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Abstract
This document proposes a C++ equivalent to the well-known concept call-with-current-continuation (abbreviated call/cc).
This facility permits a program written in portable C++ to subdivide processing into distinct contexts: units smaller than a
thread.

Within this proposal, the unadorned term “thread” means a std::thread (or kernel thread). When the Standard’s more
general term “thread of execution” is intended, it is spelled out in full.

With call/cc, processing in a given thread may be further subdivided into multiple contexts. Each such context qualifies as a
“thread of execution” according to the definition in the Standard. However, within a given thread, control is cooperatively
passed from one context to another.

This has a couple of important implications:

• In each thread in a process, exactly one context is running at any given time. All others are suspended.

• The running context on a thread continues running until it explicitly resumes some other context. The act of
resuming another context suspends the previously-running context. This transfer of control, in which one context
suspends and another resumes, is context-switching.

• There are no data races between contexts running on the same thread.

The kind of context-switching presented in this proposal is called stackful because each context requires some implementa-
tion of the C++ stack. C++ code running on a particular context may transparently call ordinary C++ functions. In contrast
to the co_await facility (proposed separately4), this permits encapsulation. A function that suspends (by resuming some
other context) needs no special signature. Its caller need not be aware that it might suspend. It need not call that function
in any special way.

This supports use cases that cannot be addressed with co_await alone.

Also in contrast to the co_await facility, this proposal requires no changes to the core C++ language. call/cc is presented
as a library facility, albeit a library that cannot be implemented in portable C++. This is why it is desirable to incorporate it
into the International Standard.
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Consider the following bullets from P0559R0:6

• Avoid ’compiler magic’ when possible

• Prefer library solutions over language changes if feasible

The proposed call/cc facility is intended to be foundational. While of course application coders are free to use the call/cc
API, its real promise is in supporting higher-level abstractions.

This proposal describes the basic call/cc facility, presents some illustrative use cases and explains why the API is set at its
present level.

Why should call/cc be standardized?
The call/cc facility cannot itself be implemented in portable C++. The present implementation,12 maintained by a single
author, supports a small set of current platforms available to that author. Should call/cc be integrated into the Standard, it
will become universally available.

Moreover, correct support for certain platforms might involve undocumented complexity. The runtime vendor is best
positioned to implement the specified functionality.

Compiler awareness of this facility could enable certain optimizations as well:

• The compiler might be able to analyze the code to be launched on a new call/cc context and determine an optimal
stack size for that context.

• The compiler might be able to determine that not all registers need be preserved across a context switch.

• For certain use cases, the compiler might be able to optimize away context-switching altogether. Promising work
has been done in this area for the co_await facility.4

Revision History
This document supersedes P0534R0.5

Changes since P0534R0:

• API modified
– operator() renamed to resume()
– operator(invoke_ontop_arg_t) renamed to resume_with()
– data_available() , get_data() and any_thread() are now member functions instead of free functions
– stack unwinding now explicitly requires specific unwind_exception exception

• added example use cases

• call/cc compared with ucontext and longjmp

• why call/cc is a low-level implementation

• details of stack destruction
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Continuations
A continuation is an abstract concept that represents the context state at a given point during the execution of a program.
That implies that a continuation represents the remaining steps of a computation.

As a basic, low-level primitive it can be used to implement control structures like coroutines, generators, lightweight
threads, cooperative multitasking (fibers), backtracking, non-deterministic choice. In classic event-driven programs,
organized around a main loop that fetches and dispatches incoming I/O events, certain asynchronous I/O sequences
are logically sequential. Use of continuations permits writing and maintaining code that looks and acts sequential, even
though from time to time it may suspend while asynchronous I/O is pending.

C and C++ already use implicit continuations: when running code calls a function, then a (hidden) continuation (the
remaining steps after the function call) is created. This continuation is resumed when the function returns. For instance the
x86 architecture stores the (hidden) continuation as a return address on the stack.∗

Continuations exposed as first-class continuations can be passed to and returned from functions, assigned to variables or
stored into containers. With first-class continuations, a language can explicitly control the flow of execution by suspending
and resuming continuations, enabling control to pass into a function at exactly the point where it previously suspended.
Making the program state visible via first-class continuations is known as reification.

The remainder of the computation derived from the current point in a program’s execution is called the current continu-
ation. call/cc captures the current continuation and passes it to the function invoked by call/cc.

Continuations that can be called multiple times are named full continuations.
One-shot continuations can only resumed once: once resumed, a one-shot continuation is invalidated.
Full continuations are not considered in this proposal because of their nature, which is problematic in C++. Full continu-
ations would require copies of the stack (including all stack variables), which would violate C++’s RAII pattern.

In contrast to call/cc that captures the entire remaining continuation, the operators shift and reset create a so-called
delimited continuation. A delimited continuation represents a slice of the program context. Operator reset delimits the
continuation, i.e. it determines where the continuation starts and ends, while shift reifies the continuation.
Delimited continuations are not part of this proposal. However, delimited continuation functionality can be built on
call/cc.

∗Other (RISC) architectures use a special micro-processor register for this purpose.
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Call with current continuation
call/cc (abbreviation of ’call with current continuation’) is a universal control operator (well-known from languages like
Scheme, Ruby, Lisp ...) that captures the current continuation (the sequence of instructions after call/cc returns) as a
first-class object and passes it to a function that is executed in a newly-created execution context.

std::callcc() is the C++ equivalent to call/cc, preserving the call state and the program state (variables).

When code running in some original context calls resume() on some std::continuation instance target, the
original context is saved and the target continuation is restored in its place, so that program flow will continue at the
point at which the target continuation was originally captured. The captured original continuation then becomes the
return value of the std::callcc() invocation in target.

std::continuation is a one-shot continuation: it can be resumed at most once, is only move-constructible and
move-assignable.

std::continuation foo(std::continuation && caller) {
while (caller) {

std::cout << "foo\n";
caller= // (4)

caller.resume(); // (1)
}
return std::move(caller);

}

std::continuation foo_ct= // (2)
std::callcc(foo); // (0)

while (foo_ct) {
std::cout << "bar\n";
foo_ct= // (5)

foo_ct.resume(); // (3)
}

output:
foo
bar
...

The std::callcc(foo) call at (0) captures the current continuation, entering function foo() while passing the cap-
tured continuation as argument caller.

As long as continuation caller is valid, "foo" is passed to standard output.

The expression caller.resume() at (1) resumes the original continuation represented within foo() by caller and
transfers back the control of execution to main(). On return from std::callcc(foo), the assignment at (2) sets foo_ct
to the current continuation as of (1).

The call to foo_ct.resume() at (3) resumes function foo, returning from the resume() call at (1) and executing the
assignment at (4). Here we replace the std::continuation instance caller invalidated by the resume() call at (1)
with the new instance returned by that same resume() call.

Function std::callcc() captures the current continuation and enters the given function immediately, while resume()
returns control back to the continuation saved in *this.

