,	then	apply	constexpr	blocks.	The	opposite	order	was	also	discussed.	However,	re-
ordering	 the	 application	 of	 injections	 makes	 it	 difficult	 for	 programmers	 to	 determine	 the	 ultimate	

“shape”	 of	 the	 final	 class.	 This	 also	 makes	 metaclass	 rules	 different	 from	 the	 injection	 mechanism	
described	above,	which	we	find	to	be	undesirable.	

An	interesting	outcome	of	moving	from	in-place	modification	to	transformation	is	that	modifications	(e.g.,	
make_virtual)	could	only	be	used	within	metaclasses.	Other	 injections	do	not	“own”	their	contexts.	
This	seems	like	a	reasonable	design	choice.	

6 Acknowledgements	
This	work	would	not	have	been	possible	without	discussion	with	and	feedback	from	WG21	committee	
members,	in	particular	Daveed	Vandevoorde.	His	metacode	proposal	has	greatly	influenced	many	of	the	
features	discussed	here.	The	paper	P0633R0	By	Daveed	Vandevoorde	and	Louis	Dionne	provides	a	good	
context	for	many	of	the	features	discussed	in	this	paper.	Chandler	Carruth,	and	Richard	Smith	have	also	
contributed	ideas,	limitations,	and	discussion	that	influenced	the	direction	of	this	work.	Special	thanks	to	
Jennifer	Yao	contributed	significantly	to	the	implementation	and	surfaced	a	number	of	technical	issues	
related	to	our	design.	

This	material	is	based	upon	work	supported	by	the	National	Science	Foundation	under	Grant	No.	1422655.	

	

