
Consistent comparison

Document Number: P0515 R1

Date: 2017-06-16

Author: Herb Sutter (hsutter@microsoft.com)

Audience: EWG, CWG, LEWG, LWG

Abstract

This paper presents a design for comparisons that unifies the uncontroversial parts of previous proposals and

follows EWG+LEWG direction in Issaquah 2016 and Kona 2017. The aim is to present a clean design that is:

 complete by addressing all comparisons including three-way comparison, partial orderings, and symmetric

heterogeneous comparisons;

 correct by ensuring that all proposed defaults are sound;

 as efficient as a programmer could write by hand; and

 simple and teachable so that a type author just writes one function to opt into all comparisons.

It also includes from the outset notes about standard library use of the feature (see §2.2.4).

Revision history

R0 (pre-Kona, 2017-02): Initial revision.

R1 (pre-Toronto, 2017-06):

 Implemented Kona EWG guidance: Removed the optional parts that did not get consensus.

 Implemented Kona LEWG guidance: Kept strong_ naming. Removed conversion to integer. Added note

mapping to mathematical terminology. Added common_comparison_category<Ts>::type version. Distin-

guished which pointer comparisons are constant expressions. Enumerator equality is determined using the

same rules as switch statements and non-type template arguments.

 Moved proposed wording from separate paper P0564 into this paper.

Contents

1 Overview ..2

2 Design ..8

3 Sample category types implementation... 21

4 Bibliography .. 25

5 Proposed wording .. 26

mailto:hsutter@microsoft.com

P0515 R1: Consistent comparison — Sutter 2

1 Overview

1.1 Background and motivation
Comparisons have been discussed in WG21 broadly since N3950 followed by N4126 (Smolsky) in 2014. We ex-

plored various approaches (see Bibliography), culminating in the development and rejection in Oulu 2016 of

N4475 and N4476 (Stroustrup, motivation and discussion) and P0221R2 (Maurer, wording).

This proposal unifies and regularizes the noncontroversial parts of previous proposals, and incorporates EWG

direction to pursue three-way comparison, letting default copying guide default comparison, and having a sim-

ple way to write a memberwise comparison function body. For a detailed side-by-side comparison with previous

proposals, see revision R0 of this paper. For additional motivation and discussion, see P0100R2 (Crowl) and

N4475 and N4476 (Stroustrup) which remain relevant even though parts of those papers have been superseded

by subsequent discussions.

1.2 Design principles
Note These principles apply to all design efforts and aren’t specific to this paper. Please steal and reuse.

The primary design goal is conceptual integrity [Brooks 1975], which means that the design is coherent and relia-

bly does what the user expects it to do. Conceptual integrity’s major supporting principles are:

• Be consistent: Don’t make similar things different, including in spelling, behavior, or capability. Don’t

make different things appear similar when they have different behavior or capability. – For example, this

paper follows the principle that by default a=b implies a==b, so that after copying a value, we can assert

equality. Also, all types can get all the comparison operators they want by uniformly writing the same

function, the three-way comparison operator <=>, and express the kind of comparison they support by

the returned comparison category type (e.g., returning strong_ordering vs. weak_ordering).

• Be orthogonal: Avoid arbitrary coupling. Let features be used freely in combination. – For example, in this

paper a type’s comparison category is expressed orthogonally to the operators, by specifying a different

category by just selecting a different return type on the same operator function. Especially, it makes all

previously controversial design points into independent options that can later be proposed as pure exten-

sions to this design and that do not affect this core proposal (see revision R0 of this proposal for treat-

ment of the optional parts that did not receive support in EWG+LEWG Kona 2017)).

• Be general: Don’t restrict what is inherent. Don’t arbitrarily restrict a complete set of uses. Avoid special

cases and partial features. – For example, this paper supports all seven comparison operators and opera-

tions, including adding three-way comparison via <=>. It also supports all five major comparison catego-

ries, including partial orders.

