
Stroustrup Natural syntax P0694r0

1

Doc. no. P0694r0
Date: 2017-06-18
Programming Language C++
Audience: All
Reply to: Bjarne Stroustrup (bs@ms.com)

Function declarations using concepts

Bjarne Stroustrup

Morgan Stanley and Columba University

www.stroustrup.com

Abstract
This paper considers the use of concept names in function declarations. In particular, it considers the
rules for binding of types to concept names (§3), counts potential uses of different function declaration
notations in the STL and similar libraries (§4), and explores alternatives for consistent notation (§5).

The results do not support changes to concepts, except that we should explore whether the
requirement for consistent binding of types to concepts should extend to all scopes as in the original
concept design. If so, we should consider if we need a way of defining concepts in a local scope (§7.2).

If we insist on using a single notation style, we must use concept type-name introducers, rather than
explicit requires-clauses (§5).

The natural declaration syntax is still the shortest and simplest for many generic functions; especially in
the simplest and most common cases. For example, it can reasonably be used for about 2/3rd of the STL
algorithms and the STL is not the only use case. It is a valuable addition to the language as well as the
ideal [Str17]. It emphasizes the fundamental similarity between concepts and types (§6).

1. Introduction and Summary
The use of the natural syntax (conventional syntax, usual syntax, common syntax, terse syntax,
abbreviated syntax, functional syntax, simple syntax, whatever; see §8) for function declarations using
concepts has unfortunately become controversial. For example:

 void sort(Sortable&); // Sortable is a concept

The rationale for this feature and its place in generic programming can be found in §2, §7, and §8.6 of
[Str17]. Users generally love it, but various people have raised technical issues, deemed this syntax
potentially confusing, inconsistent with uses of auto, and/or unnecessary.

The natural syntax is a necessity: to make generic programming (i.e., programming with templates and
concepts) mainstream, we must make it approachable to ordinary programmers. For most programmers
and most examples, the fully general notation using explicit requires-clauses is a verbose and “heavy”

Stroustrup Natural syntax P0694r0

2

nuisance. By necessity and design, the natural syntax cannot express everything that the fully general
notations can. The natural syntax is the notation we use to define "ordinary" functions – and in generic
programming generic functions are ordinary. For the multi-parameter concepts with mutual
dependencies among the arguments, we need type-name introducers.

This note does not discuss the syntax itself (see [Str17]), but addresses common objections:

• It is wrong that repeated occurrences of a concept in a declaration must bind to the same type.
• It is confusing to have multiple notations for using concepts.
• It is confusing that the meaning of a declaration can differ depending on whether an argument

is a type or a concept.
• It is confusing that a concept can be used where we are used to see types.
• The natural syntax is useful for toy examples only.

This note discusses technical issues, addresses concerns about consistency of style, and considers how
notation reflects and encourages good programming style. It presents a few numbers from the STL, and
points to the concept-based type-introducer notation as an essential part of any solution.

My major conclusions are

1. Repeated uses of the same concept in a scope must refer to the same type. Otherwise, the basic
equivalences among the notations are broken, adding complexity, harming comprehension, and
complicating maintenance.

2. Independent resolution of concepts in a scope leads to technical problems, including breaking
the basic equivalences among notations and complicating the specification of return values.

3. If you want a unique notation for all declarations, you must use concepts as type-name
introducers throughout, rather than explicit requires-clauses.

4. The likelihood of confusion and errors from the natural declaration syntax is minimal and is
caused by irregularities elsewhere in the language.

5. For the STL algorithms, you can use the natural declaration syntax as the simplest notation for
about 2/3rd of the algorithms, and the STL style is by no means the only use of the natural
notation.

6. Independent resolution of concepts severely limits the utility of the natural syntax.
7. Concepts and types are fundamentally similar and not allowing the natural syntax obscures this

similarity, making generic programming and “ordinary programming” unnecessarily dissimilar.

Point [1] suggests a minor change to status quo (reverting to the original concept design). The other
conclusions do not suggest changes to status quo. See also §8. My basic conclusion is that status quo is
pretty good compared to suggested alternatives. I am not against improvements (see §7), but the
suggestions examined here seem not to be improvements.

This paper is longer than what I would have preferred, but initial readers raised a lot of questions that I
felt obliged to answer directly. It is easy to raise a concern, but much harder to argue that a potential
problem isn’t significant or that a suggested alternative has its own problems.

Stroustrup Natural syntax P0694r0

3

1.1 Overview
The rest of the paper is organized as follows:

2. Uses of concepts
3. Multiple occurrences of a concept name
4. Usage numbers
5. Consistent style
6. The meaning of declarations
7. Suggested language extensions
8. Naming: Why “natural syntax”?
9. Conclusions
10. References

2. Uses of concepts
There are three uses of concepts in the current TS:

• As a name for a type in a declaration, indicating a constraint on what types can bind to it; in this
role, auto is the (unnamed) least constrained concept. A concept can be used as a template
parameter, a return type, or the type of a named object. For example:

void sort(Sortable&);

Output_iterator copy(Input_iterator, Input_iterator, Output_iterator);

void sort(Random_access_iterator, Random_access_iterator,
 Relation<Value_type<Random_access_iterator>>);

void my_sort(Sortable& c)
{
 Random_access_iterator middle = c.end()-c.begin();
 // …
}

• As the introducer of one or more type names, indicating a constraint on the types that can bind

to a type name; in this role typename is the least constrained type name introducer. A concept
can be used to introduce named types for use in function declarations. For example:

Mergeable{In1, In2, Out} Out merge(In1,In1,In2,Out);

template<Sortable Seq> void sort(Seq&);

• As an explicit predicate for a class declaration or function declaration (an explicit requires-
clause) or a type in a concept definition. For example:

template<typename Seq>
 requires Sortable<Seq>
void sort(Seq&);

Stroustrup Natural syntax P0694r0

4

template<typename In1, typename In2, typename Out>
concept bool Mergeable = Input_iterator<In1>

&& Input_Iterator<In2>
&& Output_iterator<Out>
&& Lessthan_comparable<Value_type<In1>,Value_type<In2>>
&& Assignable<Value_type<Out>,Value_type<In1>>
&& Assignable<Value_type<Out>,Value_type<In2>>;

There have been lots of (mutually incompatible) suggestions for improving concepts by changing or
removing one or more of these uses or by changing the meaning of one of those. This note examines
some of those suggestions.

2.1 Questions
The questions I’m trying to answer (rationally):

• Is the natural syntax sufficiently useful to deserve support? (yes)
• If so, should we support independent or consistent type-name binding? (consistent)
• What notations could be used exclusively? (concept type-name introducers)
• What notations encourage the kind of generic programming that concepts were

invented to support? (the natural declaration syntax and concept type-name
introducers).

First, I’ll look into the independent vs. consistent binding issue, then look at how the notations
can be used in the STL and the Ranges proposal, and finally look at implications for
programming style.

