
N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0660R0
Date: 2017-06-19
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: Concurrency, LWG
Prev. Version:

A	Cooperatively	Interruptible	Joining	Thread	
In Jacksonville 2016 we had an evening session
http://wiki.edg.com/bin/view/Wg21jacksonville/P0206R0
with the following outcome:

Add an auto-joining (in destructor) thread type under the understanding that its name will be
changed and there will be LEWG review.
SF F N A SA
10 11 1 2 0

Include it in C++17
SF F N A SA
9 5 8 2 0

Unfortunately, this decision was reverted later in Oulu in a smaller group so that we didn’t get what the
majority voted for.
In addition, there are constantly requests to support interruption for started threads, which is implemented
in Boost.Thread and was discussed but rejected during the standardization of std::thread for C++11.

It’s time now to fulfill the need of an easy to use basic thread class for application programmers based on
the experience of the existing Boost thread classes. Not providing this currently hinders projects to switch
from Boost to the C++ standard library.

As a side effect, this paper introduces an API for cooperative concurrent/distributed interrupts. It’s a
solution on the program level, not on the OS level.

Key Proposal
Introduce a class std::ithread with the following key features:

 Basic API like std::thread

 Supplementary API for cooperative interrupts:
o The calling thread can call interrupt() (directly or via an interrupt token).
o The called thread can (and should) from time to time check for requested interruption.

 Some convenience functions are provided to support this for typical blocking
calls.

 The destructor requests for a cooperative end of the started thread if it is still joinable by calling
interrupt() and then join().

std:ithread uses the following API for cooperative interrupts between multiple threads:

 std::interrupt_promise provides the source to trigger/signal interrupts.
It allows to ask for

o an std::interrupt_token, which is a cheap to copy object to trigger/signal interrupts
from multiple places.

 It can only be used as long as the interrupt promise is valid.
o the corresponding std::interrupt_future, which provides the API to check whether an

interruption was triggered/signaled.
 When checking for interrupts, an std::interrupted exception is thrown, if an

interruption was signaled/triggered.

The whole proposal does not require any additional OS support.

A first example implementation is available at: www.josuttis.de/ithread

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 2

How	to	use	std::ithread	
The basic interface of std::ithread supports the following example:

 {
 std::ithread t([] {
 while (true) {
 std::this_thread::throw_if_interrupted();

 //...
 }
 });

 // optionally (if not called, called by the destructor):
 t.interrupt();
 t.join();
 }

If interrupt() is called, the next check for an interrupt by the started thread with
throw_if_interrupted() throws std::interrupted. If the exception is not caught inside the
called thread, it ends the started thread silently without calling terminate() (any other uncaught
exception inside the called thread still results into terminate()).

Instead of calling t.interrupt(), you can also call:

 auto it = t.get_interrupt_token();
 …
 it.interrupt();
to cheaply pass a token to other places that might interrupt. Note however that the tokens are bound to
the lifetime of the ithread (but not to the lifetime of the called thread).

Without calling interrupt() and join() (i.e. if t is still joinable and the destructor of t is called), the
destructor itself calls interrupt() and then join(). Thus, the destructor waits for a cooperative end
of the started thread.

Note that the mechanism does never cancel the thread directly or calls a cancelling low-level thread
function.

How	to	Implement	Interruptions	
Boost.Thread already provides an API to interrupt threads cooperatively. But the author, Anthony
Williams, commented:

Boost has interruption because it was proposed for C++0x, and I thought it was a good idea. ... It
is still there because some people use it and removing it would break backwards compatibility.

I would not do it this way again, and do not recommend adding it to C++ in the future.

As an alternative he proposes interruption tokens:

I'm quite liking the idea of an "Interruption Token" which you can pass round. Any thread can
trigger the interruption token, which will can then be explicitly checked for interruption via
token.check_for_interruption() or similar, or passed into blocking calls to allow those calls to be
interrupted. We could therefore have condition_variable::wait() overloads that take
interruption_token objects to allow interruption, for example.

That direction is exactly what this paper proposes. 	