These also help satisfy the principles of least surprise and of including only what is essential, and result in features

that are additive and so directly minimize concept count (and therefore also redundancy and clutter).

1.3 Acknowledgments
Thanks to all of the following recent comparison proposal authors for reviewing drafts of this paper: Walter

Brown, Lawrence Crowl, Jens Maurer, Oleg Smolsky, David Stone, Bjarne Stroustrup, Tony Van Eerd.

Thanks also to the following for detailed comments on various drafts of this paper: Casey Carter, Gabriel Dos

Reis, Vicente J. Botet Escriba, Hal Finkel, Charles-Henri Gros, Howard Hinnant, Loïc Joly, Nicolai Josuttis, Tomasz

Kamiński, Andrzej Krzemieński, Alisdair Meredith, Patrice Roy, Mikhail Semenov, Richard Smith, Jeff Snyder, Pe-

ter Sommerlad, Daveed Vandevoorde, and Ville Voutilainen.

http://wg21.link/N3950
http://wg21.link/N4126
http://wg21.link/N4475
http://wg21.link/N4476
http://wg21.link/P0221R2
http://wg21.link/P0100R2
http://wg21.link/N4475
http://wg21.link/N4476
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/Three-way_comparison

P0515 R1: Consistent comparison — Sutter 3

1.4 Proposal overview: Guidance and examples
The goal is to be simple enough to be teachable, while still enabling the most powerful and precise comparisons
in any major programming language. In this proposal, we teach:

There’s a new three-way comparison operator, <=>. The expression a <=> b returns an object that compares
<0 if a < b, compares >0 if a > b, and compares ==0 if a and b are equal/equivalent.

Common case: To write all comparisons for your type X with type Y, with memberwise semantics, just write:

auto X::operator<=>(const Y&) =default;

Advanced cases: To write all comparisons for your type X with type Y, just write operator<=> that takes a Y,
can use =default to get memberwise semantics if desired, and returns the appropriate category type:

• Return an _ordering if your type naturally supports <, and we’ll efficiently generate symmetric <, >, <=,
>=, ==, and !=; otherwise return an _equality, and we’ll efficiently generate symmetric == and !=.

• Return strong_ if for your type a == b implies f(a) == f(b) (substitutability, where f reads only com-
parison-salient state accessible using the nonprivate const interface), otherwise return weak_.

Expressing the same in table form:

Write an operator<=> that returns…
Should a < b be supported?

Yes: _ordering No: _equality

Does a == b imply f(a) == f(b)
(substitutability)?

Yes: strong std::strong_ordering std::strong_equality

No: weak std::weak_ordering std::weak_equality

The design also supports returning std::partial_ordering which additionally permits unordered results.

Note Normally, operator<=> should be just a member function; you will still get conversions on each pa-
rameter because of the symmetric generation rules in §2.3. In the rare case that you also want to
support conversions on both parameters at the same time (to enabling compare two objects neither
of which is of this type, but using this type’s comparison function), make it a nonmember friend.

 Example: Totally ordered comparison, memberwise
Note Herein, “memberwise” is shorthand for “for each base or member subobject.”

To get totally ordered memberwise comparison for our type, write <=> returning strong_ordering, with =de-
fault as the definition. Here is an example, where the C++17 code uses a non-member function as usual good
style to enable conversions on each parameter, which is provided automatically in this proposal:

C++17 style This paper (proposed)

class Point {
 int x;
 int y;
public:
 friend bool operator==(const Point& a, const Point& b) { return a.x == b.x && a.y == b.y; }
 friend bool operator< (const Point& a, const Point& b) { return a.x < b.x
 || (a.x == b.x && a.y < b.y); }
 friend bool operator!=(const Point& a, const Point& b) { return !(a==b); }
 friend bool operator<=(const Point& a, const Point& b) { return !(b<a); }
 friend bool operator> (const Point& a, const Point& b) { return b<a; }

class Point {
 int x;
 int y;
public:
 auto operator<=>(const Point&) const =default;