2.2 Terminology
I call a construct that introduces a name for a template argument type a type-name introducer. There
are two forms type-name introducer

• A template type-name introducer: template<typename Iter> or template<Input_iterator Iter>.
Here, Iter is introduced as a name of the type used as the template argument; typename
indicates that the type is unconstrained and Input_iterator indicates that the type is constrained
by the concept Input_iterator.

• A concept type-name introducer: Sortable{Seq}. Here, the name Seq is introduced as the name
of a template argument that must be Sortable. This form is particularly useful for introducing a
set of names for types that together must match a concept. For example,
Mergeable{In,In2,Out} introduces three names In, In2, and Out for three types that must
match the somewhat complicated requirements, Mergeable, for the arguments to a merge
algorithm.

We have (depending on exactly how you count) four declaration notations:

• The natural notation:
o void sort(Sortable&);

• The original template notation with explicit requires-clauses:

Stroustrup Natural syntax P0694r0

5

o template<typename Seq> requires Sortable<Seq> void sort(Seq&);
• The shorthand notation:

o template<Sortable Seq> void sort(Seq&);
• The concept introducer notation:

o Sortable{Seq} void sort(Seq&);

The natural notation can be used only for functions (algorithms). The others apply to classes also.

When two arguments must match the same concept, we must distinguish two kinds of type-name
resolution:

• Independent binding: Each occurrence of a concept can be bound to a different type
o Number operator+(Number a, Number b); // 20+12.23 is allowed

The types bound to Number have no names and there are no connections between the types
used for the two Numbers. The concept is used only to constrain the argument. If we must, we
can refer to one of those types with decltype, e.g., decltype(b).

• Consistent binding: All occurrences of a concept must be bound to the same type
o Number operator+(Number a, Number b); // 20+12.23 is an error; 20+12 is OK

The name of a concept acts as a name of the type it matched.

In both cases, auto is the least constrained concept.

Status quo is consistent resolution, so given a concept In, we can write

In find(In b, In e, Value_type<In> val);

The return type for In is the type deduced from the argument for In. So is the type used for the
third parameter.

Note that the original model of concepts as presented in [Sut13] and in numerous papers and
talks before and after the formal proposal species the notations as equivalent:

C f(C,C);

means

template<C __name> __name f(__name, __name);

where __name is some name invented by the compiler; this in turn means

template<typename __name> requires C<__name> __name f(__name, __name);

The concept introducer notation for a single type also fits into this pattern:

 C{T} T f(T,T);

Stroustrup Natural syntax P0694r0

6

The language-technical arguments below basically boil down to “don’t mess with these
equivalences.” If we break that fundamental equivalence, we will pay for that in specification
complexity, implementation complexity, and user confusion.

In particular, this equivalence means that we can change from one notation to another – for
aesthetic or practical reasons – without changes to uses. This is a convenience during initial
development and close to essential during maintenance.

3. Multiple occurrences of a concept name
Many algorithms use two arguments constrained by the same concept. For example:

 void sort(Random_access_iterator, Random_access_iterator);

In such cases, must the concept be matched by the same type (twice) or can the two occurrences be
independently matched by different types? The answer to this question affects how often the natural
syntax can be used and how.

3.1 Current resolution
The original concepts proposal [Sut13] was clear:

“We can use concepts to restrict that definition.
Integer gcd(Integer a, Integer b);

This is equivalent to writing:
template<Integer T>
T gcd(T a, T b);

Note that repeated uses of the same concept name with a scope bind to the
type name, whereas the unconstrained auto version allows those types to vary.
This makes the use of concept names consistent with the usual rules for type
names (i.e., they don’t change between uses).”

That is, the original proposal explicitly supports consistent binding for arguments and return types. A
slightly less approachable, but presumably more precise, formulation can be found in latest working
paper [Sut17] (7.1.6.4 [dcl.spec.auto]. First paragraph on top of page 13):

C const& f1(C); // has one template parameter and no deduced return type

Note that the return type is consistent with the argument type, rather than being independently
deduced.

Consistent binding is status quo, so that

 void sort(Random_access_iterator, Random_access_iterator);

implies that the same type must be used for both arguments

 void use(vector<int>& v1, vector<double>& v2)
 {
 sort(v1.begin(),v1.end()); // OK

Stroustrup Natural syntax P0694r0

7

 sort(v1.begin(),v2.end()); // error
 }

Had the second call passed the compiler, the result would have been a run-time error.

The consistent resolution is ideal for STL iterator pairs and many other uses, but not for every use.

We can also use a concept twice in a block:

void use2(auto x, auto y)
{
 Number xx = f(x);
 Number yy = g(y); // must yy be the same type as xx?
 // …
}

The original proposal [Sut13] required consistency:

“Also, 7.1.6.5 Constrained type specifiers [dcl.spec.constrained]: The first use of concept-name
or partial-concept-id within a scope binds that name to the placeholder type so that subsequent
uses of the same name refer to the same type.”

However, this was not emphasized and the original designers agreed at the time that independent
resolution might be reasonable. Later, for reasons I don’t exactly know, that requirement was reversed,
so that the TS supports independent resolution for variables in a block.

So currently, xx and yy can be of different types, just as x and y can. This is appropriate for many uses,
but not for all.

That implies that whether two occurrences of a concept must bind to the same type is currently context
dependent. That’s technically inconsistent and potentially confusing (§3.6).

The use of a concept as a template type argument is defined in a declaration. For example:

void sort(Random_access_iterator, Random_access_iterator,
 Relation<Value_type<Random_access_iterator>>);

However, that use in a function body is not described in the TS, so this is unspecified:

void sort(Forward_iterator& b, Forward_iterator& e,
Relation<Value_type<Forward_iterator>>) // OK

{
 vector<Value_type<Forward_iterator>> v {b,e}; // currently unspecified
 sort(v);
 copy(v.begin(),v.end(),b);
}

Note that not having this facility breaks the fundamental equivalence of the notations (§2.2). For
simplicity and consistency, we should support this usage. Alternatively, we would need to use
workarounds (e.g., using decltype(*b)).

Stroustrup Natural syntax P0694r0

8

3.2 Simple alternatives
There are exactly three fundamentally simple alternative rules for binding to a concept

1. All occurrences of a named concept a declaration (incl. definitions) are independent
2. All occurrences of a named concept in a declaration (incl. definitions) must refer to the same

type (“be consistent”)
3. A concept can occur in a declaration at most once

Unfortunately, none of these is a complete solution. That is, for each, there are important use cases
that require a more flexible approach. The next sections explore solutions based on these three
alternatives.

3.3 Alternative 1: Independent resolution
For this section, assume that different occurrences of a named concept can bind to different types. That
implies that we can no longer just write the std::sort like this:

 void sort(Random_access_iterator, Random_access_iterator);

That would imply that we accepted sort(v1.begin(),v2.end()) where the two iterators are of different
types, which would be an error for std::sort. To get consistent resolution as required for std::sort, we
would have to write something like

 template<Random_access_iterator Ran> void sort(Ran, Ran);

Ran is a type, so the two arguments must (modulo implicit conversions) be of the same type. As a
notation, that’s not too bad.