The presented code prints out "foo" and "bar" in a endless loop.

In order to transfer data, std::callcc() and resume() accept arguments. These are stored on the stack of the captured
current continuation. Function data_available() tests whether data have been passed, and with get_data() the
data can be retrieved.

std::continuation lambda=
std::callcc( // (0)

[](std::continuation && caller){
int a=0;
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int b=1;
for(;;){

caller=caller.resume(a); // (1)
int next=a+b;
a=b;
b=next;

}
return std::move(caller);

});
for (int j=0;j<10;++j) {

int i=lambda.get_data<int>(); // (2)
std::cout << i << " ";
lambda=lambda.resume(); // (3)

}

output:
0 1 1 2 3 5 8 13 21 34 55

The invocation of std::callcc() at (0) immediately enters the lambda, passing no data but the current continuation.
The lambda calculates the fibonacci number using local variables a, b and next. The calculated fibonacci number is
transferred via resume() at (1). The execution control returns; lambda now represents the continuation of the lambda.
With get_data() at (2) the fibonacci number is transferred to the current context while at (3) the lambda is entered again
in order to compute the next fibonacci number – without passing any parameter to the lambda.
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Design
std::callcc() as a factory function Every valid std::continuation instance is synthesized by the std::callcc()
facility:

• as a parameter passed into the function called by std::callcc() or resume_with()

• as the value returned by std::callcc(), resume() or resume_with().

This is intentional for consistency with the call/cc facility in other languages.7,8

Footprint std::continuation contains only its stack pointer as a member variable. It should typically be no larger
than a pointer.

Passing data Data may be passed to another context as additional arguments of std::callcc() and resume() .∗

With functions data_available() and get_data() the code can test for data and, if desired, retrieve the data.

Any additional data arguments passed to std::callcc() or resume() can be retrieved by the created/resumed context
using get_data() . The template arguments for get_data() must agree with the types passed to std::callcc() or
resume() :

• If you call std::callcc(fn) or resume() with no additional arguments, then data_available() will return
false: fn() may not call get_data() at all.

• If you call std::callcc(fn, single_arg) or resume(single_arg), then data_available() will return
true, and if fn() calls get_data() , its template argument must match get_data<decltype(single_arg)>().

• If you call std::callcc(fn, multiple_args...) or resume(multiple_args...), then data_available()
will return true, and if fn() calls get_data() , its template arguments must match the types of multiple_args....
Specifically, get_data<Args...>() returns std::tuple<Args...>; that std::tuple must be compatible
with std::make_tuple(multiple_args...).

int i=1;
std::continuation lambda=

std::callcc( // (0)
[](std::continuation && caller){

int j=caller.get_data<int>(); // (1)
std::cout << "inside lambda,j==" << j << std::endl;
caller=caller.resume(j+1); // (2)
return std::move(caller); // (5)

},
i);

i=lambda.get_data<int>(); // (3)
std::cout << "i==" << i << std::endl;
lambda=lambda.resume(); // (4)

output:
inside lambda,j==1
i==2

The callcc() call at (0) enters the lambda and passes 1 into the new context. The value is retrieved as j, as shown by (1).
The expression caller.resume(j+1) at (2) resumes the original context (represented within the lambda by caller)
and transfers back an integer of j+1. The assignment at (3) sets i to j+1.

The call to lambda.resume() at (4) (note that no data is passed) resumes the lambda, returning from the caller.resume(j+1)
call at (2). Here, too, we replace the std::continuation instance caller invalidated by the resume() call at (2)
with the new instance returned by that same resume() call.

Finally the lambda returns (the updated) caller at (5), terminating its context.

Since the updated caller represents the continuation suspended by the call at (4), control returns to main() .

∗or returned from the function invoked by resume_with(); see section Inject function into suspended context
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However, since context lambda has now terminated, the updated lambda is invalid. Its operator bool() returns
false; its operator!() returns true.

Multiple arguments can be transferred into another continuation too.

int i=1,j=2;
std::continuation lambda=

std::callcc( // (0)
[](std::continuation && caller){

auto [i,j]=caller.get_data<int,int>(); // (1)
std::cout << "inside lambda,i==" << i << ",j==" << j << std::endl;
caller=caller.resume(i+j); // (2)
return std::move(caller); // (5)

},
i,
j);

int k=lambda.get_data<int>(); // (3)
std::cout << "k==" << k << std::endl;
lambda=lambda.resume(); // (4)

output:
inside lambda,i==1,j==2
k==3

caller.get_data<int,int>() returns a std::tuple<int,int> containing the values passed by the std::callcc()
call at (0).

main() and thread functions main() as well as the entry-function of a thread can be represented by a continuation.
That std::continuation instance is synthesized when the running context suspends, and is passed into the newly-
resumed context.

Calling any_thread() on a std::continuation instance representing main() , or the entry-function of a thread, will
return false: such a std::continuation must only be resumed on its original thread.

int main() {
std::continuation lambda=

std::callcc( // (0)
[](std::continuation && caller){ // (1)

return std::move(caller); // (2)
});

return 0;
}

The callcc() call at (0) enters the lambda. The std::continuation caller at (1) represents the execution context
of main() . Returning caller at (2) resumes the original context, switching back to main() .

call/cc and std::thread Any context represented by a valid std::continuation instance is necessarily suspended.

It is valid to resume a std::continuation instance on any thread – except that since the operating system is re-
sponsible for the stack allocated for main() , as well as each std::thread, you must not attempt to resume a
std::continuation instance representing any such context on any thread other than its own. any_thread() tests
for this.

If, for std::continuation c, c.any_thread() returns false, it is only valid to resume c on the thread on which it
was initially launched.

Termination There are a few different ways to terminate a given context without terminating the whole process, or
engaging undefined behavior.

• Return a valid continuation from the entry-function.

• Call std::unwind_context() with a valid continuation. This throws a std::unwind_exception instance
that binds that continuation.
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• [LEWG: Should we publish the std::unwind_exception constructor that accepts std::continuation ?
Then another supported way would be to construct and throw std::unwind_exception “by hand,” which
is what std::unwind_context() does internally.]

• Call std::continuation::resume_with(std::unwind_context). This is what ~continuation() does.
Since std::unwind_context() accepts a std::continuation , and since resume_with() synthesizes a
std::continuation and passes it to the subject function, this terminates the context referenced by the original
std::continuation instance and switches back to the caller.

• Engage ~continuation(): switch to some other context, which will receive a std::continuation instance
representing the current context. Make that other context destroy the received std::continuation instance.

When the entry-function invoked by std::callcc() returns a valid std::continuation instance, the running context
is terminated. Control switches to the context indicated by the returned std::continuation instance.

Returning an invalid std::continuation instance (operator bool() returns false) invokes undefined behavior.

If the entry-function returns the same std::continuation instance it was originally passed (or rather, the most recently
updated std::continuation returned from std::callcc() or the previous instance’s resume() ), control returns
to the context that most recently resumed the running context. However, the entry-function may return (switch to) any
reachable valid std::continuation instance.