 // ... non-comparison functions ...
};

P0515 R1: Consistent comparison — Sutter 4

 friend bool operator>=(const Point& a, const Point& b) { return !(a<b); }

 // ... non-comparison functions ...
};

Point supports all comparisons, all efficiently implemented as-if a single call to <=> and without creating an-

other actual function:

Point pt1, pt2;

if (pt1 == pt2) { /*...*/ } // ok

set<Point> s; // ok

s.insert(pt1); // ok

if (pt1 <= pt2) { /*...*/ } // ok, single call to <=>

Note I say “as if” because, for example, for pt1==pt2 it is expected that a quality implementation will in-

voke == on the two int members. See also §2.2.3 which describes the built-in <=> operators (e.g.,

int <=> int), whose semantics are known to the compiler as usual.

 Example: Totally ordered type, custom comparison
To get a non-memberwise ordering, just write your own body instead of =default.

Consider this class, which uses a custom comparison because its members need to be compared in a different

order than they can be lexically declared (let’s say the tax_id had to be declared first for some reason, and for

comparisons we want similar names bucketed while still falling back to a unique disambiguation by tax_id):

class TotallyOrdered : Base {

 string tax_id;

 string first_name;

 string last_name;

public:

 std::strong_ordering operator<=>(const TotallyOrdered& that) const {

 if (auto cmp = (Base&)(*this) <=> (Base&)that; cmp != 0) return cmp;
 if (auto cmp = last_name <=> that.last_name; cmp != 0) return cmp;

 if (auto cmp = first_name <=> that.first_name; cmp != 0) return cmp;

 return tax_id <=> that.tax_id;

 }

 // ... non-comparison functions ...

};

Notes If a member does not have a strong_ordering, we get a nice compile-time error. A major benefit

to this paper’s approach is that we can catch such semantic comparison bugs at compile time.

 The most effective way to ensure that a user-defined operator<=> is a total order is to explicitly

compare all data members and bases. Leaving out a data member runs the risk of failing to provide

the substitutability property that a==b f(a)==f(b).

 Comparing memberwise <=> against 0 is intentional to make the body agnostic to the comparison

category of the individual data members (which could vary). This results in code that is both cleaner

and more robust under maintenance if the data members’ types and comparison categories may

P0515 R1: Consistent comparison — Sutter 5

change. Furthermore, in the next examples we will see that the body continues to be the same re-

gardless of this type’s own comparison category. This elegance will be explored further in §2.4.

In this proposal, code that uses TotallyOrdered can perform all comparisons including totally-ordered three-

way comparison, and <= and the others are efficiently implemented as-if a single call to <=>:

TotallyOrdered to1, to2;

if (to1 == to2) { /*...*/ } // ok

set<TotallyOrdered> s; // ok

s.insert(to1); // ok

if (to1 <= to2) { /*...*/ } // ok, single call to <=>

 Example: Weakly ordered type, custom and heterogeneous comparison
To get a weak ordering, just return weak_ordering.

Note A type is weakly comparable when its == operator does not provide substitutability; that is, there

exists a value-inspecting function such that a==b but f(a)!=f(b) (example shown below).

Consider this class, which uses a custom comparison because it compares one of its members differently from

the member’s own comparison:

class CaseInsensitiveString {

 string s;

public:

 std::weak_ordering operator<=>(const CaseInsensitiveString& b) const {

 return case_insensitive_compare(s.c_str(), b.s.c_str());

 }

 // ... non-comparison functions ...
};

In this proposal, code that uses CaseInsensitiveString can perform all comparisons including weakly-ordered

three-way comparison, and <= and the others are efficiently implemented using a single <=>:

