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1 Introduction 

Currently, there is little structural support in concurrent programming in C++. Based on the requirements in concurrent 

programming, this proposal intends to add structural support in concurrent programming in C++, enabling 

implementations to have robust architecture and flexible synchronization algorithm. 

The issue is concluded into two major problems: the first is about the architecture in concurrent programming, and the 

second is about the algorithms for synchronizations. 

The problems can be solved with a novel architecture and dedicated synchronization algorithms. With the support of 

the solution, not only are users able to structure concurrent programs like serial ones as flexible as function calls, but also 

to choose algorithms for synchronizations based on platform or performance considerations. 

2 Motivation and Scope 

This paper intends to solve 2 major problems in concurrent programming: 

1. The architecture: how to structure concurrent programs like serial ones as flexible as function calls 

“Function” and “Invoke” are the basic concepts of programming, enabling users to wrap their logic into units and 

decoupling every parts from the whole program. Based on the novel solution, these concepts can be naturally generalized 

in concurrent programming. 

2. The algorithm: how to implement synchronization requirements to adapt to different runtime environment 

and performance requirements 

 

 
Figure 1 

 

 

Figure 2 



 

Suppose there’s a common requirement to implement a model that launch n async tasks and wait for their completion. 

Implementations 

- may maintain n "promises" for each task and perform several Ad-hoc synchronization operations, as is shown 

in Figure 1, or 

- may manage an atomic integer maintaining the unfinished number of tasks (initially, n) with lock-free 

operations, and let the first (n - 1) finished tasks synchronize with the last finished one, then let the last finished 

task perform an Ad-hoc synchronization operation to unblock the model (some other advanced solutions such 

as the “Latch” or the “Barrier” work on the same principle), as is shown in Figure 2. 

It is true that “sharing is the root of all contention”. The first implementation may introduce more context switching 

overhead, but the contention is never greater than 2. Although the second implementation has better performance with 

low concurrency, when concurrency is high, the contention may vary from 1 to n, and may prevent progress. For some 

performance sensitive requirements, a "compromise" of the two solutions is probably more optimal. 

Thanks to the Concepts TS, I was able to implement the entire solution in C++ gracefully, making it easier for users to 

debug their code implemented with this solution. I hope this solution is positive for improving the C++ programming 

language. 

3 Impact On the Standard 

 

Figure 3 

 

"One-to-one", "many-to-one" and "one-to-many" are the basic synchronization requirements in concurrent programming. 

What we have for the requirements in C++ is shown in Figure 3. 

Note that, 

- Utilities: the code we actually have (classes, functions...), and 

- Interfaces: the code required for structuring (semantics, requirements, concepts...), and 

- Structural supports: how to build a program (methods, patterns, language features...). 

For example, for the basic function calls: 

- The utilities are the functions in the standard library, and 

- The interface is "function" itself, users are required to write code with parameters and return values (and maybe 

exceptions, etc.), and 

- The structural support is "invocation", and users are able to "invoke" functions with specific syntax. 

 



 

Figure 4 

 

This solution is particularly for the missing parts, as is shown in Figure 4. 

 

 

Figure 5 

The related proposals are shown in Figure 5. 



4 Design Decisions 

4.1 Execution Structures 

In concurrent programs, executions of tasks always depend on one another, thus the developers are required to control the 

synchronizations among the executions; these synchronization requirements can be divided into 3 basic categories: 

“one-to-one”, “one-to-many”, “many-to-one”. Besides, there are “many-to-many” synchronization requirements; since 

they are usually not “one-shot”, and often be implemented as a “many-to-one” stage and a “one-to-many” stage, they are 

not fundamental ones. 

“Function” and “Invoke” are the basic concepts of programming, enabling users to wrap their logic into units and 

decoupling every parts from the entire program. Are these concepts able to be generalized in concurrent programming? 

The answer is YES, and that’s what this paper revolves around. 

When producing a “Function”, only the requirements (pre-condition), input, output, effects, synchronizations, 

exceptions, etc. for calling this function shall be considered; who or when to “Invoke” a “Function” is not to be 

concerned about. When it comes to concurrent programming, there shall be a beginning and an ending for each “Invoke”; 

in other words, a “Concurrent Invoke” shall begin from “one” and end up to “one”, which forms a “one-to-many-to-one” 

synchronization. 