Calling std::continuation::resume() means: “Please switch to the indicated context; I am suspending; please
resume me later.”

Returning a particular std::continuation means: “Please switch to the indicated context; and by the way, I am done.”

Exceptions In general, if an uncaught exception escapes from the entry-function, std::terminate is called. There is
one exception: std::unwind_exception . The std::callcc() facility internally uses std::unwind_exception
to clean up the stack of a suspended context being destroyed. This exception must be allowed to propagate out of an
entry-function.

A correct entry-function try / catch block looks like this:

try {
// ... body of context logic ...

} catch (std::unwind_exception const&) {
// do not swallow unwind_exception
throw;

} catch (...) {
// ... log, or whatever ...

}

Of course, if you do not expect the entry-function or anything it calls to throw exceptions, you need no try / catch
block.

If a resume_with() function throws an exception that you expect to catch in the context’s entry-function, it is good practice
to bind into the exception object the continuation passed to the resume_with() function so that the entry-function’s
catch clause can return that continuation.

Inject function into suspended context Sometimes it is useful to inject a new function (for instance, to throw
an exception) into a suspended context. For this purpose you may call resume_with(Fn && fn,Args ... args),
passing:

• the function fn() to execute

• additional data args to be retrieved by fn().

Let’s say that the context represented by the std::continuation instance ctx has suspended in a function suspender().
You intend to inject function fn() into context ctx as if suspender() had directly called fn() at the point where it
suspended.

Like an entry-function passed to std::callcc(), fn() must accept std::continuation&&. However, instead of
returning std::continuation , fn() must return a type corresponding to the args passed to the resume_with()
call.
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• If you call ctx.resume_with(fn) with no additional args, the return type of fn() is irrelevant: its return value
is discarded.

• If you call ctx.resume_with(fn, single_arg), then fn() must return decltype(single_arg).

• If you call ctx.resume_with(fn, multiple_args...), then fn() must return a std::tuple with corres-
ponding types: specifically, decltype(std::make_tuple(multiple_args...)).

Any args... passed to resume_with() can be retrieved within fn() using get_data() . As with std::callcc()
and resume() , the template arguments for get_data() must agree with the types passed to resume_with():

• If you call ctx.resume_with(fn) with no additional args, then data_available() will return false: fn()
may not call get_data() at all.

• If you call ctx.resume_with(fn, single_arg), then data_available() will return true, and if fn()
calls get_data() , its template argument must match get_data<decltype(single_arg)>().

• If you call ctx.resume_with(fn, multiple_args...), then data_available() will return true, and
if fn() calls get_data() , its template arguments must match the types of multiple_args.... Specific-
ally, get_data<Args...>() returns std::tuple<Args...>; that std::tuple must be compatible with
std::make_tuple(multiple_args...).

The above describes retrieving passed values within fn(). The value returned by fn() becomes available to suspender().
It is up to fn() whether to return the same value(s) it retrieved from the resume_with() call.

• If you call ctx.resume_with(fn) with no additional args, then data_available() will return false even
within suspender(): suspender() may not call get_data() at all.

• If you call ctx.resume_with(fn, args...) – with one or more args... – then data_available() will
return true within suspender(). get_data() within suspender() will retrieve the value returned by fn().

Note that if you pass one or more args... to resume_with(), those args... must be compatible with the return type
of fn(). However, it is permissible to call resume_with(fn) sometimes (data_available() returns false) but
pass compatible data in other resume_with() calls.

Suppose that code running on the program’s main context calls std::callcc(f), thereby entering f(). This is the point
at which mc is synthesized and passed into f(), as illustrated below.

Suppose further that after doing some work, f() calls mc.resume(), thereby switching back to the main context. f()
remains suspended in the call to mc.resume().

At this point the main context calls f_ct.resume_with(g) where g() is declared as int g(continuation &&). g()
is entered in the context of f(). It is as if f()’s call to mc.resume() directly called g().

Function g() has almost the same range of possibilities as any function called on f()’s context. Its special invocation
matters when control leaves it in either of two ways:

1. If g() throws an exception, that exception unwinds all previous stack entries in that context (such as f()’s) as well,
back to a matching catch clause.∗

2. If g() returns, its return value provides data for f()’s suspended mc.resume() call.

std::continuation f(std::continuation && mc) {
int data=mc.get_data<int>(); // (1)
std::cout << "f: entered first time: " << data << std::endl;
mc = // (5)

mc.resume(data+1); // (2)
data=mc.get_data<int>();
std::cout << "f: entered second time: " << data << std::endl;
mc = // (10)

mc.resume(data+1); // (6)
data=mc.get_data<int>(); // (11)
std::cout << "f: entered third time: " << data << std::endl;
return std::move(mc); // (12)

}

int g(std::continuation && mc) {

∗As stated in Exceptions, if there is no matching catch clause in that context, std::terminate() is called.
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int data=mc.get_data<int>();
std::cout << "g: entered: " << data << std::endl;
return -1; // (9)

}

int data=1;
std::continuation f_ct= // (3)

std::callcc(f,data); // (0)
data=f_ct.get_data<int>();
std::cout << "f: returned first time: " << data << std::endl;
f_ct = // (7)

f_ct.resume(data+1); // (4)
data=f_ct.get_data<int>();
std::cout << "f: returned second time: " << data << std::endl;
f_ct = // (13)

f_ct.resume_with(g,data+1); // (8)
data=f_ct.get_data<int>();
std::cout << "f: returned third time: " << data << std::endl;

output:
f: entered first time: 1
f: returned first time: 2
f: entered second time: 3
f: returned second time: 4
g: entered: 5
f: entered third time: -1

Control passes from (0) to (1) to (2), and so on.

The f_ct.resume_with(g, data+1) call at (8) passes control to g() on the context of f().

The return statement at (9) causes the resume() call at (6) to return, executing the assignment at (10). The int returned
by g() is accessed at (11).

Finally, f() returns its own mc variable, switching back to the main context.

There is one restriction on a function fn() passed to resume_with(): neither fn(), nor any function it calls, may
perform a context switch back to the context that called resume_with()– whether directly, or indirectly via other contexts.
fn() must return (or throw an exception) before resume_with() returns.

std::callcc() immediately enters new context std::callcc() creates a new context and immediately calls
its passed entry-function on that new context.

This is intentional for consistency with the call/cc facility in other languages.7,8

Moreover, this behavior prevents a problematic usage. Suppose we had a callcc_deferred() which would create a
new context but immediately return to its caller. The newly-created context would first be entered by calling resume()
on the returned std::continuation instance.

std::continuation newcontext = std::callcc_deferred(entry_function);
newcontext = newcontext.resume();

But now consider this scenario:

std::continuation newcontext = std::callcc_deferred(entry_function);
newcontext = newcontext.resume_with(injected_function);

What should happen here?

resume_with() is supposed to call injected_function() as if it had been directly called by entry_function() –
rather, by the context-switch operation most recently executed by entry_function(). But since entry_function()
has never yet been entered, it hasn’t executed any context-switch operation. Indeed, it does not yet have a stack frame.
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Should injected_function() become the entry-function for newcontext, displacing entry_function() entirely?