CaseInsensitiveString cis1, cis2;

if (cis1 == cis2) { /*...*/ } // ok

set<CaseInsensitiveString> s; // ok

s.insert(/*...*/); // ok

if (cis1 <= cis2) { /*...*/ } // ok, performs one comparison operation

To additionally provide symmetric heterogeneous comparisons with C-style char* strings, also provide <=> that

takes CaseInsensitiveString and char*:

 std::weak_ordering operator<=>(const char* b) const {

 return case_insensitive_compare(s.c_str(), b);
 }

In this proposal, code that uses CaseInsensitiveString can additionally perform all string/char* and

char*/string comparisons, and <= and the others are efficiently implemented using a single <=>:

P0515 R1: Consistent comparison — Sutter 6

if (cis1 <= “xyzzy”) { /*...*/ } // ok, performs one comparison operation

if (“xyzzy” >= cis1) { /*...*/ } // ok, identical semantics

Here is the full code for all 18 comparisons side by side with today’s code.

C++17 style, reusing an existing three-way comparison function which makes things shorter

class CaseInsensitiveString {
 string s;

public:
 friend bool operator==(const CaseInsensitiveString& a, const CaseInsensitiveString& b)
 { return case_insensitive_compare(a.s.c_str(), b.s.c_str()) == 0; }
 friend bool operator< (const CaseInsensitiveString& a, const CaseInsensitiveString& b)
 { return case_insensitive_compare(a.s.c_str(), b.s.c_str()) < 0; }
 friend bool operator!=(const CaseInsensitiveString& a, const CaseInsensitiveString& b) { return !(a==b); }
 friend bool operator<=(const CaseInsensitiveString& a, const CaseInsensitiveString& b) { return !(b<a); }
 friend bool operator> (const CaseInsensitiveString& a, const CaseInsensitiveString& b) { return b<a; }
 friend bool operator>=(const CaseInsensitiveString& a, const CaseInsensitiveString& b) { return !(a<b); }

 friend bool operator==(const CaseInsensitiveString& a, const char* b)
 { return case_insensitive_compare(a.s.c_str(), b) == 0; }
 friend bool operator< (const CaseInsensitiveString& a, const char* b)
 { return case_insensitive_compare(a.s.c_str(), b) < 0; }
 friend bool operator!=(const CaseInsensitiveString& a, const char* b) { return !(a==b); }
 friend bool operator<=(const CaseInsensitiveString& a, const char* b) { return !(b<a); }
 friend bool operator> (const CaseInsensitiveString& a, const char* b) { return b<a; }
 friend bool operator>=(const CaseInsensitiveString& a, const char* b) { return !(a<b); }

 friend bool operator==(const char* a, const CaseInsensitiveString& b)
 { return case_insensitive_compare(a, b.s.c_str()) == 0; }
 friend bool operator< (const char* a, const CaseInsensitiveString& b)
 { return case_insensitive_compare(a, b.s.c_str()) < 0; }
 friend bool operator!=(const char* a, const CaseInsensitiveString& b) { return !(a==b); }
 friend bool operator<=(const char* a, const CaseInsensitiveString& b) { return !(b<a); }
 friend bool operator> (const char* a, const CaseInsensitiveString& b) { return b<a; }
 friend bool operator>=(const char* a, const CaseInsensitiveString& b) { return !(a<b); }

 // ... non-comparison functions ...
};

This paper (proposed)

class CaseInsensitiveString {
 string s;
public:
 std::weak_ordering operator<=>(const CaseInsensitiveString& b) const
 { return case_insensitive_compare(s.c_str(), b.s.c_str()); }

 std::weak_ordering operator<=>(const char* b) const
 { return case_insensitive_compare(s.c_str(), b); }

 // ... non-comparison functions ...
};

P0515 R1: Consistent comparison — Sutter 7

 Example: Partially ordered type, custom comparison
A class that is partially ordered should define an operator<=> that returns partial_ordering, and gets all the

two-way comparisons as compiler-generated comparisons. The result can express that two objects are unor-

dered, in which case all of the two-way comparisons return false.