 

 

Figure 6 

The most common concurrent model is starting several independent tasks and waiting for their completion. This model 

is defined as “Sync Concurrent Invoke”. A typical scenario for the “Sync Concurrent Invoke” model is shown in Figure 

6. 

 



 

Figure 7 

 

 

Figure 8 

 

Figure 7 is one slide from your previous talk: “blocking is harmful”, and “you can always turn blocking into 

non-blocking at a cost of occupying a thread”. Nonetheless, is there a “more elegant” way to avoid blocking? Yes, there 

is, just let the execution agent that executes the last finished task in a “Sync Concurrent Invoke” to do the rest of the 

works (the concept “execution agent” is defined in C++ ISO standard 30.2.5.1: An execution agent is an entity such as a 

thread that may perform work in parallel with other execution agents). This model is defined as “Async Concurrent 

Invoke”. A typical scenario for the “Async Concurrent Invoke” model is shown in Figure 8. 

 



 
Figure 9 

 

The “Sync Concurrent Invoke” and the “Async Concurrent Invoke” models are the static execution structures for 

concurrent programming, but not enough for runtime extensions. For example, when implementing a concurrent 

quick-sort algorithm, it is hard to predict how many subtasks will be generated. So we need a more powerful execution 

structure that can expand a concurrent invocation, which means, to add other tasks executed concurrently with the current 

tasks in a same concurrent invocation at runtime. This model is defined as “Concurrent Fork”. A typical scenario for the 

“Concurrent Fork” model is shown in Figure 9. 

 



 
Figure 10 

 

 

Figure 11 

 

With the concept of the “Sync Concurrent Invoke”, the “Async Concurrent Invoke” and the “Concurrent Fork” models, 

we can easily build concurrent programs with complex dependencies among the executions, meanwhile, stay the 



concurrent logic clear. Figure 10 shows a typical scenario for a composition of the “Sync Concurrent Invoke” and the 

“Concurrent Fork” models; Figure 11 shows a more complicated scenario. 

From the “Sync Concurrent Invoke”, the “Async Concurrent Invoke” and the “Concurrent Fork” models, we can tell 

that: 

- the same as serial invocations, the "Sync Concurrent Invoke" and the "Async Concurrent Invoke" models can 

be applied recursively, and 

- by changing "Sync Concurrent Invoke" into "Async Concurrent Invoke", we can always turn blocking into 

non-blocking at a cost of managing the execution agents, because it's hard to predict which task is the last 

finished; users are responsible for the load balance in the entire program when applying the "Async 

Concurrent Invoke" model, and 

- applying the “Concurrent Fork” model requires one concurrent invocation to expand, no matter the invocation 

is a “Sync” one or an “Async” one. 

4.2 Synchronizations 

4.2.1 One-to-one 

The “one-to-one” synchronization requirements are much easier to implement than the other two. Providing there are two 

tasks named A and B, and B depends on the completion of A, we can simply make a serial implementation (sequentially 

execute A and B) with no extra context switching overhead. If task A and B are supposed to be executed on different 

execution agents (maybe because they attach to different priorities), extra overhead for the synchronization is inevitable, 

we may let another execution agent to execute B after A is completed. Usually we can implement such “one-to-one” 

synchronization requirements by starting a thread or submitting a task to a threadpool, etc.; besides, many patterns and 

frameworks provide us with more options, for example, the well-known “Future” pattern. 

 

 

Figure 12 



Currently in C++, the “Future” plays an important role in concurrent programming, which provides Ad-hoc 

synchronization from one thread to another, as is shown in Figure 12. It is apparent that “one-to-many” and 

“many-to-one” synchronization requirements can be converted into multiple “one-to-one” ones. Thus the “Future” can be 

used to deal with any synchronization situation with nice composability. 

Besides, there are many primitives supported by various platforms, such as the “Futex” in modern Linux, the 

“Semaphore” defined in the POSIX standard and the “Event” in Windows. The “work-stealing” strategy is sometimes 

used for the “one-to-one” synchronization requirements, such as the Click programming language, the “Fork/Join 

Framework” in the Java programming language and the “TLP” in the .NET framework. 

4.2.2 One-to-many 

The “one-to-many” synchronization requirements are just as easy as the “one-to-one” ones most of the time. However, 

when a “one-to-many” synchronization requirement is broken down into too many “one-to-one” ones, it will 

introduce too much extra overhead. 

One solution to this problem is to perform these “one-to-one” synchronization operations concurrently. Suppose we 

have 10000 tasks to launch asynchronously, we can divide the launching work into 2 phases, 

- launch other 100 tasks, 

- each task launched in the previous step launches 100 tasks respectively. 