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 3

Why	Interruption	Tokens?	
Herb Sutter elaborated on the interrupt token proposal as follows:

Let me strongly support Anthony on interruption tokens. It is the state of the art, and the only
interruption mechanism I know of that has a chance to get consensus. (FWIW, Microsoft also has
existing practice to contribute as PPL provides the same, called cancellation_tokens; example:
https://msdn.microsoft.com/en-us/library/dd984117.aspx?f=255&MSPPError=-2147217396 .)

and discussed some alternative options as follows:

Option1(Asynchronous interruption (e.g., pthread_kill, pthread_cancel async mode, Java
Thread.destroy/stop, .NET Thread.Abort): I assume we agree that #1 is totally broken because it
is necessarily undefined behavior, these are typically deprecated/banned on the platforms that
provide them, including Posix where last time looked the official docs do not deprecate
pthread_kill/cancel(async) but Butenhof's book1 is very clear that there is no such thing as killing
or async-cancelling a single thread and these are equivalent to killing the whole process because
they lead to memory corruption across the process.

Options 2 and 3 are similar: Interrupt at well-defined interruption points (e.g., throw from a
wait/sleep/join point), ...

Option 2: ... but the target cannot refuse or stop ending the thread/task (pthread_cancel
deferred mode, you get to run installed cancellation handlers but you cannot refuse the
request and keep going)

Option 3: ... and the target can handle it and continue (Java Thread.interrupt, .NET
Threat.Interrupt, boost::thread.interrupt)

This is less bad than #1 because it is not automatic undefined behavior (good!), but I think we
know from experience that this is still unusable in practice. The reason is that people keep
forgetting to check for those exceptions; no matter how much they are trained, they cannot
remember that every wait/sleep/join might throw an InterruptedException/thread_interrupted. The
whole .NET Frameworks, written by people who invented their Thread.Interrupt and were
disciplined about framework quality and safety, is interruption-unsafe because they could not
consistently remember, and will always be because it is prohibitive to get it right and stay clean,
which means that essentially all .NET code cannot use interruption safely (because virtually all
.NET code uses the frameworks).

1 Butenhof, D., “Programming with POSIX Threads,” Addison Wesley, 1997.

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 4

So anything that says “wait [or sleep, or join, etc.] throws an exception if there’s an interruption
request” is unusable. Even if it had been built in from the beginning it would be hard to use
correctly.

But definitely we cannot add it retroactively to the standard library wait/sleep/join points so that
these can now throw a new kind of exception that will certainly destabilize code that is not
expecting it today. …

That is, we cannot consistently add throwing interrupted_exceptions to our std:: wait/sleep/join
operations (interruption points), which is a necessary part of Option 3.

For example:

- Some future::wait()/condition_variable::wait() overloads are currently guaranteed not
to throw. Allowing them to throw interrupted_exception would be a breaking change and
typically corrupt the interrupted thread (interrupt an in-progress update before invariants
are restored) and therefore in general corrupt the program (at least the parts that can
transitively depend on that invariant to do further processing).

- thread::sleep_for()/sleep_until() is allowed to throw only exceptions thrown by clock,
time_point, or duration -- and the ones of those in std:: are guaranteed not to throw. For
code that does not use non-std:: clock/time_point/duration, allowing these sleep functions
to throw interrupted_exception would turn a non-throwing function into a throwing one,
with the same issue as future::wait. For code that uses non-std:: throwing
clock/time_point/duration, it adds a new exception not possible today and will break their
code if they are catching the specific types of exceptions known to be throwing from the
types they are using.

- thread::join() is currently guaranteed to throw only system_error. Allowing it to throw
interrupted_exception could break code that only catches system_error. (As a
workaround we could throw a system_error that wraps interrupted_exception but now we
still don't have a consistent model.)

In general, even for wait/sleep/join functions that already can throw, enabling them to throw a new
kind of exception can affect code that is checking and thinking about only specific exception types
that were advertised before.