If we considered explicit use of requires important , we could write

template<typename Ran1, typename Ran2>
requires Random_access_iterator<Ran1> &&

 Random_access_iterator<Ran2> &&
 Same_type<Ran1,Ran2>

 void sort(Ran1, Ran2);

That’s so verbose that I don’t consider that realistic for real-world code.

The independent resolution doesn’t handle return types well. Consider:

Output_iterator copy(Input_iterator, Input_iterator, Output_iterator);

If the concept used to constrain the return type is independent of the concept used in the arguments
specifications, we can only deduce its type from a return statement in a function definition (see §6.1).
That renders declarations that are not also definitions useless.

Independent resolution is insufficient to express the STL pair-of-iterators idiom. With generalization of
the STL to accommodate ranges, this idiom will no longer be as dominant as it is today. However, the
STL style is used very widely and will remain important for many years (“forever”) and it is not the only

Stroustrup Natural syntax P0694r0

9

idiom that relies on pairs of arguments of the same type. In addition, this problem with independent
resolution appears whenever we use the idiom of returning an object of an argument type. For example:

Value next(Value);
Value compute1(Value,Value); // homogeneous operation
Value compute2(Value,Other_value); // heterogeneous operation
vector<Value> compute3(vector<Value>);

Thus, independent resolution would dramatically reduce the usefulness of the natural syntax.

Note that independent resolution breaks the fundamental equivalence of the notations (§2.2).

3.4 Alternative 2: Consistent resolution
Currently, we require the same type to match all occurrences of a concept in a declaration, simple
examples, like std::sort, work as written:

 void sort(Random_access_iterator, Random_access_iterator);

 Input_iterator find(Input_iterator, Input_iterator,

Equality_comparable<Value_type<Input_iterator>>);

The problem comes when we need to match with multiple types; std::merge is the classic example:

Output_iterator merge(Input_iterator, Input_iterator, // Wrong!
 Input_iterator, Input_iterator,
 Output_iterator);

 Here, the first pair of Input_iterators must bind to the same type, the second pair of Input_iterators
must bind to the same type, but the two types bound to the two pairs of Input_iterators may differ.
Thus, neither independent resolution nor consistent resolution is sufficient to express merge().

 Again, the conventional solution is to use template to introduce type names:

template<Input_iterator In1, Input_iterator In2, Output_iterator Out>
Out merge(In1, In1 In2, In2, Out);

Again, that’s not too bad as a notation and the shorthand notation is essential for avoiding bloat.
Unfortunately, this is insufficient in most such cases because when there are different concepts
involved, the relationships among the iterators typically need to be specified. For example:

template< Input_iterator In1, Input_iterator In2, Output_iterator Out>
 requires Equality_comparable<Value_type<In1>, Value_type<In2>> &&
 Assignable<Value_type<Out>,Value_type<In1>> &&
 Assignable<Value_type<Out>,Value_type<In2>>
Out merge(In1, In1, In2, In2, Out);

This is pretty verbose and gets repetitive because complicated functions tend to come in clusters with
similar requirements. For example, the STL offers 7 merge functions and 20 set algorithms.

Stroustrup Natural syntax P0694r0

10

Repetitive use of the same or very similar code is usually considered bad style and is a source of errors.
The solution (the currently deployed solution) is the use concepts as type-name introducers:

Mergeable{In1,In2,Out}
Out merge(In1, In1, In2, In2, Out);

Here, Mergeable is the concept that requires the three types and {In1,In2,Out} names the types. This
solution works nicely independently of whether the natural declaration syntax resolves types
independently or uniformly.

The concept Mergeable expresses the requirements and encapsulates the complexity:

template<typename In1, typename In2, typename Out>
concept bool Mergeable = requires Input_iterator<In1> &&

Input_iterator<In2> &&
Output_iterator<Out> &&

 Equality_comparable<Value_type<In1>, Value_type<In2>> &&
 Assignable<Value_type<Out>,Value_type<In1>> &&
 Assignable<Value_type<Out>,Value_type<In2>>;

3.5 Alternative 3: Ban repeated use of a concept
If a declaration can mention a concept only once, we can’t get the problems involved with resolving the
types bound to multiple uses of a concept. Unfortunately, this dramatically limits the expressiveness of
the natural syntax and eliminates many non-problematic uses (e.g., 161 algorithms out of 271 in the STL;
see §4.1). I mention this alternative just for completeness and I will not explore it further.

3.6 Concepts in function bodies
In addition to using concepts for parameters and for the return type of a function declaration, they can
be used to constrain the result of an expression (usually a function call). Assume that we have a Number
concept:

Number operator+(Number,Number);

Number x = 1+2; // OK
Number y = 1+2.0; // OK?

For some applications, we want just one number type; in others, we want a set of numbers with implicit
conversions. Replicated concepts are here to stay and some need independent resolution and some
need consistent resolution. Whatever resolution we decide on will be a default and we need a way to
express the alternative. We can express this using type-name introducers (see §5). For example:

template<Number N1, Number N2 = N1, Number N3 = N1>
N3 operator+(N1,N2);

Number x = 1+2; // OK

Stroustrup Natural syntax P0694r0

11

Number y = 1+2.0; // OK

Alternatively, we can give a concept another name. For example:

template<typename T> concept bool Number2 = requires Number<T>;
template<typename T> concept bool Number3 = requires Number<T>;

Number3 operator+(Number,Number2);

Number x = 1+2; // OK
Number2 y = 1+2.0; // OK

Unfortunately, such extra names cannot be introduced inside a body (we don’t have local templates; see
§7.2).

Language support for such numbering has been suggested (§7), but we should only adopt such an
extension if the number of uses warrants it. I doubt they do.

For independent resolution, we would need some language extension to express consistent resolution
where needed (§7.1).

Whichever resolution we choose, we must support some form of this common idiom:

void sort(Forward_iterator b, Forward_iterator e)
{
 vector<Value_type<Forward_iterator>> v {b,e};
 sort(v);
 copy(v.begin(),v.end(),b);
}

That is, we need to get the value type of an argument (e.g., an iterator, container, or smart pointer).
Since there is no initializer for the Forward_iterator in the Value_type<Forward_iterator> we must
choose consistent resolution or use a workaround for expressing Value_type<Forward_iterator>, such
as decltype(*b). Not all type expressions have simple workarounds.

For consistency, this should probably be extended to repeated uses of a concept in a scope (§3.4):

Number operator+(Number,Number);

template<typename T> concept bool Number2 = requires Number<T>;

void f()
{

Number x = 1+2; // OK
Number y = 1.0+2.0; // error: different type bound to same concept in a single scope
Number2 y = 1.0+2.0; // OK

 }

Stroustrup Natural syntax P0694r0

12

This use of a second named concept to solve the problem of expressing identical constraints while still
allowing different types to be bound it simple, general, and works today. It does lead to a proliferation
of names, but must be considered if/when we consider language extensions related to name
introduction (§7.2).