So that we can finish launching within 200 (instead of 10000) units of “one-to-one” synchronization time, and that’s 

the bottle neck for 2 phases. Similarly, if we divide the launching work into 4 phases, we can finish launching within 40 

(instead of 200) units of “one-to-one” synchronization time. 

 

 

Figure 13 – The Graph for 
x nxxf )( , n = 10000 

 

Generally, if we divide a launching work of n tasks into x phases, the minimum unit of time required to finish it is a 

function of x, 
x nxxf )( , whose graph is similar with Figure 13. It is apparent that )0(f  and 



)(f . Let 0)(' xf  and we obtain )ln(nx  , where )(xf  is minimum. When )ln(nx  , 

the ideal maximum number of tasks that each task may split into is enn 
)ln(

, which is a constant number greater 

than 2 and less than 3. When the maximum number of tasks that each task may split into is x, the minimum unit of time 

required to finish the work is a function of n and x, 
n
xxxng log),(  , it is apparent that )3,()2,( ngng   

holds when x is greater than 1, thus when a launching work of n tasks is divided into some phases, and adequate 

execution resources are provided, it is theoretically optimal to divide each work into 3 smaller ones. 

4.2.3 Many-to-one 

 

Figure 14 

 

As mentioned earlier, the most common methods to implement the “many-to-one” synchronization requirements are to 

break it down into multiple “one-to-one” synchronizations, and to use an atomic integer maintaining with lock-free 

operations to let the first finished tasks synchronize with the last finished one. The advantages and disadvantages of the 

two methods complement each other, as is shown in Figure 14. 

 

 

Figure 15 

 



 

Figure 16 

 

Note that the state of “0” for the atomic integers is never utilized, when using atomic integers to maintain the number 

of unfinished tasks. The number of unfinished tasks is able to map to range [0, n), so that the implementation shown in 

Figure 2 can be reconstructed, as is shown in Figure 15 and Figure 16. 

Inspired from the class “LongAdder” in the Java programming language, I found it helpful to split one atomic integer 

into many “cells” to decrease contention and increase concurrency in operations on the integers. Unfortunately, although 

this method can reduce the complexity of writing, it increases the complexity of reading, e.g. if we are to check whether 

an integer becomes 0 and subtract 1 from it (this is exactly the requirement in the preceding paper), the operations that a 

“LongAdder” will likely perform are as follows: 

- sum up the cells  and we get 6, 

- check whether 6 equals to 0, and we get [FALSE], 

- choose a cell at random , 

- subtract 1 from the chosen cell , and the total complexity is O (number of cells). 

Other algorithms and data structures such as the “distributed counter” models, the “combining tree” models and the 

“counting network” models also introduce diverse extra overhead while used to solve this challenge. 

 

 
Figure 17 



Then I learnt from the class “Phaser” in the Java programming language that instead of splitting an integer into 

independent “cells”, it is better to “tiering them up to form a tree”. Since the class “Phaser” has more functions than 

just “tiering”, and it is not convenient to control contentions on each node, I improved the design based on “single 

responsibility principle” that enables users to set the upper limit of the contention as they expect. I define the new design 

as “Tree Atomic Counter”, whose property is shown in Figure 17. 

As the accurate value of the counter is not required at runtime here, the "Tree Atomic Counter" is more optimal 

because not only does it reduce the contention, but also remains the complexity of reading always to be O(1). 

Similar with other widely used tree-shaped data structures, a “Tree Atomic Counter” is composed of several nodes. 

Each node holds an atomic integer and a reference to its parent. Each “Tree Atomic Counter” associates with a constant 

integer MAX_N, which represents the maximum count of its each node, in other words, the count of each node belongs 

to the interval [0, MAX_N]. This property guarantees that the contention on each node never exceeds (MAX_N + 1). 

When tiering one node to another, the count of the parent node is increased by 1. 

The structure of the “Tree Atomic Counter” has the following properties: 

- the count represented by a “Tree Atomic Counter” equals to the sum of the count held by all its nodes, 

- the root node holds an invalid reference (e.g. a null pointer). 

 

 

Figure 18 

 

Unlike other widely used tree-shaped data structures such as the “Red-black Tree” or the “AVL Tree”, the “Tree 

Atomic Counter” doesn’t require to be balanced. Moreover, the shape of a “Tree Atomic Counter” has no effects on its 

use or performance. For the initialization of a “Tree Atomic Counter”, we can make it either balanced or completely 

unbalanced, as is shown in Figure 18, just like a forward list! 