That would encounter signature problems. The entry-function invoked by std::callcc()must return a std::continuation
. Yet the fn passed to resume_with() returns – not a std::continuation – but arbitrary data to be retrieved by the
suspended context!

To quickly resume the caller’s context rather than prioritizing the new context, the entry-function passed to std::callcc()
can immediately context-switch back to its caller by calling resume() on its passed-in std::continuation :

std::continuation entry_function(std::continuation&& caller) {
caller = caller.resume();
// ...

}

A more generic wrapper for that behavior could look something like this:

template <typename Fn>
std::continuation suspend_immediately(std::continuation&& caller) {

Fn fn = caller.get_data<Fn>();
return fn(caller.resume());

}

template <typename Fn>
std::continuation callcc_deferred(Fn&& fn) {

return std::callcc(suspend_immediately<Fn>, std::forward<Fn>(fn));
}

Note that since suspend_immediately() has been entered, it is perfectly valid for the caller of callcc_deferred()
to call resume_with() on the returned std::continuation .

Stack destruction On construction of a context with std::callcc() a stack is allocated. If the entry-function returns,
the stack will be destroyed. If the function has not yet returned and the (destructor) of the std::continuation instance
representing that context is called, the stack will be unwound and destroyed.

For this purpose member-function resume_with() is called with std::unwind_context() as argument. The execu-
tion context will be temporarily resumed and std::unwind_context() is invoked. Function std::unwind_context()
throws exception std::unwind_exception .∗ The exception is caught by the first frame on the stack: the one created
by std::callcc(). Control is switched back to the context that called ~continuation() and the stack gets deallocated.

The StackAllocator’s deallocate operation is called on the context that invoked ~continuation().

The stack on which main() is executed, as well as the stack implicitly created by std::thread’s constructor, is allocated
by the operating system. Such stacks are recognized by std::continuation (any_thread() returns false), and are
not deallocated by its destructor.

Stack allocators are used to create stacks.

Stack allocators might implement arbitrary stack strategies. For instance, a stack allocator might append a guard page at
the end of the stack, or cache stacks for reuse, or create stacks that grow on demand.

Because stack allocators are provided by the implementation, and are only used as parameters of std::callcc(), the
StackAllocator concept is an implementation detail, used only by the internal mechanisms of the call/cc implementation.
Different implementations might use different StackAllocator concepts.

However, when an implementation provides a stack allocator matching one of the descriptions below, it should use the
specified name.

Possible types of stack allocators:

• protected_fixedsize: The constructor accepts a size_t parameter. This stack allocator constructs a contiguous
stack of specified size, appending a guard page at the end to protect against overflow. If the guard page is accessed
(read or write operation), a segmentation fault/access violation is generated by the operating system.

∗std::unwind_exception binds an instance of std::continuation that represents the continuation that called
resume_with().
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• fixedsize: The constructor accepts a size_t parameter. This stack allocator constructs a contiguous stack of
specified size. In contrast to protected_fixedsize, it does not append a guard page. The memory is simply
managed by std::malloc() and std::free(), avoiding kernel involvement.

• segmented: The constructor accepts a size_t parameter. This stack allocator creates a segmented stack9 with the
specified initial size, which grows on demand.∗

It is expected that the StackAllocator’s allocation operation will run in the context of the std::callcc() call (before
control is passed to the new context), and that the StackAllocator’s deallocation operation will run in the context of the
~continuation() call (after control returns from the destroyed context). No special constraints need apply to either
operation.

Performance of call/cc
On modern architectures suspending/resuming continuations takes very few CPU cycles. †

∗An implementation of the segmented StackAllocator necessarily interacts with the C++ runtime. For instance, with gcc, the
Boost.Context12 library invokes the__splitstack_makecontext() and__splitstack_releasecontext() intrinsic
functions.10,11

†callcc() from boost.context takes 18 CPU cycles on Intel E5 2620 v4, SYS V.
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Use case: userland threads
std::callcc() can be used to implement userland threads. A userland thread resembles a std::thread in that it is
launched and proceeds more or less independently. Its lifespan is not tied to the code that launched it.

The operating system kernel schedules std::thread s. When there are more threads on the system than processor cores
(which is frequently the case), it gives every such thread a time slice, preemptively and transparently suspending it once it
has consumed that time slice.

In contrast, a userland thread does not create additional work for the kernel scheduler. As far as the kernel is concerned,
that userland thread is simply the work the kernel thread chooses to do at this moment. When context switches from one
userland thread to another, the kernel is not engaged.

For present purposes, we will use the term fiber to mean “userland thread.”

A fiber suspends by calling its own (userland) scheduler. The scheduler decides which of the other fibers are ready to
run, picks one and resumes it. Typically a suspending fiber is waiting for something: a timer, asynchronous I/O, work
performed by another fiber or another thread. The suspending fiber first arranges to be notified when the wait is over.
That notification informs the scheduler that this fiber is once again ready to run.

Because each fiber has a C++ stack, the details of arranging notification and suspending can be encapsulated in a lower-level
function. Consuming code calls that function, which returns with expected results once they become available. The fact
that the lower-level function suspended, allowing other fibers to run in the meantime, is transparent to the caller.

In effect, fibers provide a way to organize code running within a kernel thread. Fibers provide no more parallelism than
setting up a chain of callbacks, which is the conventional way to orchestrate a sequence of asynchronous operations. But
code running on a fiber looks and behaves as if the underlying operations were classic blocking operations.∗

Fibers permit structuring your code into layers of abstraction, even when the underlying I/O is asynchronous. Chains of
callbacks do not permit that.

Fibers permit ordinary use of stack variables. Chains of callbacks do not permit that.

C++ code based on asynchronous operations can be (and has been) written in a startling variety of different ways. But
when such code is written using fibers, it is both easier to write and easier to reason about – thus easier to maintain, and
therefore more robust.

Asynchronous I/O is becoming increasingly pervasive in modern computer systems. It’s clear that we need some better
tactic than chains of callbacks, state machines, big switch statements, Duff’s Device, etc. etc.

Fibers allow us to use the native control structures provided by C++ itself to organize and maintain our code.

The Boost.Fiber library15 is an implementation of fibers based on the callcc() implementation in Boost.Context.12

Why not use std::thread s? There are a few reasons to prefer userland threads over std::thread s:

Performance: The Skynet benchmark results16 illustrate that userland context-switching can be three orders of magnitude
faster than kernel-mediated context-switching.

Scalability: You can productively run many more userland threads in a single process than you could run kernel threads.
The Skynet benchmark16 tests a million concurrent tasks. It is not reasonable (even when possible) to launch that
many kernel threads. Kernel-mediated context-switching overhead starts to overwhelm the processor.

