PO638R0: Crochemore-Perrin search
algorithm for std: : search

Date: 2017-05-03
Reply-to: Ed Schouten <ed@nuxi.nl>
Audience: Library

Overview

N3905 extended the std: : search function to support external search algorithms.
Implementations of the Boyer-Moore and Boyer-Moore-Horspool algorithms are provided by
default. This proposal attempts to add a third algorithm, namely the Two-Way String
Matching algorithm by Maxime Crochemore and Dominique Perrin, which has a couple of
very interesting properties:

e It has a linear worst-case running time, both during the preprocessing and matching
phases.

e |t's in-place: it requires a constant amount of memory, both during computation and
storage of the preprocessed state. Memory usage is also independent with respect to
the size of the alphabet.

Though the Crochemore-Perrin search algorithm isn’t very well-known by name, it is being
used in practice. It's a perfect fit for implementing strstr (), wesstr () and memmem(),
which is why it is used by many modern C libraries, like glibc, musl, FreeBSD’s libc, etc.

The algorithm works by cutting (factorizing) the pattern in two pieces. While matching, the
algorithm scans through the input, searching for the pattern’s suffix. Only when a full match
of the suffix has been found, it attempts to match the prefix. By choosing the position at
which the pattern is factorized carefully (yielding a critical factorization), the algorithm is
capable of skipping larger amounts of input upon mismatches (based on the pattern’s
period). This makes the algorithm run in linear time.

Ordered and unordered alphabets

What'’s truly novel about the Crochemore-Perrin algorithm is the way it computes the critical
factorization and period of the pattern, which again is done in-place and in linear time. To
realize this, the algorithm requires that the alphabet has a total order. In 2015, Dmitry
Kosolobov published an algorithm for computing the critical factorization only assuming an
equivalence relation. Unfortunately, this algorithm is not in-place, which defeats the purpose.

Introducing a searcher that uses std: : less is actually fairly consistent. Just like for our
sets and maps, we will now have two different types of searchers. Ones that depend on
hashing and equivalence and another one that depends on a total order.


mailto:ed@nuxi.nl
https://arxiv.org/abs/1509.01018
http://www-igm.univ-mlv.fr/~mac/Articles-PDF/CP-1991-jacm.pdf
https://arxiv.org/abs/1509.01018
http://www-igm.univ-mlv.fr/~mac/Articles-PDF/CP-1991-jacm.pdf
http://wg21.link/N3905

Wording

Add to [functional.syn], header <functional> synopsis, under ‘searchers’:

template<class RandomAccessIterator,
class BinaryPredicate = less<>>
class crochemore_perrin_searcher;

Add a new paragraph to the end of [func.search], searchers:

The Crochemore-Perrin searcher implements the Crochemore-Perrin (“Two-Way”)
search algorithm. Preprocessing and matching both use only a constant amount of
memory, while still providing a linear worst-case running time. This algorithm requires
that a total order on the alphabet can be defined.

Add a new section after [func.search.bmh], class template boyer_moore_horspool_searcher:

template <class RandomAccessIteratorl,
class BinaryPredicate = less<>>
class crochemore_perrin_searcher {
public:
constexpr crochemore_perrin_searcher (RandomAccessIteratorl pat_first,
RandomAccessIteratorl pat_last,
BinaryPredicate pred = BinaryPredicate());
template <class RandomAccessIterator2>
constexpr pair<RandomAccessIterator2, RandomAccessIterator2>
operator () (RandomAccessIterator2 first, RandomAccessIterator2 last) const;

private:
RandomAccessIteratorl pat_first_; // exposition only
RandomAccessIteratorl pat_last_; // exposition only
BinaryPredicate pred_; // exposition only
}s

constexpr crochemore_perrin_searcher(RandomAccessIteratorl pat_first,
RandomAccessIteratorl pat_last,
BinaryPredicate pred = BinaryPredicate());

Requires: The value type of RandomAccessIteratorl shall meet the
DefaultConstructible, CopyConstructible, and CopyAssignable
requirements.

Effects: Constructs a crochemore_perrin_searcher object, initializing
pat_first_ with pat_first, pat_last_ with pat_last, and pred_ with pred.

Throws: Any exception thrown by the copy constructor of
RandomAccessIteratorl, or by the default constructor, copy constructor, or the
copy assignment operator of the value type of RandomAccessIteratorl or the
copy constructor or operator () of BinaryPredicate.



Complexity: At most O(pat_last - pat_f1irst) applications of the predicate.

template <class RandomAccessIterator2>
constexpr pair<RandomAccessIterator2, RandomAccessIterator2>
operator () (RandomAccessIterator2 first, RandomAccessIterator2 last) const;

Requires: Copy existing phrasing from [func.search.omh]’'s operator ().
Effects: Copy existing phrasing from [func.search.omh]'s operator ().
Returns: Copy existing phrasing from [func.search.bmh]'s operator ().
Complexity: At most O(last - first) applications of the predicate.

In [algorithm.syn], header <algorithm> synopsis, under ‘search’, add constexpr to this
prototype:

template <class ForwardIterator, class Searcher>

ForwardIterator search(ForwardIterator first, ForwardIterator last,
const Searcher& searcher);

In [alg.search], search, add constexpr to this prototype:

template<class ForwardIterator, class Searcher>
ForwardIterator search(ForwardIterator first, ForwardIterator last,
const Searcher& searcher);

Example implementation

The pseudocode given in figures 17 and 21 of the original paper does a pretty good job of
describing how the algorithm can be implemented. When making use of this pseudocode,
keep in mind that it uses 1-indexed arrays.

An example implementation based on the pseudocode can be found on GitHub.


https://github.com/EdSchouten/crochemore_perrin_searcher