 

 

Figure 19 

 

 

Figure 20 

 

When increasing a count on a node, there are two strategies: 

- directly add the count to the node if the total count on this node won’t exceed MAX_COUNT, as is shown in 



Figure 19, or 

- attach a new tree on the node otherwise, as is shown in Figure 20. 

If we are to check whether a “Tree Atomic Counter” becomes 0 and subtract 1 from it with a node, there are three 

strategies: 

- decrease 1 from the node if the count of the node is not 0, or 

- recursively perform this operation to the parent node if the parent node is valid and the count of the current 

node equals to 0, or 

- do nothing otherwise. 

5 Technical Specifications 

5.1 Requirements and Concepts 

Throughout this clause, the names of template parameters are used to express type requirements, and the concepts are 

designed to support type checking at compile time. In order to make the concepts more concise, some constraints related 

to the Ranges TS are not listed, such as the concept template CopyConstructible and the concept template 

MoveConstructible. 

5.1.1 Binary Semaphores 

5.1.1.1 Intention 

This concept is an abstraction for the Ad-hoc synchronizations required in the “Sync Concurrent Invoke” model. Typical 

implementations may have one or more of the following mechanisms: 

- simply use “std::promise<void>” to implement, as mentioned earlier, or 

- use the “Spinlock” if executions are likely to be blocked for only short periods, or 

- use the Mutexes together with the Condition Variables to implement, or 

- use the primitives supported by specific platforms, such as the “Futex” in modern Linux, the “Semaphore” 

defined in the POSIX standard and the “Event” in Windows, or 

- have “work-stealing” strategy that may execute other unrelated tasks while waiting. 

5.1.1.2 BinarySemaphore requirements 

A type BS meets the BinarySemaphore requirements if the following expressions are well-formed and have the 

specified semantics (bs denotes a value of type BS). 

 

bs.wait() 

Effects: Blocks the calling thread until the permit is released. 

Return type: void 



Synchronization: Prior release() operations shall synchronize with this operation. 

 

bs.release() 

Effects: Release the permit. 

Return type: void 

Synchronization: This operation synchronizes with subsequent wait() operations. 

5.1.1.3 Concept template BinarySemaphore 

namespace requirements { 

 

template <class T> 

concept bool BinarySemaphore() { 

  return requires(T semaphore) { 

    { semaphore.wait() }; 

    { semaphore.release() }; 

  }; 

} 

 

} 

5.1.2 Atomic Counters 

5.1.2.1 Intention 

This concept is an abstraction for the “many-to-one” synchronizations required for the execution structures. Typical 

implementations may have one or more of the following mechanisms: 

- use an integer to maintain the count and use a mutex to prevent concurrently reading or writing, or 

- manage an atomic integer maintaining the count with lock-free operations, or 

- adopt the “Tree Atomic Counter” strategy, as mentioned earlier. 

In order to implement it with the C++ programming language, the requirements for the “Atomic Counter” is divided 

into 3 parts: the LinearBuffer requirements, the AtomicCounterModifier requirements and the 

AtomicCounterInitializer requirements, which illustrates the requirements for the return types, for the 

modifications and for the initializations, respectively. 

5.1.2.2 Requirements 

5.1.2.2.1 LinearBuffer requirements 

A type LB meets the LinearBuffer requirements if the following expressions are well-formed and have the specified 



semantics (lb denotes a value of type LB). 

 

lb.fetch() 

Requires: The number of times that this function has been invoked shall be less than the predetermined. 

Effects: Acquires an entity. 

Return type: undefined 

Returns: The acquired entity 

5.1.2.2.2 AtomicCounterModifier requirements 

A type ACM meets the AtomicCounterModifier requirements if the following expressions are well-formed and 

have the specified semantics (acm denotes a value of type ACM). 

 

acm.increase(s) 

Requires: s shall be convertible to type std::size_t. 

Effect: Increase the Atomic Counter entity corresponding to acm by s. 

Return type: Any type that meets the LinearBuffer requirements 

Returns: A value whose type meets the LinearBuffer requirements, each of the first (s + 1) times of fetch() 

operations to which shall acquire a value whose type meets the AtomicCounterModifier requirements, and 

that corresponds to the Atomic Counter entity as acm does. 