Thread safety: Refactoring an existing chain of callbacks into userland threads is guaranteed to introduce no new data
races.

Why not use co_await4? The co_await facility is best suited for new code. The caller of a co_await function
must itself be a co_await function, and so on all the way up to the launch point.

If you are modifying existing code to use co_await, you quickly find that introducing a new co_await operation into a
given function requires transitively modifying every function that directly calls it, then also modifying every function that

∗In a sense, they are – but they block only the calling fiber, not the entire host thread.
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calls any of those...

Modification for co_await requires more than sprinkling co_await operations throughout your code base. It also
typically requires altering the signature of every affected function. A function invoked by co_await must be able to com-
municate to the co_await operation whether it is suspending or returning with a result. This is often communicated by
using a return type such as std::future, which can express the absence of data and pass control back to the co_await
operation once data become available.

Of course, as has been pointed out,3 std::future introduces overhead of its own.

It is not usually emphasized that each call to a co_await function implies a malloc() call to obtain a heap activation
frame; each return implies a corresponding free() call. Under certain circumstances – specifically, the case of a
function-local coroutine – that overhead can be optimized away. When co_await is used to emulate userland threads, it
cannot.

One might consider the use of a memory pool for activation frames. This is an excellent idea. A memory pool for activation
frames is called a “stack.”

Userland threads built on callcc()

• Each fiber is reified as an object. That object contains the continuation representing its suspended context.

• The object representing the currently-running fiber contains an invalid continuation.

• The function that launches a fiber creates its context using callcc().

• Fiber objects are known to a central fiber manager object.

• The fiber manager keeps fiber objects in separate containers: those still waiting for something versus those that are
ready to resume.

• Instead of directly resuming a specific other fiber, the running fiber suspends by calling a scheduler to pick one of
the ready fibers. (Note that the scheduler can execute on the context of the fiber about to suspend; we do not need
two separate context switches.)

Why not propose userland threads instead?
Consider the following bullet from P0559R0:6

• “Prefer generality over specificity: prefer standardizing general building blocks on top of which domain-specific
semantics can be layered, as opposed to domain-specific facilities on top of which other domain-specific semantics
can’t be layered.”

The std::callcc() facility proposed in this document is very low-level and very general. With a public implement-
ation of this facility,12 the author has built high-performance stackful coroutines13 and high-performance userland threads.15

Both libraries, it should be noted, are built in portable C++ on top of the callcc() and continuation API. The
callcc()-based implementation gives the best performance yet16 for each of these libraries.

The API permits still other higher-level abstractions too. The author has also prototyped an implementation of delimited
continuations (shift and reset operators).
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Use case: stackful coroutines
The Boost.Coroutine2 library13 is an implementation of stackful coroutines based on the callcc() implementation in
Boost.Context.12

With this API, a pull_type asymmetric coroutine functions as a generator: it is resumed each time its invoker requests
the next data item. The library provides input iterator support for pull_type coroutines; such a generator may provide
data to any range operation compatible with input iterators, for example range for.

Similarly, a push_type asymmetric coroutine is a data sink. It is resumed each time its invoker passes the next data item.
The library provides output iterator support for push_type coroutines.

The API permits chaining14 of coroutines. Indeed, a function that accepts both pull_type and push_type coroutine
endpoints can be chained without having to care whether it’s in an “input chain” or an “output chain.”

Invoking code instantiates a coroutine, then engages with it either by requesting data items or passing data items to it.

Why not use co_await?4 This kind of use case is actually where co_await shines. Significant effort has already
been invested in compiler optimizations that can make a small local co_await coroutine “vanish.”

Even so, there remain significant cases that cannot readily be handled by co_await. Generally speaking, there are times
when it’s very useful to run your processing on a whole separate stack.

A few examples of such cases:

Recursive SAX parsing There are two common ways to parse an XML document.

With DOM parsing, you read the entire document into memory as a linked data structure. You may then traverse
that structure any way you want, including recursively. Of course, the caveat is that you must have enough free
memory to represent the entire document.

With SAX parsing, the document is streamed. Application code is notified (via callbacks) when the start and end of
each element is encountered. The benefit is that this can handle XML documents of arbitrary size: you need not store
the entire document in memory at the same time. The drawback is that you must manually track element nesting.

A C++Now 2014 talk21 illustrates how stackful coroutines permit you to use an off-the-shelf SAX parser to structure
your processing code as recursion over an XML document of arbitrary size being streamed through your application.

Essentially, it permits passing callback events from the SAX parser into recursive processing code. Having two
different stacks allows the SAX parser to call application callbacks, which then return to the parser to continue,
while the application performs recursive processing on the other stack.

Attempting to use co_await for this would require rewriting the SAX parser.

Lazy visitor-based processing Even when you do have an entire data structure in memory, a particular library might
use callbacks – or visitors – to engage application-specific processing.

The Boost.Graph library17 provides a number of useful graph traversals and processing algorithms. Its API relies
heavily on visitors.18

The problem with that design is that the Boost.Graph algorithm drives the traversal. The visitor is called for every
applicable node or edge on the graph. What if you want to stop? What if you want to pause? What if you want to
proceed stepwise?

For example, consider the problem of finding a route from node A to node B in a densely-connected graph. You
might consider taking a step outward from node A, taking a step outward from node B, taking another from node A,
and so forth, until the two traversals reach the same node.

This is unreasonably difficult using visitors.
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A C++Now 2016 talk22 illustrates how stackful coroutines permit you to run two concurrent Boost.Graph traversal
algorithms on separate stacks, “pulling” visitor events from each traversal on demand, interleaving calls to the two
traversals.

Attempting to use co_await for this would require rewriting the Boost.Graph algorithm of interest.

Connecting output iterator to input iterator In February 2017, a question was asked on the Boost developers’ mailing
list:23 Can a Boost.Spirit19 Karma20 generator, which takes an output iterator, be engaged lazily? Can consumer code
request one item at a time?

The answer is straightforward: run the Karma generator in a Boost.Coroutine pull_type asymmetric coroutine.
Such a coroutine receives, as a parameter, a synthesized push_type coroutine endpoint representing its invoker.

Boost.Coroutine provides an output iterator façade for a push_type coroutine endpoint. This output iterator is
passed to the Karma generator.

The input iterator corresponding to the pull_type coroutine can then be dereferenced as desired. Every time a
new item is requested, the Karma generator is resumed to produce it.

Attempting to use co_await for this would require rewriting the Boost.Spirit Karma library.

Stackful coroutines built on callcc()

• Symmetric coroutines map very directly to callcc() functionality. Each coroutine is reified as an object. The
object contains the continuation representing its suspended context – or, if that coroutine is currently running,
an invalid continuation.

• A symmetric coroutine suspends by specifying a particular other coroutine object to resume. The implementation
calls resume() on that other coroutine object’s continuation.