Note that this issue reappears in classes. Consider:

class X {
 // …
 Number n1;
 Number n2;
 void f1(Number,Number);
 Number f2(Number,Number);
 // …
};

The use of concepts as data member constraints is currently not supported, but it probably should be.
The two Numbers in f1 must refer to the same type and the three Numbers in f2 must refer to the same
type, but not necessarily to the Numbers in f1.

I do not know how serious the issue of consistent vs. independent binding in function bodies (and
classes) is and do not propose any change until we have some better analysis and hopefully some usage
numbers. What little I have seen supports consistent binding, but there are examples where
independent resolution is more appropriate (exactly as for declarations). It is not possible to have a
simple general language with ideal defaults for every use case.

3.7 auto and concepts
I often explain that auto can be seen as the least constrained concept. For example

 void f(auto); // first proposed in 2002!

is a function that can take a value of any type as an argument. This declaration is equivalent to

 template<typename T> void f(T);

so typename is the name of the least constrained concept.

Some have interpreted that to mean that we could define auto as

 template<typename T> bool auto = true;

They then tried to deduce the meaning of all uses of auto from that. That is being too literally minded.
We did not define auto that way and the keyword auto has been reused with slight variations in
meaning since its introduction. Consider

auto fct(int,double) -> double; // auto is a syntactic place holder(only)

auto fct2(int i) { return g(i); } // auto indicates that the return type is deduced

Stroustrup Natural syntax P0694r0

13

template <auto x> constexpr auto constant = x; // from P0127R2

auto v1 = constant<5>; // v1 == 5, decltype(v1) is int
auto v2 = constant<true>; // v2 == true, decltype(v2) is bool
auto v3 = constant<'a'>; // v3 == 'a', decltype(v3) is char

What I mean by “auto can be seen as the least constrained concept” is that the constraints imposed by
auto are those of the least constrained type concept, that is “the argument must be a type.” In my
experience, only language lawyers are confused by that.

Naming a concept and using it repeatedly is different from just considering the minimal constraint of
type-binding imposed by the keyword auto. Consider:

 template<typename T> bool C = true;

 C f(C c1, C c2, auto a1, auto a2);

Here, the four arguments are not constrained, we just have to decide whether the name C has to be
consistently used or the bindings are independent. The issue of how to use names is separate from the
(non-controversial) issue of how to constrain types. Both choices are logically possible and both choices
have their problems that would need to be addressed. I consider the (current) requirement of
consistency a useful tool (e.g., see §4 and §5.3).

I suspect that some the attraction of independent resolution of concept names comes from the view
that auto (unconstrained genericity) is somehow “normal” or the ideal. I think that’s completely against
the notion of generic programming as defined by Alex Stepanov and embodied in the current concept
design: Algorithms should be expressed in terms of concepts and unconstrained arguments should be
rare and viewed with suspicion. That is, auto and typename are relicts of an imperfect past where we
could not express concepts directly and should as far as possibly be eliminated: auto/typename is
generic programming’s equivalent to void*, the lowest level and least specific way of expressing
something. I know that there are uses of templates beyond Alex’s vision of generic programming, but I
don’t think those should drive the design of concepts. It would be the tail wagging the dog:
unconstrained genericity is already well supported.

For completeness, we must also consider the use of auto and concepts in function bodies:

void use(vector<int>& vi, list<int>& lsti)
{
 auto b = vi.begin();
 auto e = lsti.end();

Forward_iterator b2 = vi.begin();
 Forward_iterator e2 = lsti.end();

 // …
}

The two uses of auto are (of course) independent. Currently, the two uses of Forward_iterator are also
independent and that is the only place in C++ where the same unqualified type name can have different

Stroustrup Natural syntax P0694r0

14

meanings in the same scope (which wasn’t part of the original concept design [Sut13]). I think the
change was a mistake. For example, the examples above are likely bugs. If we want to allow different
bindings to the same name in the same scope, we can use different names. Requiring consistent
resolution within each scope (including function parameter scopes) is the most useful and most
consistent (pun intended).

Also, not having consistent resolution here breaks the fundamental equivalence of the notations (§2.2).
See also §6.

3.8 Lambdas
One of the reasons for the natural syntax is to simply constrain lambdas. Consider:

sort(v.begin(), v.end(), [](auto b, auto b) { return *a>*b; });

This postpones checking of *a and *b until instantiation time. We are back to unconstrained calls and
consistency vested in implementation code. With concepts that becomes

sort(v.begin(), v.end(), [](Iterator b, Iterator e) { return *a>*b; });

Until C++17, that was the only way, but soon we can write:

sort(v.begin(),v.end(),[]<Iterator Iter>(Iter b, Iter e) { return *a>*b; });

This implies some the tradeoff between among notations become available when writing lambdas. The
usual questions about aesthetics and the frequency of use apply here, but since lambdas are on average
shorter and simple than library functions, I think that the natural syntax has a distinct advantage here.

4. Usage numbers
One way to look at the choice between independent and uniform resolution is to estimate how many
function declarations will be simplified by each. That’s easier said than done, though, because the
relatively low amount of code using the feature (non-student users of concepts are holding back
because the ongoing complaints about the natural notation gives an impression of instability).

4.1 The current STL
When we first designed concepts, we looked at the STL (see the Palo Alto TR [Str12]). Looking at the STL
algorithms in C++17 (N4659, section 28), we find:

• 29 with no repeated concepts
• 142 where all repeated concepts must bind to the same type
• 1 where all repeated concepts can bind to different types (iter_swap)
• 79 where some repeated concepts can bind to different types and some replicated concepts

must be the same

I counted by hand, so the numbers may be slightly imprecise.

These numbers give an idea why we chose consistent resolution: 171 algorithms can be declared with
the natural notation without trickery, 80 cannot. If we defaulted to independent resolution, 215
algorithms would need to somehow have a same-type constraint expressed.

Stroustrup Natural syntax P0694r0

15

The 80 algorithms for which the resolution of replicated concepts can differ all require some relation
between those concepts to be expressed. This implies that a type name introducer technique is likely to
be superior. The template type-name introduction plus requires clauses tends to get verbose. Compare:

template< Input_iterator In1, Input_iterator In2, Output_iterator Out>
 requires Equality_comparable<Value_type<In1>, Value_type<In2>> &&
 Assignable<Value_type<Out>,Value_type<In1>> &&
 Assignable<Value_type<Out>,Value_type<In2>>
Out merge(In1, In1, In2, In2, Out);

That’s larger than the body of merge().

The concept type-introducer syntax reduces that significantly and reduces opportunities for mistakes:

Mergeable{In1,In2,Out}
Out merge(In1, In1, In2, In2, Out) ;

The difference between the two styles is exactly equivalent to the difference between expressing an
action as inline code and as a function call. Replicating code in several places is usually considered bad
programming, a source of errors, and a maintenance hazard. We should not encourage that.