Post condition: acm no longer corresponds to an Atomic Counter entity. 

 

acm.decrement() 

Effect: If the state of the Atomic Counter entity corresponding to acm is positive, decrease the state of the entity by 

one. 

Return type: bool 

Returns: true if the state of the entity is positive before the operation, false otherwise. 

Post condition: acm no longer corresponds to an Atomic Counter entity. 

Synchronization: If this operation returns true, it synchronizes with subsequent decrement() operations that 

return false on any entity meets the AtomicCounterModifier requirements and that corresponds to the 

same Atomic Counter entity as acm does; otherwise, prior decrement() operations that return true on any 

entity whose type meets the AtomicCounterModifier requirements, and that corresponds to the same Atomic 

Counter entity as acm does shall synchronize with this operation. 

5.1.2.2.3 AtomicCounterInitializer requirements 

A type ACI meets the AtomicCounterInitializer requirements if the following expressions are well-formed and 

have the specified semantics (aci denotes a value of type ACI). 

 

aci(s) 

Requires: s shall be convertible to type std::size_t. 

Effect: Initialize an Atomic Counter entity whose initial count shall be equals to s. 

Return type: Any type that meets the LinearBuffer requirements 



Returns: A value whose type meets the LinearBuffer requirements, each of the first (s + 1) times of fetch() 

operations to which shall acquire a value whose type meets the AtomicCounterModifier requirements, and 

corresponds to the initialized Atomic Counter entity. 

5.1.2.3 Concepts 

5.1.2.3.1 Concept template LinearBuffer 

namespace requirements { 

 

template <class T, class U> 

concept bool LinearBuffer() { 

  return requires(T buffer) { 

    { buffer.fetch() } -> U; 

  }; 

} 

 

} 

5.1.2.3.2 Concept template AtomicCounterModifier 

namespace requirements { 

 

template <class T> 

concept bool AtomicCounterModifier() { 

  return requires(T modifier) { 

    { modifier.decrement() } -> bool; 

  } && (requires(T modifier) { 

    { modifier.increase(0u) } -> LinearBuffer<T>; 

  } || requires(T modifier) { 

    { modifier.increase(0u).fetch() } -> AtomicCounterModifier; 

  }); 

} 

 

} 

5.1.2.3.3 Concept template AtomicCounterInitializer 

namespace requirements { 

 

template <class T> 



concept bool AtomicCounterInitializer() { 

  return requires(T initializer) { 

    { initializer(0u).fetch() } -> AtomicCounterModifier; 

  }; 

} 

 

} 

5.1.3 Runnable and Callable Types 

The Callable types are defined in the C++ programming language with specified input types and return type. The 

Runnable types are those Callable types which have no input and unspecified return type. The Callable types 

are required to be CopyConstructible, but the Runnable types are only required to be MoveConstructible. 

5.1.3.1 Concept template Runnable 

namespace requirements { 

 

template <class F> 

concept bool Runnable() { 

  return requires(F f) { 

    { f() }; 

  }; 

} 

 

} 

5.1.3.2 Concept template Callable 

namespace requirements { 

 

template <class F, class R, class... Args> 

concept bool Callable() { 

  return requires(F f, Args&&... args) { 

    { f(std::forward<Args>(args)...) } -> R; 

  }; 

} 

 

} 



5.1.4 Concurrent Procedures 

5.1.4.1 Intention 

 

Figure 21 

 

 
Figure 22 

 

 

Figure 23 

 

The “Concurrent Procedure” is a Callable type defined in the C++ programming language. This concept is an abstraction 



for the smallest concurrent task fragment required in the execution structures. Typical implementations may have one or 

more of the following mechanisms: 

- be wrapped from a Callable type (in other words, gives up the chance to call the function template 

concurrent_fork), as is shown in Figure 21 (note that std::bind(std::forward<F>(f)), 

std::forward<Args>(args)...)() will perform F(Args&...); with the helper function template 

bind_simple the implementation will perform F(Args&&...)), or 

- be implemented manually, and may call the function template concurrent_fork, as is shown in Figure 22, 

or 

- be implemented with a “Template” with runtime abstraction by inheriting from an abstract class, as is shown in 

Figure 23 (note that abstraction::AtomicCounterModifier and abstraction::Callable are wrappers for Atomic 

Counter Modifiers and Callables, respectively; their principles are the same as std::function). 