Option 4: Interruptee polls explicitly (e.g., Java Thread.interrupted, PPL cancellation_token, or
roll your own cooperative mechanism to use a flag/semaphore/condition_variable to ask the task
to stop)

This actually works because interruption never happens unless the programmer writing the
interruptee code is actively asking about it -- which means that by construction they are thinking
about it as they write their code, so they have a great chance of making the code correct for
interruption. It avoids #1's UB by avoiding injecting async interruptions, and it avoids #2/3's silent
exception injection that programmers can never remember and forget to harden their code
against despite years of training.

So that's why I think the interruption token model is the only interruption model that has a
chance to be standardized IMO. And it's actually a good one. But anything like #1-2-3 will get
shot down because they just do not work in practice (and I will actively help shoot them down; we
need to learn from those mistakes and not repeat them).

Hans Boehm commented

I like the alternative being floated here better than the others,

and later:

I now think the token-based solution (which was once proposed by Microsoft, but then I think not
followed through on) is better.

 	

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 5

API	of	Interrupt	Tokens	
There are a couple of design decisions, when implementing an API for interrupt token. In principle many
arguments apply as for cancellation tokens, which you e.g. can find in .NET:

https://blogs.msdn.microsoft.com/pfxteam/2009/05/22/net-4-cancellation-framework/

First, it seems to be a good approach to separate between the API to trigger interrupts and the API to
check for interrupts. To quote https://blogs.msdn.microsoft.com/pfxteam/2009/05/22/net-4-cancellation-
framework/:

Two new types form the basis of the framework: A CancellationToken is a struct that represents a
‘potential request for cancellation’. This struct is passed into method calls as a parameter and the
method can poll on it or register a callback to be fired when cancellation is requested. A
CancellationTokenSource is a class that provides the mechanism for initiating a cancellation
request and it has a Token property for obtaining an associated token. It would have been natural
to combine these two classes into one, but this design allows the two key operations (initiating a
cancellation request vs. observing and responding to cancellation) to be cleanly separated. In
particular, methods that take only a CancellationToken can observe a cancellation request but
cannot initiate one.

But we also have to take into account, which lifetime guarantees we give to the API.

Of course, we can share all necessary information among all potential interrupters and interruptees,
implemented with a shared_ptr approach to hold all data until the last interrupt stakeholder dies. But this
proposal tried to avoid that to save (heap) resources.

Instead the proposed interrupt API is as follows:

In principle, we create a promise/future pair:

 The promise is for the interrupters
 The future for the interruptee

wrapped by classes that hide (some) implementation details and can carry additional information.

A basic bootstrap of the interrupt objects would be:

 std::interrupt_promise ip;
 std::interrupt_token it = ip.get_interrupt_token();
 std::interrupt_future ifut = ip.get_interrupt_future();
 …
 it.interrupt();
 …
 // usually after ifut is passed to the thread that might get interrupted:
 ifut.throw_if_interrupted();

That way:

 The lifetime of all potential interrupters is decoupled from the lifetime of the interruptee.
 interrupt_token allows to cheaply copy and pass the API to interrupt to multiple places.

o To avoid the need to allocated shared (heap) resources, calling interrupt() from an interrupt
token is only valid if the interrupt promise still is alive (the tokens refer to the promise).

o We could alternatively inside use a shared pointer to the promise. But that better should be
an API on top.

 interrupt_promise and interrupt_future only have move semantics.
 Currently there can only be one interruptee, which also avoids the need to allocated shared

resources to handle interrupts in multiple places.
Note however, that we can ask throw_if_interrupted() multiple times (the interrupt_future wraps the
future to call get only once).

o We could allow to use shared futures to be able to copy interuptees, but that’s not
implemented, yet.

Note however, that we can ask throw_if_interrupted() multiple times (the interrupt_future wraps the
future to ensure that get() is called only once).

Of course we can merge two of the three objects into two:
interrupt_promise and interrupt_token could be the same class. That would mean that we first create an
interrupt token and then an interrupt future from it.

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 6

Note however, that is exactly the opposite from the bootstrap .NET has, where they first create the
“CancellationTokenSource”, which is usable as the interruptee, and then create interrupt tokens from it.
The order is different here, because we decouple with promise/future and always have to create the
promise first.