Consider this class, whose ordering is topological:

class PersonInFamilyTree { // ...

public:

 std::partial_ordering operator<=>(const PersonInFamilyTree& that) const {

 if (this->is_the_same_person_as (that)) return partial_ordering::equivalent;
 if (this->is_transitive_child_of(that)) return partial_ordering::less;

 if (that. is_transitive_child_of(*this)) return partial_ordering::greater;

 return partial_ordering::unordered;

 }

 // ... non-comparison functions ...

};

In this proposal, code that uses PersonInFamilyTree can perform all comparisons:

PersonInFamilyTree per1, per2;

if (per1 == per2) { /*...*/ } // ok, per1 is per2

else if (per1 < per2) { /*...*/ } // ok, per2 is an ancestor of per1

else if (per1 > per2) { /*...*/ } // ok, per1 is an ancestor of per2

else { /*...*/ } // per1 and per2 are unrelated

if (per1 <= per2) { /*...*/ } // ok, per2 is per1 or an ancestor of per1

if (per1 >= per2) { /*...*/ } // ok, per1 is per2 or an ancestor of per2

if (per1 != per2) { /*...*/ } // ok, per1 is not per2

 Example: Equality comparable type, custom comparison
A class that is equality comparable and has a custom ordering should define only an operator<=> that returns

strong_equality, and gets == and != as a compiler-generated comparisons. For example:

class EqualityComparable {

 string name;

 BigInt number1;
 BigInt number2;

public:

 strong_equality operator<=>(const EqualityComparable& that) const {

 if (auto cmp = number1 <=> that.number1; cmp != 0) return cmp;

 if (auto cmp = number2 <=> that.number2; cmp != 0) return cmp;

 return name <=> that.name;
 }

 // ... non-comparison functions ...

};

In this proposal, code that uses EqualityComparable can perform == or != comparisons:

P0515 R1: Consistent comparison — Sutter 8

EqualityComparable ec1, ec2;

if (ec1 != ec2) { /*...*/ } // ok

 Example: Equivalence comparable type, custom comparison
A class that is equivalence comparable and has a custom ordering should define only an operator<=> that re-

turns weak_equality, and gets == and != as a compiler-generated comparisons.

Note A comparable class is equivalence comparable when its == operator does not provide substitutabil-

ity; that is, there exists a value-inspecting function such that a==b but f(a)!=f(b).

Consider this class, where we write operator<=> by hand because we want to compare members in an order

that is not the declaration order (let’s say) and performs case-insensitive comparisons for name:

class EquivalenceComparable {
 CaseInsensitiveString name;

 BigInt number1;

 BigInt number2;

public:

 weak_equality operator<=>(const EquivalenceComparable& that) const {

 if (auto cmp = number1 <=> that.number1; cmp != 0) return cmp;
 if (auto cmp = number2 <=> that.number2; cmp != 0) return cmp;

 return name <=> that.name;

 }

 // ... non-comparison functions ...

};

In this proposal, code that uses EquivalenceComparable can perform == or != comparisons:

EquivalenceComparable ec1, ec2;

if (ec1 != ec2) { /*...*/ } // ok

2 Design

2.1 Comparison categories
We define five comparison categories as std:: types (see also §3). Arrows show “IS-A” implicit conversions.

weak_equality

 partial_ordering

 weak_ordering

strong_equality strong_ordering

P0515 R1: Consistent comparison — Sutter 9

Notes Making them types enables using the type system to guide generation of the correct appropriate

related comparisons, and allows future standard algorithms to perform better checking.

 I proposed these names instead of the standard mathematical terms instead, because I have found
that these are simpler to teach. In earlier drafts I received questions like “are equivalence-compari-
son and weak-ordering related?” – the answer is that yes they are, and here both are consistently
named weak_ with exactly the same distinction from strong_; since I made this naming change, the
question has not arisen again. LEWG agreed and approved the names (Kona 2017).