5.1.4.2 ConcurrentProcedure requirements 

A type CP meets the ConcurrentProcedure requirements if the following expressions are well-formed and have the 

specified semantics (cp denotes a value of type CP). 

 

cp(acm, c) 

Requires: The original types of acm and c shall meet the AtomicCounterModifier requirements and the 

Callable<void> requirements, respectively. 

Effects: Execute the user-defined concurrent procedure synchronously. 

Return type: Any type that meets the AtomicCounterModifier requirements 

Note: It is allowed to invoke the function template concurrent_fork within this scope. 

5.1.4.3 Concept template ConcurrentProcedure 

namespace requirements { 

 

template <class T, class U, class V> 

concept bool ConcurrentProcedure() { 

  return requires(T procedure, U&& modifier, V&& callback) { 

    { procedure(std::forward<U>(modifier), std::forward<V>(callback)) } 

        -> AtomicCounterModifier; 

  }; 

} 

 

} 



5.1.5 Execution Agent Portals 

5.1.5.1 Intention 

 

Figure 24 

 

 

Figure 25 

 

Large-scale concurrent programming usually requires load balancing for every part of the program. Although there are 

many libraries provide us with quite a few APIs for concurrent algorithms, they are usually harmful in load balancing, 

especially when there are other works to be done that attach to higher priorities. 

Currently in C++, we have the term “Execution Agent”, which is “an entity such as a thread that may perform work in 

parallel with other execution agents”. An “Execution Agent Portal” is an abstraction for the method required for the 

execution structures, that to submit callable units to concrete Execution Agents. Typical implementations may have one 

or more of the following mechanisms: 

- submit the input callable unit to the current Execution Agent and sequentially execute it, or 

- submit the input callable unit to a new daemon thread (not able to join it at all; the exit of all non-daemon 

threads may kill all daemon threads), as is shown in Figure 24, or 

- submit the input callable unit to a new non-daemon thread so that it can run even if the “main” function has exit, 

as is shown in Figure 25 (note that the class ThreadManager is a singleton type that manages the thread 

objects), or  

- submit the input callable unit to some remote executor, or 

- submit the input callable unit to a threadpool entity. 



5.1.5.2 ExecutionAgentPortal requirements 

A type EAP meets the ExecutionAgentPortal requirements if the following expressions are well-formed and have 

the specified semantics (eap denotes a value of type EAP). 

 

eap(f, args...) 

Requires: The original types of f and each parameter in args shall satisfy the MoveConstructible 

requirements. INVOKE (std::move(f), std::move(args)...) shall be a valid expression. 

Effects: Submit the parameters to a concrete Execution Agent which executes INVOKE (std::move(f), 

std::move(args)...) asynchronously. Any return value from this invocation is ignored. 

5.1.6 Concurrent Callables 

5.1.6.1 Intention 

 

Figure 26 



This concept is an abstraction for async tasks required for the execution structures. Typical implementations may have 

one or more of the following mechanisms: 

- combine an Execution Agent Portal entity and a Concurrent Procedure entity, repack the Concurrent Procedure 

entity into another callable unit that will execute the function template concurrent_join as the Concurrent 

Procedure is executed, submit the callable unit with the Execution Agent Portal entity, as is shown in Figure 26. 

- combine multiple Execution Agent Portal entities and their corresponding Concurrent Procedure entities, 

execute the Concurrent Procedure entities sequentially with different Execution Agent Portal entities. 

5.1.6.2 ConcurrentCallable requirements 

A type CC meets the ConcurrentCallable requirements if the following expressions are well-formed and have the 

specified semantics (cc denotes a value of type CC). 

 

cc(acm, c) 

Requires: The original types of acm and c shall meet the AtomicCounterModifier requirements and the 

Callable requirements, respectively. 

Effects: Execute the user-defined concurrent callable unit asynchronously. 

Return type: void 

Note: It is allowed to invoke the function template concurrent_fork within this scope. 

5.1.7 Concurrent Callers 

5.1.7.1 Intention 

This concept is an abstraction for task launching strategies required for the execution structures. Typical implementations 

may have one or more of the following mechanisms: 

- abstract the tasks into one or multiple entities that meet the ConcurrentCallable requirements, or 

- sequentially launch the tasks, or 

- concurrently launch the tasks when there is a large number of them, or 

- recursively split the large launching work into several small ones (optimally, 3) and execute them concurrently 

when adequate execution resources are provided, as mentioned earlier. 