Thus, we still can decide on the following:

 Should we split into two or three interrupt classes?
 Should interrupt token decouple their lifetime from interruptees?
 Should we support multiple interruptees?
 Should we even decouple lifetime of tokens from promises?

Also we can think of additional features for the interrupt API such as registering one or multiple callbacks.

One addition this proposal has, which we will discuss later, is the ability to define the interval interruptible
blocking convenience functions use to check for interrupts.

How	std::ithread	uses	Interrupt	Tokens	
Class std::ithread would use interrupt tokens internally. Thus, the constructor of a thread would perform
the necessary bootstrap to create the API for the interrupter (creating an interrupt_promise) and the
interruptee (creating the corresponding interrupt_future and passing it to the calls thread as TLS).

If the interrupt token approach would not support decoupling of interrupter and interruptee, ithread would
create the necessary promise/future pair (I started with that and it gets pretty ugly).

That is for a started std::ithread t:

 t.get_interrupt_token().interrupt() calls set_value() for the promise
o a convenience function allows to call just: t.interrupt()

 The called thread has a static thread_local API to be able to check whether the thread was
interrupted.
For example, std::this_thread::throw_if_interrupted() calls
 std::ithread::threadLocalIinterruptFuture.throw_if_interrupted();

How	to	define	Interruption	Points?	
As API of threads to check for interruptions the interruptee would use a function such as

 interruptFuture.throw_if_interrupted()

to throw an exception if an interrupt was triggered/signaled.

As written, class std::ithread would map that to a convenient global call:

 std::this_thread::throw_if_interrupted();

as it stores its interrupt future in its TLS by something like the following:

class ithread {
 inline thread_local static ::std::interrupt_future _ifuture;
 public:
 static void throw_if_interrupted() {
 ithread::_ifuture.throw_if_interrupted();
 }
 // …
};
namespace this_thread {
 static void throw_if_interrupted() {
 ithread::throw_if_interrupted();
 }
}

In principle, also threads started with std::thread() could call this_thread::throw_if_interrupted(), but as
their thread_local interrupt_future isn’t valid, the call would have no effect.

Nevertheless, std::thread could use the interrupt API directly to call for a passed interrupt future:

myInterruptFuture.throw_if_interrupted()

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 7

Convenient	Interruption	Points	for	Blocking	Calls	
The question came up, whether we should provide additional places to allow cooperative interruptions
because as Hans Boehm wrote:

I really don't want to write the waits with timeouts just to test whether my thread was interrupted.

And Boost already provides the following additional interruption points (see
https://www.justsoftwaresolutions.co.uk/threading/thread‐interruption‐in‐boost‐thread‐library.html):

 boost::thread::join()
 boost::thread::timed_join()
 boost::condition_variable::wait()
 boost::condition_variable::timed_wait()
 boost::condition_variable_any::wait()
 boost::condition_variable_any::timed_wait()
 boost::this_thread::sleep()

The standard has slightly different API’s but this defines the general places where the ability to get
interrupted probably makes sense.

However as discussed above for Options 2 and 3 3, we do not want to change the existing API
(including exceptions that can be thrown). Instead, we could overload the existing blocking API’s for
dealing with interrupt futures and/or provide global helpers.

So, in general, instead of calling

 obj.wait();
to start an interruptible wait programmers would call:

 obj.wait(interruptFuture);
which is roughly implemented as follows:

 do {
 interruptFuture.throw_if_interrupted();
 }
 while (obj.wait_for(100ms));

One question is, where the check interval (here “100ms”) should come from. I suggest that it is part of the
interrupt API. That is, when bootstrapping the interrupt objects, you can define the interval. A useful
default might be provided. That is, the interruptible wait() would really be implemented as follows:

 do {
 interruptFuture.throw_if_interrupted();
 }
 while (obj.wait_for(interruptFuture.get_check_interval()));

The same way, even timed waits would start a more fine grained loop.

Issues	with	Convenience	Interruption	Points		

Note however, that for some cases we have to make semantic design decisions.