 A weak_equality is not just the equality part of weak_ordering. There are ordering relationships
that satisfy weak_equality but not weak_ordering. In particular, weak_ordering implies that the
equality partitions are ordered. The weak_equality does not imply that.

Each has predefined values, three numeric values for each _ordering and two for each _equality. Additionally,

partial_ordering can represent the value unordered, separately from the numeric values.

 Numeric values

Category -1 0 +1 Non-numeric values

strong_ordering less equal greater

weak_ordering less equivalent greater

partial_ordering less equivalent greater unordered

strong_equality equal nonequal

weak_equality equivalent nonequivalent

Note See §3 for sample implementation details. For example, strong_* types also support *equivalent

for convenience when writing generic code, so that a template that can operate on any _equality

can write its code to say equivalent regardless of the exact _equality type.

We define implicit conversions among these following “IS-A”:

• strong_ordering with values {less, equal, greater} implicitly converts to:

o weak_ordering with values {less, equivalent, greater} (i.e., keep same values)

o partial_ordering with values {less, equivalent, greater} (i.e., keep same values)

o strong_equality with values {unequal, equal, unequal} (i.e., apply abs())

o weak_equality with values {nonequivalent, equivalent, nonequivalent} (i.e., apply abs())

• weak_ordering with values {less, equivalent, greater} implicitly converts to:

o partial_ordering with values {less, equivalent, greater} (i.e., keep same values)

o weak_equality with values {nonequivalent, equivalent, nonequivalent} (i.e., apply abs())

• partial_ordering with values {less, equivalent, greater, unordered} implicitly converts to:

o weak_equality with values {nonequivalent, equivalent, nonequivalent, nonequivalent}

(i.e., unordered or apply abs())

• strong_equality with values {equal, unequal} implicitly converts to:

o weak_equality with values { equivalent, nonequivalent} (i.e., keep same values)

Notes Astute readers will have noticed that the examples in §1.4.3 through §1.4.6 rely on these conver-

sions.

 This aims to hit a “teachable” sweet spot, that is both mathematically powerful but hides that power

except when you really want it; see §1.4.

P0515 R1: Consistent comparison — Sutter 10

The compute the strongest common comparison category type, we provide:

template <class ...Ts>

struct common_comparison_category {

 using type = /* as specified below */ ;

};

template <class ...Ts>

using common_comparison_category_t
 = typename common_comparison_category<Ts>::type;

where ::type is computed as follows from Ts:

• If Ts is empty, ::type is strong_ordering.

• Otherwise, if each Ti supports <=> returning type Cmpi, ::type is the strongest category type that all Cmpi

can be converted to.

• Otherwise, C is void.

2.2 Three-way comparison <=>

 <=> token
We introduce one new token, <=>.

Notes Tokenization follows max munch as usual.

 Code that uses the source character sequence <=> today tokenizes to <= >. The only examples I

know of where that sequence can legally occur is when using the address of operator<= to instanti-

ate a template (e.g., X<&Y::operator<=>) or as the left-hand operand of a > comparison (e.g.,

x+&operator<=>y). Under this proposal such existing code would need to add a space to retain its

current meaning. This is the only known backward source incompatibility, and it is intentional. (We

could adopt a special parsing rule to keep such code working without a space, but I would discour-

age that as having too little benefit for the trouble.)

 operator<=>
We introduce one new overloadable operator, <=>, often called the “spaceship operator” in other languages.

operator<=> is a generalized three-way comparison function and has precedence higher than < and lower than

<<. It normally returns a type that can be compared against literal 0, but other return types are allowed such as

to support expression templates. All <=> operators defined in the language and standard library return one of

the std:: comparison category types (see §2.1).