Of the 171 algorithms for which repeated concepts must bind to the same type

• 113 Need to express one or more constraints among argument types
• 42 Do not need to express constraints among argument types

Typically, an algorithm that does not need added requirements is the simpler and more common of a
pair where the other has a value or predicate extra argument. For example (using conventional
template type-name introducer):

template<Random_access_iterator Ran> void sort (Ran, Ran);

template<Random_access_iterator Ran, Relation Comp>
 requires Callable_with<Comp,Value_type<Ran>>
void sort(Ran, Ran, Comp);

Given a suitable definition of Relation this is easily expressible with the natural syntax:

void sort (Random_access_iterator, Random_access_iterator);

void sort(Random_access_iterator, Random_access_iterator,

Relation<Value_type<Random_access_iterator>>);

Since Random_access_iterator is such a long name and used three times, we might prefer to use it as a
type-introducer

Random_access_iterator {Ran}
void sort (Ran, Ran);

Stroustrup Natural syntax P0694r0

16

Sortable_with{Ran,Pred} // Pred must be a Relation<Value_type<Ran>>
void sort(Ran, Ran, Pred);

How many STL algorithms could reasonably be expressed using the natural notation? Fundamentally,
the natural notation has an advantage when the arguments can be expressed so that dependencies
among argument can be expressed strictly linearly left to right. For example

void sort(Random_access_iterator, Random_access_iterator,

Relation<Value_type<Random_access_iterator>>);

When that is not the case, the natural notation easily gets clumsy. Consider:

 template<Input_iterator In, Output_iterator Out>
 requires Assignable<Value_type<Out>,Value_type<In>>
 Out copy(In b, In e, Out);

This sequence-in-sequence-out idiom is very common in the STL. This implies that we should look for a
concept to express this pattern (§3.4). Consider

 IO_iterators{In,Out} Out copy(In b, In e, Out);

What we should not do is to repeat the pattern 100 times through cut and paste.

We can linearize copy and use the natural notation, but it is repetitive and the conventional names are
long:

auto copy(Input_iterator b, Input_iterator e,
 Output_iterator<Value_type<Input_iterator>> Out) ->

Output_iterator<Value_type<Input_iterator>> Out)

I cannot recommend that.

Excluding algorithms using the sequence-in-sequence-out pattern, I count 151 algorithms that arguably
are best expressed using that natural syntax. Some look verbose and repetitive, exactly like the current
template notation with long names that can get in the way of readability.

4.2 Using a sequence abstraction
The pair-of-iterators idiom is largely responsible for the high number of repeated concepts. A roughly
equivalent library based on a sequence idiom (where a sequence would be an object holding a pair of
iterators or equivalent), the numbers would be:

• 173 with no repeated concepts
• 0 where all repeated concepts must be the same
• 78 where all repeated concepts can be different
• 0 where some repeated concepts can differ and some duplicate concepts must be the same

In both the pair-of-iterator style and the sequence-abstraction style of algorithms, about two thirds of
the algorithms are easily expressed using the natural declaration notation:

Stroustrup Natural syntax P0694r0

17

void sort (Sortable&);
void sort(Sortable&, Relation<Value_type<Sortable >>);

The concept type introducer notation is the obvious fully general alternative:

Sortable{Seq} sort (Seq&);
Sortable_with{Seq,Comp} void sort(Seq& ,Comp);

Explicit use of requires clauses is rarely the shortest or cleanest notation.

If we have a sequence abstraction, Seq, we need to decide whether to return a sequence or an iterator
for most STL algorithms:

Seq find(Seq,Equality_comparable<Value_type<Seq>>); // one way
auto find(Seq,Equality_comparable<Value_type<Seq>>) -> Iterator<Seq>; // another way

We need to compare the value types of iterators so often that we should probably have a concept for
that (as some libraries do, e.g., Ranges’ IndirectPredicate):

Seq find(Seq, Indiret_comparable<Seq>); // one way
auto find(Seq, Indirect_comparable<Seq>) -> Iterator<Seq>; // another way

Using a sequence abstraction makes the STL clearer and the notation shorter, but it doesn’t change the
number of algorithms for which the natural syntax is reasonable: 151.

4.3 Ranges
Ranges (N4651) is a prime example of a modern library based on concepts. Compared to the original
STL, the relationships among template arguments are plentiful, varied, and subtle. It seems a candidate
for simplifying and regularizing its definition using concept type-name introducers. Consider a relatively
example:

// 10.4.1, copy:
template <InputIterator I, Sentinel<I> S, WeaklyIncrementable O>

requires IndirectlyCopyable<I, O>()
tagged_pair<tag::in(I), tag::out(O)>
copy(I first, S last, O result);

// 10.4.2, move:
template <InputIterator I, Sentinel<I> S, WeaklyIncrementable O>

requires IndirectlyMovable<I, O>()
tagged_pair<tag::in(I), tag::out(O)>
move(I first, S last, O result);

With a small change to IndirectlyCopyable and IndirectlyMovable, this could be simplified to something
like:

// 10.4.1, copy:
IndirectlyCopyable{I, O}

Stroustrup Natural syntax P0694r0

18

tagged_pair<tag::in(I), tag::out(O)> copy(I first, Sentinel<I> last, O result);

// 10.4.2, move:
IndirectlyMovable{I, O}
tagged_pair<tag::in(I), tag::out(O)> move(I first, Sentinel<I> last, O result);

Experiments with simplifying notation are useful because they can indicate potential generalizations
and/or simplifications.

My favorite example, sort, has mutated into:

// 10.5.1.1 sort [sort]
template <RandomAccessIterator I, Sentinel<I> S, class Comp = less<>, class Proj = identity>

requires Sortable<I, Comp, Proj>()
I sort(I first, S last, Comp comp = Comp{}, Proj proj = Proj{});

template <RandomAccessRange Rng, class Comp = less<>, class Proj = identity>

requires Sortable<iterator_t<Rng>, Comp, Proj>()
safe_iterator_t<Rng>
sort(Rng&& rng, Comp comp = Comp{}, Proj proj = Proj{});

Due to its complexity/flexibility and heavy use of default template arguments, this does not appear to
lend itself to simplification using the natural syntax. I doubt that Ranges is the kind of library that we can
make easy for non-experts to read and write.

Using default arguments, we could possibly reduce syntactic noise further:

template<typename I, typename C = less<>, typename P = identity>
concept bool Sortable = /* … */;

// 10.5.1.1 sort [sort]
Sortable{I, Comp, Proj}
I sort(I first, Sentinel<I> last, Comp comp = Comp{}, Proj proj = Proj{});

Sortable_range{Rng, Comp, Proj}
safe_iterator_t<Rng>
sort(Rng&& rng, Comp comp = Comp{}, Proj proj = Proj{});

Note that if we wanted to have just one Sortable concept, it would have to be overloaded on Iterator
and Range.

Please note that my purpose here is not to redesign Ranges, but just to point to possibilities for cleaner
expression of ideas.

4.4 Conclusion
We cannot make conclusions from numbers alone, but I think that the natural syntax appears to serve
its intended use reasonably well. Simple uses can be expressed simply and as the complexity of the

Stroustrup Natural syntax P0694r0

19

interfaces increase, so does the need for more elaborate specifications. In particular, the concept type-
name introducers seem most useful for dealing with complexity.