 For example, future::wait() has an issue:

For futures, wait() start a deferred thread.
But if we map that to a loop of wait_for() calls this does NOT start a new thread.
So, we have to decide what it means to call an interruptible wait for deferred futures.

 Also condition variables require further attention as Hans and Anthony pointed out:

Hans: Otherwise the only way to check for interruption during a cv wait is by timing out regularly
and checking. That's rather ugly. Both Posix and Java interrupt condition variable waits; Posix
interrupts a bunch of other blocking calls as well.

Anthony: If you transfer wait() calls into a loop of wait_for() calls, periodically checking for the
interrupt, you may miss notifications that happen after the first wait_for returns, but before the
next call starts. If you have a predicate, you can treat it as a spurious wake, and check the

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 8

predicate, but without a predicate once you've woken from the underlying call, you have to return
to the caller.

Fortunately, we already have support for spurious wakeups in standard CVs, by passing the condition
predicate or the lock guard to check the condition. Thus, we can provide something like (here globally
defined without passing the interrupt future):

 template <typename CV, typename LG, typename Pred>
 void condition_variable::wait(interrupt_future& ifut,
 CV& cv, LG&& lg, Pred&& pred)
 {
 do {
 ifut.throw_if_interrupted();
 }
 while (cv.wait_for(::std::forward<LG>(lg),
 ifut.get_check_interval(),
 pred));
 }

API	of	std::ithread	
Basically, an std::ithread should provide the same interface as std::thread:

 class ithread {
 public:

 // construct/copy/destroy/swap:
 ithread() noexcept;
 template <class F, class... Args>
 explicit ithread(F&& f, Args&&... args);
 ~ithread();
 ithread(const ithread&) = delete;
 ithread(ithread&&) noexcept;
 ithread& operator=(const ithread&) = delete;
 ithread& operator=(ithread&&) noexcept;
 void swap(ithread&) noexcept;

 // members:
 bool joinable() const noexcept;
 void join();
 void detach();
 thread::id get_id() const noexcept;
 thread::native_handle_type native_handle();
 //…
 };

Note that native_handle() and get_id() return std::thread types.

We might also provide a get_thread()helper, which (a bit dangerous) would return a reference to the
wrapped std::thread.

The supplementary API would be as follows:

 class ithread {
 public:
 // …
 interrupt_token get_interrupt_token();

 bool interrupt() { // returns whether it was already interrupted
 return get_interrupt_token().interrupt();
 }
 };

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 9

Interrupt	Handling	API	
The basic interrupt handling API, first defines the type for interrupt exceptions:

class interrupted
{
 public:
 const char* what() const noexcept;
};

Then as a helper the cheap-to-copy API to signal/trigger interrupts:

class interrupt_token
{
 public:
 bool interrupt(); // returns whether it was already interrupted
};

The basic object to initialize an interrupt context (and needed by interrupt tokens) is defined as:

class interrupt_promise
{
 public:
 // constructor (with default convenient interval)
 template <typename D = ::std::chrono::milliseconds>
 interrupt_promise(D ci = ::std::chrono::milliseconds(100));

 // only move support:
 interrupt_promise (const interrupt_promise&) = delete;
 interrupt_promise& operator= (const interrupt_promise&) = delete;
 interrupt_promise (interrupt_promise&&) = default;
 interrupt_promise& operator= (interrupt_promise&&) = default;

 … // swap() etc.

 // key API:
 ::std::interrupt_future get_interrupt_future();
 ::std::interrupt_token get_interrupt_token();

 bool interrupt() { // returns whether it was already interrupted
 return get_interrupt_token().interrupt();
 }
}

API for interruptees:

class interrupt_future
{
 public:
 // constructors and assignments:
 interrupt_future() = default;

 // only move support:
 interrupt_future (const interrupt_future&) = delete;
 interrupt_future& operator= (const interrupt_future&) = delete;
 interrupt_future (interrupt_future&&) = default;
 interrupt_future& operator= (interrupt_future&&) = default;

 // key API:
 void throw_if_interrupted(); // might throw std::interrupted

 system_clock_duration get_check_interval(); // for blocking convenience funcs
};

The only real constructor initializing the object real data is private for the interrupt_promise when calling
get_interrupt_future() there.