• An asymmetric coroutine “knows” its invoker: rather than explicitly resuming an arbitrary other coroutine, it yields,
implicitly resuming its invoker. (In just the same way, return implicitly resumes a function’s caller.)

• An asymmetric coroutine object could contain a reference to its invoker’s coroutine object, permitting an anonymous
yield operation.

Why not propose stackful coroutines instead?
In fact – we did!1,2 We were directed to bring back a lower-level proposal. That lower-level proposal has evolved to this
present form.
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Use case: many small stacks, one deep stack
Proponents of co_await frequently describe a particular execution environment: a 32-bit Windows server process sup-
porting millions of clients in a transiently-stateful way, preserving some amount of state data across some number of
asynchronous operations.

It is pointed out that calls to opaque library, runtime and operating-system functions may consume arbitrary amounts of
stack space. The inability to predict stack consumption in advance leads the Windows operating system to allocate a 1MB
stack for each kernel thread.

Of course, that stack memory is not committed until actually used. Still, it does present a problem: in a 32-bit process, you
quickly run out of address space. You are constrained to no more than

232 − (size of all code)− (size of all other data)
(stack size)

stacks. Even if you set both (size of all code) and (size of all other data) to zero – impossible, in practice
– you can allocate no more than 4096 1MB stacks. 4096 is very much smaller than “millions.”

On another operating system, one could use segmented stacks, but those are not supported on Windows.

In a 64-bit process, the limitation would be actual memory consumption rather than the address space. But it is suggested
that many people still use 32-bit server processes.

When considering userland threads, we might not be quite as conservative as the Windows operating system. We might
decide that we need far less stack space than 1MB per userland thread. We might be so bold as to suggest 16KB stacks. But
that still is constrained to a theoretical maximum of 262144 stacks – and that’s without code or any other data. This falls
short of “millions” by at least an order of magnitude.

We might be certain that our own code requires very little stack space – even less than 16KB. But does our code ever call
library functions? runtime functions? operating-system functions? How much stack space do they consume? This brings
us back to the original unanswerable question.

Proponents of the co_await facility explain that since each co_await function allocates a separate heap activation frame
– in effect, each has its own tiny stack – the thread’s main stack is left largely untouched. Calls to opaque library or runtime
or operating-system functions that require arbitrary stack space consume the thread’s main stack, which is presumed to be
Big Enough.

With call/cc, we can use a similar trick. We can construct each new context with a very small stack: just big enough for the
function calls in our own code. We can set aside one “big enough” stack as a common resource, shunting function calls of
unknown depth onto the shared “big enough” stack.

We assume that opaque functions of this kind will not themselves suspend. Please note that the co_await scenario
requires the same assumption.

// launch this context early in the thread as a service used by deep_call()
std::continuation deep_stack(std::continuation&& client) {

for (;;) {
// In effect, this context is a little server, running a function that
// needs a deep stack and then context-switching back to whatever
// invoked it. Because of this infinite loop, it won’t terminate
// voluntarily: we’ll destroy it while it’s suspended.
client = client.resume();
// if we were passed a std::function object
if (client.data_available()) {

// retrieve it
std::function<void()> func =

client.get_data<std::function<void()>>();
// and call it
func();
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}
}
return std::move(client);

}

// deep_call() continually updates this continuation as the way to run code in
// the context of deep_stack()
std::continuation deep_stack_cont;

// this function can be called from a context with a shallow stack to run some
// non-suspending function in the context of deep_stack()
void deep_call(std::function<void()> const& func) {

deep_stack_cont = deep_stack_cont.resume(func);
}

// this is an example of a context with a shallow stack
std::continuation shallow_stack(std::continuation&& caller) {

// pretend that emitting std::cout requires arbitrary stack depth
deep_call([](){ std::cout << "Hello from deep_stack!" << std::endl; });
deep_call([](){ std::cout << "Another visit to deep_stack" << std::endl; });
return std::move(caller);

}

// main() simply launches the deep_stack() resource context, then runs
// shallow_stack() as an example of a consumer
int main() {

// Launch the deep_stack() context. Pretend we’re passing a StackAllocator
// with a size "big enough for whatever." Since the first thing
// deep_stack() does is to switch back to its invoker, this call should
// bounce right back here.
deep_stack_cont = std::callcc(deep_stack);
// pretend we’re passing a StackAllocator with a very small stack size
std::callcc(shallow_stack);
return 0;

}

(With std::callcc() replaced by boost::context::callcc() and std::continuation replaced by
boost::context::continuation, and with lavish std::cout annotation, the program above compiles and runs as
expected.)
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Why call/cc should be preferred over ucontext or longjmp
stack represents the continuation In contrast to ucontext, call/cc uses the stack as storage for the suspended
execution context (the content of the registers).

• only the target has to be provided at resumption (swapcontext() required source and target)

• current execution context is already represented by the stack to which the stack-pointer points

• suspended execution context is passed as continuation (parameter) to the resume operation

• no need for a global pointer that points to the current execution context

• data are transferred through a function call, no need for a global pointer

• main() and each thread’s entry-function integrate seamlessly with call/cc because the stack of main() , or the
thread, already represents the continuation of that context

aggregation of stack address A instance of std::continuation contains the stack address of a suspended
execution. std::continuation :

• represents the continuation of a suspended context

• prevents accidentally copying the stack

• prevents accidentally resuming a context that was previously resumed

• prevents accidentally resuming the running execution context

• prevents accidentally resuming an execution context that has already terminated (computation has finished)

• manages lifespan of an explicitly-allocated stack: the stack gets deallocated when std::continuation goes out
of scope

• context switch and data transfer via one function call

Of course a ucontext-like standard API would be possible, but in C++ we can do much better with very little abstraction
cost.

Disadvantages of ucontext
• deprecated since POSIX.1-2004d and removed in POSIX.1-2008

• makecontext violates C99 standard (function pointer cast and integer arguments)

• makecontext arguments in var-arg list are required to be integers; passing pointers is not guaranteed to work
(especially on platforms where pointers are larger than integers)

• swapcontext calls into the kernel, consuming many CPU cycles (two orders of magnitude)

• does not prevent accidentally copying the stack

• does not prevent accidentally resuming the running execution context

• does not prevent accidentally resuming an execution context that has already terminated (computation has finished)

• does not manage lifespan of an explicitly-allocated stack

• context switch (swapcontext) does not transfer data (requires global pointer)

Disadvantages of longjmp
• C99 defines setjmp/ longjmp for non-local jumps

• longjmp is not required to preserve the current stack frame, therefore jumping into a function which has exited (by
return or by a different longjmp higher up the stack) is undefined behavior: only longjmp up the call stack is allowed

• does not prevent accidentally copying the stack

• does not prevent accidentally resuming the running execution context

• does not prevent accidentally resuming an execution context that has already terminated (computation has finished)

• does not manage lifespan of an explicitly-allocated stack

• context switch (longjmp) does not transfer data (requires global pointer)
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How low-level is std::callcc()?
call/cc is a low-level implementation. std::continuation has the memory footprint of a pointer because it contains
only a pointer to the stack of the managed context.