I suspect that the STL (in its various disguises) is about as hard a test as we can apply. The demands on
foundation libraries are greater than on most libraries. That is, the STL and Ranges provide the kind of
interfaces for which I expect the natural syntax to be least useful. To contrast, I have recently seen
networking and graph libraries that could be expressed exclusively by the natural syntax.

The STL pair-of-iterators style isn’t going away. For the foreseeable future, the STL and its style will be
common, and will be used with concepts. Moving the standard to Ranges will not change that, though
obviously it will eventually lead to a reduction in frequency of use. Also, many lambdas will be using the
pair-of-iterators style in application code such uses will not always easy to find and update to “more
modern styles.”

5. Consistent style
There is an argument for using a single style for all declarations (incl. definitions) in a library.

5.1 Explicit requires-clauses
Perfect consistent style can be achieved using the most verbose and expressive form

template<typename In1, typename In2, typename Out>
 requires Input_iterator<In1> &&

 Input_iterator<In2> &&
 Output_iterator<Out> &&
 Equality_comparable<Value_type<In1>, Value_type<In2>> &&

 Assignable<Value_type<Out>,Value_type<In1>> &&
 Assignable<Value_type<Out>,Value_type<In2>>
Out merge(In1, In1, In2, In2, Out) ;

A good argument can be made for the shorthand notation being consistent with that

template<Input_iterator In1, Input_iterator In2, Output_iterator Out>
 requires Equality_comparable<Value_type<In1>, Value_type<In2>> &&
 Assignable<Value_type<Out>,Value_type<In1>> &&
 Assignable<Value_type<Out>,Value_type<In2>>
Out merge(In1, In1, In2, In2, Out) ;

Even this simplification can lead to vigorous arguments about whether, where, and when to use the
shorthand notation in preference to explicit requires-clauses (I have heard them).

However, it is usually considered bad programming style (and error-prone) not to factor out common
code patterns. Stronger: the most fundamental reasons for introducing language support for concepts
include

• express the idea of fundamental concepts of an application area directly
• discourage fragmentation of interfaces with minute differences that add complexity, complicate

understanding, and sometimes hinder interoperability.

Stroustrup Natural syntax P0694r0

20

Expressing constraints on an interface as a long list of individual properties seems to be a consequence
of explicit requires-clauses. There are people who like explicit requires-clauses exactly because they can
provide different constraints for each algorithm, rather than applying the foresight needed for
systematic generalization. One reason some of us reacted strongly against the C++0x concepts was the
proliferation of tiny “concepts” that were meaningless on their own (had no semantics). We used 104
concepts to express the standard-library algorithms! I fear that overuse of explicit requires-clauses is
pushing us in this direction again. Thus, I cannot recommend explicit requires-clauses as the basis for a
consistent generic function declaration style.

5.2 Concept type introducers
To properly factor out requirements into semantically meaningful concepts, we can use concept type-
name introducers. For example:

Mergeable{In1, In2, Out}
Out merge(In1, In1, In2, In2, Out) ;

This saves us from code replication, and – if systematically used to express general notions – from
unmanageable designs.

If we do that, we must base our perfectly consistent style on the concept type-name introducers. In that
case, we get

Sortable{Seq}
void sort (Seq&);

Sortable{Seq,Comp}
void sort(Seq&, Comp);

Assuming that the second argument to Sortable has a default.

5.3 The natural notation
The natural declaration syntax is (by design) not fully general, so we cannot use it as the only style for an
STL-like library. In particular, two mutually dependent types cannot be expressed:

template<Forward_iterator For1, Forward_iterator For2>
 requires Equality_comparable<Value_type<For1>,Value_type<For2>>
bool same(For1, For1, For2, For2);

However, I personally don’t feel the need for perfect stylistic consistency (the onion principle applies
[Str17]) and prefer to use the natural syntax for the simplest cases (for which it was devised):

void sort (Sortable&);

void sort(Sortable&, Relation<Value_type<Sortable>>);

The language should allow both alternatives and leave the choice to style guides.

Stroustrup Natural syntax P0694r0

21

6. The meaning of declarations
Consider

 void f(X a);

What does this mean? X could be a type or a concept. In the latter case, f is a template.

It has been suggested that this could be a source of confusion and teaching problems. This doesn’t
bother me at all and I have seen no real-world problems with that. Over the last few years, I have taught
people of a wide variety of backgrounds with widely varying degrees of experience with C++. This
notation has never emerged as a significant concern. On the contrary, the natural syntax has been
popular and helped people progress from simpler forms of programming (non-generic and
unconstrained generic programming) to concept-based generic programming.

Of course, someone at some point is going to be surprised and confused by that syntax, making a
decision based on the assumption that X is a type and f is an ordinary function rather than a concept and
a template function (or vice versa). What kind of surprises? And what would be the consequences? I
can’t prove a negative (“nothing bad can happen”), but I can argue that it will be less of a problem than
many other problems in the language and therefore minor compared to the benefits. I addressed
aspects of this in §8.6 of [Str17], as did the original concepts proposal [Sut13].

Concepts are not as different from types as some people think. Concepts can be seen as a generalization
of types. That is, a type imposes a set of constraints defined by a built-in type or expressed by a
programmer as a user-defined type. A concept imposes a set of constraints defined as a predicate.
Consider:

template<class T> concept bool Int = Same_type<T,int>;

Int ff(Int i) { return ++i; };

void user()
{

Int x = ff(2+1);
Int y = ff(x);
Int z = ff(x+y);
Int zz = 'c'; // error: a char is not an Int
Int xx = 2.0; // error: a double is not an Int
ff(2.0); // error: a double is not an Int

}

Here, Int is an int stripped of its implicit conversions. I could easily add the value-preserving conversions
to Int. Both versions work today. Why should I have to declare functions taking Ints different from
functions taking ints? In which sense is Int not a type?

As ever, note that the natural notation is not and never was meant to be the only syntax. When
something isn’t easily and naturally expressed using the natural syntax, use concept type-name
introducers. The equivalence of notations ensures that we can smoothly change from one notation to
another.

Stroustrup Natural syntax P0694r0

22

6.1 Potential definition problems
Consider a few examples of suggested potential problems with function definitions.

Consider

void f(X x)
{
 // …
}

Is f a template or an ordinary function? The lookup rules for the body of f differs depending on that
(two-phase lookup or not). However, the compiler will catch most results of naïve confusion and experts
will know what they are doing.

Consider:

void f(X x)
{
 static int sss;
 // …
}

If X is a type, there will be one sss in the program. If X is a concept, there will be one sss per
instantiation. What a programmer would expect is not obvious. Personally, I would expect one sss per
function just as the TS requires. I would be very surprised if sss suddenly became a shared object,
potentially requiring synchronization for access.

Consider:

void f(X x)
{
 // …
}

If X is a concept, f should be in a header. If X is a type, f should be in a .cpp file with a declaration in a .h
file somewhere. As pointed out in [Str17], this is an old problem that is independent of the type system
and that will be addressed by modules.