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 10

API	for	Interruptible	Blocking	Convenience	Functions	
As written, we could and should overload all relevant blocking calls by a version taking an interrupt_future
as additional first argument.

For example:

 class condition_variable {
 public:
 // …

 template <class Predicate>
 void wait(interrupt_future& ifut,
 unique_lock<mutex>& lock, Predicate pred);
 template <class Clock, class Duration, class Predicate>
 bool wait_until(interrupt_future& ifut,
 unique_lock<mutex>& lock,
 const chrono::time_point<Clock, Duration>& abs_time,
 Predicate pred);
 template <class Rep, class Period, class Predicate>
 bool wait_for(interrupt_future& ifut,
 unique_lock<mutex>& lock,
 const chrono::duration<Rep, Period>& rel_time,
 Predicate pred);
};

We still have to discuss whether the overloads for the non-predicate version makes sense here.

We could also provide global helpers. For example:

template <typename CV, typename LG, typename Pred>
void wait(::std::interrupt_future& ifut,
 CV& cv, LG&& lg, Pred&& pred)
{
 do {
 ifut.throw_if_interrupted();
 }
 while (cv.wait_for(::std::forward<LG>(lg),
 ifut.get_check_interval(),
 ::std::forward<Pred>(pred)));
}

template <typename CV, typename LG, typename Pred>
void iwait(CV& cv, LG&& lg, Pred&& pred)
{
 wait(::std::this_thread::get_interrupt_future(),
 cv,
 ::std::forward<LG>(lg), ::std::forward<Pred>(pred));
}

For the moment I skip all the other overloads and convenience functions, but in principle the
implementations look the same.

Note as discussed above we have to decide about semantic details such as how to deal with deferred
futures.

 	

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 11

API	for	std::this_thread	
For the started thread we also have to provide at least:

namespace this_thread {
 void throw_if_interrupted() {
 ithread::throw_if_interrupted();
 }
}

The same way we might provide:

 get_interrupt_future()

 get_check_interval()

 …
and convenient blocking calls such as:

namespace this_thread {
 template <class Clock, class Duration>
 void sleep_until(interrupt_future& ifut,
 const chrono::time_point<Clock, Duration>& abs_time);
 template <class Rep, class Period>
 void sleep_for(interrupt_future& ifut,
 const chrono::duration<Rep, Period>& rel_time);
 }

 // optionally:
 template <class Clock, class Duration>
 void isleep_until(const chrono::time_point<Clock, Duration>& tp) {
 sleep_until(::std::get_interrupt_future(), tp);
 }
 template <class Rep, class Period>
 void isleep_for(const chrono::duration<Rep, Period>& d) {
 sleep_for(::std::get_interrupt_future(), d);
 }
}

Names	

Of course, the proposal raises several questions about names.

To list some alternatives:

Name used here Purpose Alternatives Remarks
ithread cooperatively

interruptible joining
thread

jthread,
task

name should be short to
support convenient
replacement of
std::thread

throw_if_interrupted() throws exception if
interruption was
signaled

interrupt_point()

interrupt_promise,
interrupt_token,
interrupt_future

 …, interrupt_source,
interruptee, …

iwait(),
isleep_until(),
isleep_for()

global convenient
functions using the
thread local interrupt
future

 should be consistent
with ithread

In general, to help application programmers, the prefix should always be consistent and not sometimes
“interrupt_...” and sometimes “interruptible_...” or “interruptions_...”.

N. Josuttis: P0660R0: A Cooperatively Interruptible Joining Thread

 12

Proposed	Wording	
 (All against N4618)

t.b.d.

Acknowledgements	
Thanks to all who incredibly helped me to prepare this paper, such as all people in the C++ concurrency
and library working group.

Especially, I want to thank: Howard Hinnant, Hans Boehm, Anthony Williams, Herb Sutter, Ville
Voutilainen, Jeffrey Yasskin.