The assembly code generated for a typical function consists of a function prologue at the beginning and function epilogue at
the end.

void foo() {
PROLOGUE
<computation, calling other sub-routines, etc.>
EPILOGUE

}

The prologue (a few lines of assembler) prepares the stack and registers for use inside the function. The epilogue restores the
stack and registers∗ to the state they were before the function was called.
Between prologue and epilogue the computation and calls to other functions are done.

Like ordinary functions, resume() and resume_with() contain prologue and epilogue. The only difference from
ordinary functions is that resume() and resume_with() additionally exchange the stack- and instruction pointer †

between prologue and epilogue.
The prologue and epilogue of resume() and resume_with() neither consume stack space nor do they call functions;
only the stack-pointer is exchanged.

class continuation {
private:

void * vp;

explicit continuation( void * ptr) :
vp{ ptr } {

}

public:
~continuation() {

if ( nullptr != vp) {
// resume context by calling resume_with(),
// passing std::unwind_context(), which throws
// std::unwind_exception.
// this exception is caught in the first stack-frame,
// i.e. the stack-frame originally prepared by callcc().
// from that stack frame switch back to the context that
// invoked ~continuation().
// deallocate the stack.

}
}

continuation resume() {
// PROLOGUE (+ store instruction-pointer)
// exchange current stack with ‘vp‘ (becomes current stack)
// EPILOGUE (+ restore instruction-pointer)
// stack-pointer of caller passed as std::continuation

}

template< typename Fn >
continuation resume_with( Fn && fn) {

// PROLOGUE (+ store instruction-pointer)
// exchange current stack with ‘vp‘ (becomes current stack)
// EPILOGUE (+ restore instruction-pointer)
// ‘fn‘ is loaded into instruction-pointer: ‘fn()‘ is executed by
// the resumed execution context

∗callee-saved registers as defined by the calling convention
†In fact on x86-architecture the instruction-pointer return-address is already stored on the stack. On some RISC-architectures the

link-register must be preserved on the stack while the context is suspended, and is loaded into the instruction-pointer on resumption.
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// stack-pointer of caller passed as std::continuation to ‘fn()‘
}

};

template< typename StackAlloc, typename Fn >
continuation callcc( std::allocator_arg_t, StackAlloc salloc, Fn && fn) {

// allocate memory for stack ‘vp‘
// prepare stack (generate special stack-frame)
// construct std::continuation from stack ‘vp‘ and resume it
return continuation{ vp }.resume();

}
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API
std::continuation declaration of class std::continuation

class continuation {
public:

continuation() noexcept;
~continuation();
continuation( continuation && other) noexcept;
continuation & operator=( continuation && other) noexcept;
continuation( continuation const& other) noexcept = delete;
continuation & operator=( continuation const& other) noexcept = delete;

template< typename ... Arg >
continuation resume( Arg ... arg);
template< typename Fn, typename ... Arg >
continuation resume_with( Fn && fn, Arg ... arg);

bool data_available() const noexcept;
template< typename ... Arg >
<unspecified> get_data();

bool any_thread() const noexcept;

explicit operator bool() const noexcept;
bool operator!() const noexcept;
bool operator==( continuation const& other) const noexcept;
bool operator!=( continuation const& other) const noexcept;
bool operator<( continuation const& other) const noexcept;
bool operator>( continuation const& other) const noexcept;
bool operator<=( continuation const& other) const noexcept;
bool operator>=( continuation const& other) const noexcept;
void swap( continuation & other) noexcept;

};

template< typename Fn, typename ...Arg >
continuation callcc( Fn &&, Arg ...);

template< typename StackAlloc, typename Fn, typename ...Arg >
continuation callcc( std::allocator_arg_t, StackAlloc, Fn &&, Arg ...);

void unwind_context( continuation && cont);

struct unwind_exception{};

member functions

(constructor) constructs new continuation

continuation()noexcept (1)

continuation(continuation&& other) (2)

continuation(const continuation& other)=delete (3)

1) This constructor instantiates an invalid std::continuation . Its operator bool() returns false; its operator!()
returns true.

2) moves underlying state to new std::continuation

3) copy constructor deleted

Notes
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Every valid std::continuation instance is synthesized by the underlying facility – or move-constructed, or move-
assigned, from another valid instance. There is no public std::continuation constructor that directly constructs
a valid std::continuation instance.

The entry-function fn passed to std::callcc() is passed a synthesized std::continuation instance representing
the suspended caller of std::callcc().

The function fn passed to resume_with() is passed a synthesized std::continuation instance representing the
suspended caller of resume_with().

std::callcc() returns a synthesized std::continuation representing the previously-executing context, the con-
text that suspended in order to resume the caller of std::callcc(). The returned std::continuation instance
might represent the context created by std::callcc(), but need not: the context created by std::callcc()
might have created (or resumed) yet another context, which might then have resumed the caller of std::callcc().

Similarly, resume() returns a synthesized std::continuation instance representing the previously-executing
context, the context that suspended in order to resume the caller of resume() .

Similarly, resume_with() returns a synthesized std::continuation instance representing the previously-executing
context, the context that suspended in order to resume the caller of resume_with().

(destructor) destroys a continuation

~continuation() (1)

1) destroys a std::continuation instance. If this instance represents a context of execution (operator bool()
returns true), then the context of execution is destroyed too. Specifically, the stack is unwound by throwing
std::unwind_exception .∗

operator= moves the continuation object

continuation& operator=(continuation&& other) (1)

continuation& operator=(const continuation& other)=delete (2)

1) assigns the state of other to *this using move semantics

2) copy assignment operator deleted

Parameters

other another execution context to assign to this object

Return value

*this

resume() resumes a continuation

template< typename ...Args >
continuation resume( Args ... args) (1)

template< typename Fn, typename ...Args >
continuation resume_with( Fn && fn, Args ... args) (2)

1) suspends the active context, resumes continuation *this

2) suspends the active context, resumes continuation *this but calls fn() in the resumed context (as if called by the
suspended function)

Parameters

...args passed to the resumed continuation - see section Passing data

fn function invoked ontop of resumed continuation

∗ In a program in which exceptions are thrown, it is prudent to code a context’s entry-function with a last-ditch catch (...) clause: in
general, exceptions must not leak out of the entry-function. However, since stack unwinding is implemented by throwing an exception,
a correct entry-function try statement must also catch (std::unwind_exception const&) and rethrow it.
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Return value

continuation the returned instance represents the execution context (continuation) that has been suspended in order to
resume the current context

Exceptions

1) resume() or resume_with() might throw std::unwind_exception if, while suspended, the calling context is
destroyed

2) resume() or resume_with() might throw any exception if, while suspended:
• some other context calls resume_with() to resume this suspended context
• the function fn passed to resume_with()– or some function called by fn – throws an exception

3) Any exception thrown by the function fn passed to resume_with(), or any function called by fn, is thrown in the
context referenced by *this rather than in the context of the caller of resume_with().