Consider:

void f(X x)
{
 X::type t;
 // …
 }

If X is a concept, we need to add typename. If X is a type, typename is outlawed in C++11, but allowed
in C++17. That’s another example of a minor problem caused by unintended and unanticipated language

Stroustrup Natural syntax P0694r0

23

irregularities unrelated to concepts. One reason this problem is minor is that the compiler will
consistently catch such mistakes.

My fundamental answer to problems related to function definitions and concepts as arguments is: a
programmer modifying a function must understand the basic semantics of its arguments and the basic
concepts of the application. Yes, it can be less than trivial for functions that are huge, programmers with
limited experience, and if support tools (such as code coloring) is unavailable. However, I don’t see this
being major compared to other real-world problems. Compilers, testing, and simple code reviews will
catch such problems.

If you feel tempted to address such possible confusions with heavier syntax, please re-read [Str17]. Once
a “heavy notation” is widespread, it becomes widely disliked as verbose.

6.3 Potential usage problem
Consider

 void f(X a);

Is f a template or an ordinary function? The concern about this is similar to the worries expressed about
the possibility that f might be overloaded. Yes, you could get a surprise from overloading, but we have
lived reasonably happily with that for 34 years and I think that a (constrained) template is less surprising
because it is better behaved than a random overload (overloading is an ad-hoc form of genericity).

Why would you want to know? In generic programming, a generic function is the norm. We tend to
know the names of the fundamental types in an application, and when we spot one we do not know and
we need to understand something that’s not obvious from its name, we look it up. If you like code
coloring (syntax highlighting), just look at the color of X. As said in [Str17], I heard such concerns when I
removed the need to prefix every mention of a user-defined type by struct. To this day, there are C
programmers who prefer to write struct S instead of plain S when writing C++, but I think that there is a
net increase in readability from using plain S.

Consider:

C f(C,X); // #1
C f(C,C); // #2
X f(C,X); // #3
auto f(C,X); // #4

Assuming C is a concept and X is a type, the return type in #1 and #2 would be the type bound to the
argument C. The return type in #3 would be X, and the return type of #4 would be deduced from a
return-statement. It has been suggested that this is potentially confusing. I don’t see that: If the name of
a return “type” is the same as an argument name, it is the same type as the argument.

Note that

auto f(C,X) -> C; // #5
C f(C,X); // #6

Stroustrup Natural syntax P0694r0

24

Are equivalent. In each case the return value must be of the type bound to C. If anything is confusing
here, it’s the use of auto as a placeholder for a return type (which is unconstrained by default).

This currently works:

auto f(C,X) -> auto; // #7
auto f(C,X); // #8

This is a use of auto as the least constrained concept.

Consider:

 C f(); // C is a concept

Is f a template or an ordinary function? Why should I care? Obviously, f has no dependent names, so
there is no difference between one-phase and two-phase lookup. If it is a template, we have to stick it in
a header until we have modules, but I doubt it is a big deal either way.

By notational equivalence, C f(); means

template<class T> requires C<T> T f();

So f is a template.

Consider:

C f(C x) { return f(x); } // C is a concept

There is a potentially significant difference between independent and consistent resolution lurking here:
Is the type of f(x) just constrained by an (independent) C or is it converted to the type bound to the C
argument? Status quo is the latter, and I think that’s good. Independent resolution would imply that
declarations that were not also definitions would not be possible, and that every function that needed a
return type constrained would need to rely on deduction (or in-body workarounds).

Consider:

 void f(X&& a);

If X is a type, an argument must be an rvalue, but if X is a concept, we are dealing with a template and
X&& is a forwarding reference that can bind to an lvalue. That’s obviously a significant sematic
difference that could affect a caller.

However, it is not a problem that stems from concepts of the declaration syntax. It is a result of us
deciding to overload the meaning && for function parameters.

 #include “operations.h”
 // …

X x = init;
 f(x);

g(x); // safe?

Stroustrup Natural syntax P0694r0

25

Just by looking at this, we cannot (without looking in operations.h) tell if f(x) will compile and if so if it
modifies the value of x. If f() is a template, the programmer must look at its definition to see if it really
forwards. If f() just reads its X&& argument, there is no problem related to templates – no difference
between template and non-template implementations. It has nothing specific to do with concepts.

I don’t think that the natural syntax using concepts makes this problem any worse.

If we want to solve the problems related to the overloading of && in declarations, we could introduce a
specific syntax for forwarding reference or – my preferred solution – consistently warn against later use
of an lvalue that has been passed to a forwarding reference. The latter can be done by compiler and tool
writers today.

See §2, §7, and §8.6 of [Str17] for a rationale for the use of the natural syntax and a discussion of
potential problems.

7. Suggested language extensions
I am not trying to address all suggestions for improvements of concepts (e.g., elimination of redundant
bool, the functional form of concept definitions, and the use of concepts as concept arguments). This
section simply addresses a few suggestions for extensions to make the natural syntax to be make the
natural syntax more expressive.

7.1 type-name introduction
Here are a few suggestions, assuming independent resolution, to accommodate consistent resolution:

void sort(!Random_access_iterator, Random_access_iterator); // all RAIs must be the same

void sort(Random_access_iterator!, Random_access_iterator!); // all RAI!s must be the same

void sort(Random_access_iterator.1, Random_access_iterator.1);

void sort(Random_access_iterator[1], Random_access_iterator[1]);

Here are a few suggestions, assuming consistent resolution, to accommodate independent resolution:

auto merge(Input_iterator{In1}, Input_iterator{In1}, // name [Bal14]
 Input_iterator{In2}, Input_iterator{In2},
 Output_iterator) -> Output_iterator;

auto merge(Input_iterator.1, Input_iterator.1, // dot
 Input_iterator.2, Input_iterator.2,
 Output_iterator) -> Output_iterator;

auto merge(Input_iterator[1], Input_iterator[1], // []
 Input_iterator[2], Input_iterator[2],
 Output_iterator) -> Output_iterator;

You might even insist on naming a type even if there is no potential ambiguity

auto merge(Input_iterator{In1}, Input iterator{In1}, // always name

Stroustrup Natural syntax P0694r0

26

 Input_iterator{In2}, Input iterator{In2},
 Output_iterator{Out}) -> Output_iterator{Out};

Or even

auto merge(Input_iterator{In1}, In1, // always name
 Input_iterator{In2}, In2,
 Output_iterator{Out}) -> Out;

I’m not sure that these are problems worth solving. That is, the natural syntax need not be extended to
handle such cases. The natural syntax was introduced to make simple cases simple and conventional.
Concepts as type-name introducers, the explicit use of template type-name introducers, and/or
requires-clauses are always there for the more complicated cases. Added syntax, like the suggestions
above, could easily become a barrier to understanding (incl., teaching and learning).