5.1.7.2 ConcurrentCaller requirements 

A type CC meets the ConcurrentCaller requirements if the following expressions are well-formed and have the 

specified semantics (cc denotes a value of type CC). 

 

cc.size() 

Return type: std::size_t 

Returns: The number of times that cc.call(lb, ccb) shall perform the lb.fetch() operation. 

 



cc.call(lb, c) 

Requires: The original types of lb and c shall meet the LinearBuffer requirements and the 

Callable<void> requirements, respectively; each of the first size() times of the lb.fetch() operation 

shall acquire a value whose type meets the AtomicCounterModifier requirements, and that corresponds to a 

same Atomic Counter entity. 

Effects: Perform size() times of the lb.fetch() operation synchronously, and invoke size() times of the 

function template concurrent_join asynchronously. 

Return type: void 

5.1.7.3 Concept template ConcurrentCaller 

namespace requirements { 

 

template <class T, class U, class V> 

concept bool ConcurrentCaller() { 

  return requires(const T c_caller, T caller, U& buffer, const V& callback) { 

    { c_caller.size() } -> size_t; 

    { caller.call(buffer, callback) }; 

  }; 

} 

 

template <class T, class U, class V> 

constexpr bool concurrent_caller_all(T&, const U&, V&) { 

  return ConcurrentCaller<V, T, U>(); 

} 

 

template <class T, class U, class V, class... W> 

constexpr bool concurrent_caller_all(T& buffer, const U& callback, V& caller, W&... 

callers) { 

  return concurrent_caller_all(buffer, callback, caller) && 

      concurrent_caller_all(buffer, callback, callers...); 

} 

 

// true if every Vi satisfies ConcurrentCaller<Vi, T, U>() 

template <class T, class U, class... V> 

concept bool ConcurrentCallerAll() { 

  return requires(T& buffer, const U& callback, V&... callers) { 

    requires concurrent_caller_all(buffer, callback, callers...); 

  }; 

} 

 

} 



5.2 Function Templates 

5.2.1 Function template async_concurrent_invoke 

template <class Callback, 

          class... ConcurrentCallers> 

void async_concurrent_invoke(const Callback& callback, 

                             ConcurrentCallers&&... callers) { 

  async_concurrent_invoke_explicit(DefaultAtomicCounterInitializer(), 

                                   callback, 

                                   callers...); 

} 

 

Function template async_concurrent_invoke is a wrapper for function template 

async_concurrent_invoke_explicit with default “many-to-one” synchronization strategy. 

5.2.2 Function template async_concurrent_invoke_explicit 

 

Figure 27 

 

template <class AtomicCounterInitializer, 

          class Callback, 

          class... ConcurrentCallers> 

void async_concurrent_invoke_explicit(AtomicCounterInitializer&& initializer, 



                                      const Callback& callback, 

                                      ConcurrentCallers&&... callers) requires 

    requirements::AtomicCounterInitializer<AtomicCounterInitializer>() && 

    requirements::Callable<Callback, void>() && 

    requirements::ConcurrentCallerAll< 

        decltype(initializer(0u)), 

        Callback, 

        ConcurrentCallers...>(); 

 

Requires: The types AtomicCounterInitializer, Callable and each type in ConcurrentCallers 

pack shall meet the AtomicCounterInitializer requirements, the Callable requirements and the 

ConcurrentCaller requirements, respectively. 

Effects: Execute the “Async Concurrent Invoke” model, whose flow chart is shown in Figure 27. 

Return type: void 

5.2.3 Function template sync_concurrent_invoke 

template <class Runnable, class... ConcurrentCallers> 

auto sync_concurrent_invoke(Runnable&& runnable, 

                            ConcurrentCallers&&... callers) { 

  return sync_concurrent_invoke_explicit(DefaultAtomicCounterInitializer(), 

                                         DefaultBinarySemaphore(), 

                                         runnable, 

                                         callers...); 

} 

 

Function template sync_concurrent_invoke is a wrapper for function template 

sync_concurrent_invoke_explicit with default “many-to-one” synchronization and default blocking strategy. 