Preconditions

1) *this represents a context of execution (operator bool() returns true)

2) any_thread() returns true, or the running thread is the same thread on which *this ran previously.

Postcondition

1) *this is invalidated (operator bool() returns false)

Notes
resume() preserves the execution context of the calling context as well as stack parts like parameter list and return address.∗

Those data are restored if the calling context is resumed.
A suspended continuation can be destroyed. Its resources will be cleaned up at that time.
The returned continuation indicates whether the suspended context has terminated (returned from entry-function) via
operator bool() . If the returned continuation has terminated, no data may be retrieved.
Because resume() invalidates the instance on which it is called, no valid std::continuation instance ever represents
the currently-running context.
When calling resume() , it is conventional to replace the newly-invalidated instance – the instance on which resume()
was called – with the new instance returned by that resume() call. This helps to avoid inadvertent calls to resume()
on the old, invalidated instance.

data_available() test if data are present

bool data_available() (1)

1) returns true if std::callcc() or resume() have been invoked with additional data as argument (args)

get_data() transfer of data

template< typename Arg >
Arg get_data() (1)

template< typename ...Args >
std::tuple< Args... > get_data() (2)

1) transfers single datum from continuation *this into calling context

2) transfers multiple data from continuation *this into calling context

Notes
The template argument(s) passed to get_data() must match in number and type the actual argument types passed to
std::callcc() or resume() .

any_thread() test whether suspended continuation may be resumed on a different thread

bool any_thread()const noexcept (1)

1) returns false if *this must be resumed on the same thread on which it previously ran, true otherwise

∗required only by some x86 ABIs
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Notes
As stated in main() and thread functions, a std::continuation instance can represent the initial context on which the
operating system runs main() , or the context created by the operating system for a new std::thread.
Attempting to resume such a std::continuation instance on any thread other than its original thread invokes
undefined behavior. any_thread() allows consumer code to distinguish this case by returning false.

operator bool test whether continuation is valid

explicit operator bool()const noexcept (1)

1) returns true if *this represents a context of execution, false otherwise.

Notes
A std::continuation instance might not represent a context of execution for any of a number of reasons.

• It might have been default-constructed.

• It might have been assigned to another instance, or passed into a function.
std::continuation instances are move-only.

• It might already have been resumed – calling resume() invalidates the instance.

• The entry-function might have voluntarily terminated the context by returning.

The essential points:

• Regardless of the number of std::continuation declarations, exactly one
std::continuation instance represents each suspended context.

• No std::continuation instance represents the currently-running context.

operator! test whether continuation is invalid

bool operator!()const noexcept (1)

1) returns false if *this represents a context of execution, true otherwise.

Notes
See Notes for operator bool() .

(comparisons) establish an arbitrary total ordering for std::continuation instances

bool operator==(const continuation& other)const noexcept (1)

bool operator!=(const continuation& other)const noexcept (1)

bool operator<(const continuation& other)const noexcept (2)

bool operator>(const continuation& other)const noexcept (2)

bool operator<=(const continuation& other)const noexcept (2)

bool operator>=(const continuation& other)const noexcept (2)

1) Every invalid std::continuation instance compares equal to every other invalid instance. But because the running
context is never represented by a valid std::continuation instance, and because every suspended context is
represented by exactly one valid instance, no valid instance can ever compare equal to any other valid instance.

2) These comparisons establish an arbitrary total ordering of std::continuation instances, for example to store in
ordered containers. (However, key lookup is meaningless, since you cannot construct a search key that would
compare equal to any entry.) There is no significance to the relative order of two instances.

swap swaps two std::continuation instances

void swap(continuation& other)noexcept (1)

1) Exchanges the state of *this with other.
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std::callcc() create and enter a new context, capturing the current execution context (the current continuation) in a
std::continuation and passing it to the specified entry-function.
std::callcc() acts as a factory-function: it creates and starts a new execution context (stack etc.) and returns a continu-
ation that represents the rest of the execution context’s computation.
std::callcc() explicitly expresses the creation of a new execution context and the switch to the other execution path.

template< typename Fn, typename ...Args >
continuation callcc( Fn && fn, Args ...args) (1)

template< typename StackAlloc, typename Fn, typename ...Args >
continuation callcc( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args ...args) (2)

1) creates and immediately enters the new execution context (executing fn). The current execution context is suspended,
wrapped in a continuation (std::continuation ) and passed as argument to fn.

2) takes a callable as argument, requirements as for (1). The stack is constructed using salloc (see Stack allocators).

Parameters

fn callable (function, lambda, functor) executed in the new context; expected signature continuation(continuation
&&)

...args data transferred to the new context - see section Passing data

Return value

continuation the returned instance represents the execution context (continuation) that was suspended in order to resume
the current context

Exceptions

1) calls std::terminate if an exception other than std::unwind_exception escapes entry-function fn

2) std::callcc() might throw std::unwind_exception if, while suspended, the calling context is destroyed

3) std::callcc() might throw any exception if, while suspended:
• some other context calls resume_with() to resume this suspended context
• the function fn passed to resume_with()– or some function called by fn – throws an exception

Notes

std::callcc() preserves the execution context of the calling context as well as stack parts like parameter list and return
address.∗ Those data are restored if the calling context is resumed.

A suspended continuation can be destroyed. Its resources will be cleaned up at that time.

On return fn must specify a std::continuation to which execution control is transferred.

If an instance with valid state goes out of scope and its fn has not yet returned, the stack is unwound and deallocated.

std::unwind_context() terminate the current running context, switching to the context represented by the passed
std::continuation . This is like returning that std::continuation from the entry-function, but may be called from
any function on that context.

void unwind_context( continuation && cont ) (1)

1) throws std::unwind_exception , binding the passed std::continuation . The running context’s first stack
entry – the one created by std::callcc()– catches std::unwind_exception , extracts the bound std::continuation
and terminates the current context by returning that std::continuation .

Parameters

cont the std::continuation to which to switch once the current context has terminated

Preconditions

1) cont must be valid (operator bool() returns true)

Return value

1) None: std::unwind_context() does not return

Exceptions

1) throws std::unwind_exception

∗required only by some x86 ABIs
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Additional notes
GPU call/cc as proposed in this paper does not take GPUs into account. Later revisions will address this issue, once we
have an overarching concept of how the various kinds of “lightweight execution agents” should interact.

SIMD does not interfere with call/cc and can be used as usual.

Of course, depending on the calling convention, some micro-processor registers dedicated to SIMD might be preserved
and restored too ∗.

TLS call/cc is TLS-agnostic - best practice related to TLS applies to call/cc too.

call/cc only preserves and restores micro-processor registers at its invocation.

Migration between threads std::continuation can be migrated between threads, except for instances of
std::continuation representing main() or entry-function of a thread (see main() and thread functions).

∗MS Windows x64 calling convention
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