7.2 Local concept names
For the (current and my preferred) consistent resolution, we can always simply give a concept a second
name and use that (§3.6). This can currently be done only in namespace scope. Doing so in local scope
would require an extension. For example:

Number compute(Number a, Number b)
{
 concept N2 = Number; // same constraints as Number
 Number x = a+b; // a+b must be the argument type
 N2 y = a+b; // a+b can be a different Number type
 // …
}

As with the other syntactic extension suggestions, I would prefer to wait to see if there is a real need.

7.3 Natural syntax with requires-clauses
Consider

void foo(Concept, Concept, Sentinel<Concept>)
requires OtherConcept<Concept> // added requirements?

{
difference_type_t<Concept> x = 0; // In body?
// …

}

The declaration line works as intended. The use of the explicit requires-clause with the concept would
be an extension that would render the natural syntax more widely applicable. So would the use of the
concept in the function body.

This potential extension would not interfere with the fundamental equivalence among the notations
(§2.2).

Stroustrup Natural syntax P0694r0

27

8. Naming: Why “natural syntax”?
Why do I call T f(U) the “natural syntax”? After all, there is nothing “natural” about programming
language constructs. Further, we should always suspicious about things labeled “natural”, “obvious”,
”normal”, or “intuitive” because these terms tend to distract from consideration of reasons. However,
after about 400 years of usage of the f(x) notation in Mathematics (since Descartes) and about 70 years
of use in programming (since Fortran), it feels natural to many. I have considered many alternatives:

• Terse – but not all examples are short
• Conventional – correct but boring, and seems to have negative connotations
• Functional – possibly, but this is the declaration, rather than the use
• Abbreviated – not an abbreviation of any other notation, and sometime longish
• Agile – no, not really
• Traditional – for functions, though unfortunately not for templates
• Common – common in which context?
• Simple – tempting, but nondescriptive
• Normal – normal to whom and why?
• Original – the first template design didn’t use the template prefix

The main point is that this notation matches the way we traditionally define and use functions, not that
it requires the fewest number of characters. I suspect that no name will be liked by all people and that
any name that is “sort of OK” (e.g., “natural syntax”) will after a while feel natural.

9. Conclusions
I started this examination of the natural syntax and the STL algorithms with the assumption that some
improvement/simplification of concepts would be warranted based on arguments for consistency of
style and/or low numbers of use-cases of features. Having listened to suggestions that independent
resolution of binding to types would lead to simplifications comparer to consistent binding, I specifically
looked at that possibility. However, I did not find those simplifications. In particular, both resolutions are
consistent with the independent resolution of types bound to auto: with auto, there is no name to bind
to for repeated use.

Further, independent resolution breaks the fundamental equivalence among the notations (§2.2). In
addition, it raises many unexplored issues to do with return values and general usage.

We should stick to the consistent resolution of types to repeated uses of a concept in a declaration.
Without that, the use of the natural syntax is reduced to cases without repeated use of a concept. For
consistency, we should explore extending that requirement to the whole definition. If we decide on this
extension (really a reversion to the original concepts design), we should consider adding a mechanism
for defining local concepts.

My appreciation of the concept type-introducer increased. In fact, it is the only notation that could be
exclusively used to achieve a “completely consistent good style”. Compared to the concept type-name
introducer notation, the conventional template type-introducer notation and explicit requires-clauses
are verbose, ad hoc, repetitive, and (therefore) error-prone in many cases. In such cases, they should be

Stroustrup Natural syntax P0694r0

28

avoided (and not just for aesthetic reasons). It is worth remembering that the natural syntax was never
meant to be the only notation.

My appreciation of concepts as the foundation for generic programming increased. Focusing on
unconstrained template arguments (using plain auto and typename) distracts from the need to design
the proper concepts (with semantic meaning) that are the foundation of solid, widely useful generic
code (See Alex Stepanov’s writings). Concepts are not as different from types as some people assume,
so disallowing the natural syntax would unnecessarily separate generic programming from “ordinary
programming.”

I found no genuine language problems for which the natural syntax was the root cause of a
comprehension problem and only one (binding to a forwarding reference vs. binding to rvalue
reference) where the natural syntax could possibly make current mistakes/confusion a bit more
common.

The natural syntax is still the shortest and simplest in many cases; especially in the simplest and most
common cases. In particular, it simplifies about 2/3rd of the STL algorithms. It is a valuable addition to
the language as well as the ideal [Str17]. If someone doesn’t like it for a perceived need for some form
of syntactic consistency or fear of confusion, they can rely on concept type-name introducers and style
guides rather than language restrictions.

10. References
• [Bal14] B. Ballo and Andrew Sutton: Extensions to the Concept Introduction Syntax in Concepts

Lite. WG21-N3878. January 2014.
• [Nie17] Eric Niebler and Casey Carter: Working Draft, C++ Extensions for Ranges. N4651. March

2017.
• [Smi17] Richard Smith: Working Draft, Standard for Programming language C++. N4659. March

2017.
• [Str12] B. Stroustrup and A. Sutton (Editors): A Concept Design for the STL. WG21-3351. January

2012. “The Palo Alto TR.”
• [Str17] B. Stroustrup: Concepts: The future of generic programming. WG21-P0557R0. January

2017.
• [Sut13] A. Sutton, B. Stroustrup, and G Dos Reis: Concepts Lite. WG21-N3701. June 2013.
• [Sut17] A. Sutton: Working Draft, C++ extensions for Concepts. WG21-N4641. February 2017.
• [Tou16] James Touton, Mike Spertus: Declaring non-type template arguments with auto.

P0127R2.

Acknowledgements
Thanks to Inessa Bliznetsova, Casey Carter, J-D. Garcia, Eric Niebler, Gabriel Dos Reis, Richard Smith,
Andrew Sutton, Herb Sutter, Ville Voutilainen, J.C. van Winkel, and Sergey Zubkov, for helpful comments
on drafts of this paper. Casey Carter pointed to the possibility of extending the natural syntax with an
explicit requires-clause.

	Function declarations using concepts
	Bjarne Stroustrup
	Morgan Stanley and Columba University
	www.stroustrup.com
	Abstract
	1. Introduction and Summary
	1.1 Overview

	2. Uses of concepts
	2.1 Questions
	2.2 Terminology

	3. Multiple occurrences of a concept name
	3.1 Current resolution
	3.2 Simple alternatives
	3.3 Alternative 1: Independent resolution
	3.4 Alternative 2: Consistent resolution
	3.5 Alternative 3: Ban repeated use of a concept
	3.6 Concepts in function bodies
	3.7 auto and concepts
	3.8 Lambdas

	4. Usage numbers
	4.1 The current STL
	4.2 Using a sequence abstraction
	4.3 Ranges
	4.4 Conclusion

	5. Consistent style
	5.1 Explicit requires-clauses
	5.2 Concept type introducers
	5.3 The natural notation

	6. The meaning of declarations
	6.1 Potential definition problems
	6.3 Potential usage problem

	7. Suggested language extensions
	7.1 type-name introduction
	7.2 Local concept names
	7.3 Natural syntax with requires-clauses

	8. Naming: Why “natural syntax”?
	9. Conclusions
	10. References
	Acknowledgements