5.2.4 Function template sync_concurrent_invoke_explicit 

 

Figure 28 

 

template <class BinarySemaphore> 

class SyncInvokeHelper { 

 public: 

  explicit SyncInvokeHelper(BinarySemaphore& semaphore) : semaphore_(semaphore) {} 

 

  ~SyncInvokeHelper() { semaphore_.wait(); } 

 

 private: 

  BinarySemaphore& semaphore_; 

}; 

 

template <class AtomicCounterInitializer, 

          class BinarySemaphore, 

          class Runnable, 

          class... ConcurrentCallers> 

auto sync_concurrent_invoke_explicit(AtomicCounterInitializer&& initializer, 

                                     BinarySemaphore&& semaphore, 



                                     Runnable&& runnable, 

                                     ConcurrentCallers&&... callers) requires 

    requirements::AtomicCounterInitializer<AtomicCounterInitializer>() && 

    requirements::BinarySemaphore<BinarySemaphore>() && 

    requirements::Runnable<Runnable>() && 

    requirements::ConcurrentCallerAll< 

        decltype(initializer(0u)), 

        SyncConcurrentCallback<std::remove_reference_t<BinarySemaphore>>, 

        ConcurrentCallers...>(); 

 

Requires: The types AtomicCounterInitializer, BinarySemaphore, SerialCallable and each 

type in ConcurrentCallers pack shall meet the AtomicCounterInitializer requirements, the 

BinarySemaphore requirements, the SerialCallable requirements and the ConcurrentCaller 

requirements, respectively. 

Effects: Execute the “Sync Concurrent Invoke” model, whose flow chart is shown in Figure 28. 

Return type: std::result_of_t<SerialCallable()> 

Returns: anything that callable() returns 

5.2.5 Function template concurrent_fork 
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template <class AtomicCounterModifier, 

          class Callback, 

          class... ConcurrentCallers> 

auto concurrent_fork(AtomicCounterModifier&& modifier, 

                     const Callback& callback, 

                     ConcurrentCallers&&... callers) requires 

    requirements::AtomicCounterModifier<AtomicCounterModifier>() && 

    requirements::Callable<Callback, void>() && 

    requirements::ConcurrentCallerAll< 

        decltype(modifier.increase(0u)), 

        Callback, 

        ConcurrentCallers...>(); 

 

Requires: The types AtomicCounterModifier, SerialCallable and each type in 

ConcurrentCallers pack shall meet the AtomicCounterModifier requirements, the 

SerialCallable requirements and the ConcurrentCaller requirements, respectively. 

Effects: Execute the “Concurrent Fork” model, whose flow chart is shown in Figure 29. 

Return type: decltype(modifier.increase(0u).fetch()) 

Returns: An Atomic Counter Modifier entity corresponds to an Atomic Counter entity. 

5.2.6 Function template concurrent_join 
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template <class AtomicCounterModifier, 

          class Callback> 

void concurrent_join(AtomicCounterModifier&& modifier, 

                     Callback& callback) requires 

    requirements::AtomicCounterModifier<AtomicCounterModifier>() && 

    requirements::Callable<Callback, void>(); 

 

Requires: The types AtomicCounterModifier and Callable shall meet the AtomicCounterModifier 

requirements and the Callable requirements, respectively. 

Effects: Perform modifier.decrement(), if the returned value is false, execute callback(), whose flow 

chart is shown in Figure 30. 

Return type: void 

5.3 Implementation 

 

Figure 31 



 

Although some details are still to be considered to make this solution standardized, I’ve already implemented a 

prototype for the entire solution in C++ (with C++14 (minimum supported) and the Concept TS, available at 

https://github.com/wmx16835/structural-support-for-cxx-concurrency). The header file “concurrent.h” (which includes 

other 10 header files) enables users to use anything in the library. Every type and function in the solution is defined in the 

namespace con. The overview of the library is shown in Figure 31. 

The Binary Semaphores and the Atomic Counters, etc., are required in the core function templates. Some 

implementation for the requirements are provided with .h files, which are not completely documented. As is mentioned 

earlier, these implementations may have various mechanisms, including some primitives out of the C++ standard (for 

example, the "Futex"). These implementations are only recommended, but not all of them are available on every 

platform. 

 

 

Figure 32 

 

For a better understanding for the implementation, 5 examples is attached, as is shown Figure 32. Examples are 

prepared to demonstrate basic usage for the library, and the last example named 

"example_5_application_concurrent_copy.cc" shows an application for concurrent copy algorithm. In order to make 

the examples easy to understand, more complex applications are not provided, but that does not mean those applications 

are not implementable with this solution. For example, concurrent sort algorithms are much easier to implement with 

"sync_concurrent_invoke" and "concurrent_fork" function templates. 

https://github.com/wmx16835/structural-support-for-cxx-concurrency