Notes Homogenous vs. heterogeneous: There is no restriction on parameter types. They can be the same

(homogeneous) or different (heterogeneous) in which case we generate symmetric operations; see

§2.3).

 <=> is for type implementers: User code (including generic code) outside the implementation of an

operator<=> should almost never invoke an <=> directly (as already discovered as a good practice in

other languages); for example, code that wants to test a<b should just write that, not a<=>b < 0. See

also related notes in §2.6 regarding library compatibility.

P0515 R1: Consistent comparison — Sutter 11

 Operator vs named function: I prefer a new operator for <=>, instead of a named function such as

compare, for two main reasons: (1) It is symmetric with ==, !=, <, <=, >, and >=. (2) It avoids collision

on a common name, because this name will be widely used and so will encounter the usual pressure

to make it ugly to minimize conflicts when mixing this with existing code (e.g., using existing classes

as base classes). Also, it follows existing practice in other languages.

 Precedence: I considered giving <=> the same precedence as <. However, then we would have a sit-

uation where a<=>b @ 0 would correctly evaluate <=> first when @ is any comparison operator, but

writing 0 @ a<=>b would have the inconsistent behavior that <=> would be evaluated first when @ is

in {==, !=} but evaluated second when @ is in {<, >, <=, >=}. To make a<=>b @ 0 and 0 @ a<=>b con-

sistent, <=> should have (slightly) higher precedence than <.

 Return value convertible to int: I prefer allowing the return value to convert to a signed integer, for

three main reasons:

 (1) Follows all existing practice όΨǘƘŜ ōŜǎǘ ǇŀǊǘǎΩύ: The majority of existing practice for three-way

comparison returns a signed integer:

 C strcmp, memcmp, qsort

 C# IComparable.CompareTo (since 1.1), Comparison<T> (since 2.0)

 Java Comparable.compareTo (since J2SE 1.2)

 Groovy <=> (delegates to compareTo)

 OCaml compare

 Perl <=>

 PHP <=> (since PHP 7)

 Python cmp

 Ruby <=>

 Of the major languages, only Haskell returns a type (an enumeration). This proposal does both:

Like Haskell it leverages the type system by returning a type (and, more than Haskell, uses that

type to distinguish the comparison category), and like the vast majority of existing practice it

returns a value that can be used as a signed integer (and adds safety by making the conversion

explicit).

 (2) Consistency: It permits expressing all other comparisons a @ b as a<=>b @ 0 and 0 @ b<=>a:

 source default rewrite and also this

 code: generation does: to support T2 @ T1:

 a @ b a<=>b @ 0 0 @ b<=>a

 a == b a<=>b == 0 0 == b<=>a

 a != b a<=>b != 0 0 != b<=>a

 a < b a<=>b < 0 0 < b<=>a

 a <= b a<=>b <= 0 0 <= b<=>a

 a > b a<=>b > 0 0 > b<=>a
 a >= b a<=>b >= 0 0 >= b<=>a

 This definition is not recursive for int, because int defines all operators without rewrite.

 (3) Efficiency: It avoids closing the door to returning a signed value with magnitude greater than

1 to preserve additional information that would otherwise be thrown away, such as the distance

http://en.cppreference.com/w/cpp/string/byte/strcmp
http://en.cppreference.com/w/cpp/string/byte/memcmp
http://en.cppreference.com/w/cpp/algorithm/qsort
https://msdn.microsoft.com/en-us/library/system.icomparable.compareto
https://msdn.microsoft.com/en-us/library/tfakywbh(v=vs.110).aspx
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
http://groovy-lang.org/operators.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html
http://perldoc.perl.org/perlop.html
http://php.net/manual/en/language.operators.comparison.php
https://docs.python.org/2/library/functions.html#cmp
http://ruby-doc.com/docs/ProgrammingRuby/html/tut_expressions.html

P0515 R1: Consistent comparison — Sutter 12

between a and b if such information is computed while computing <. Many of the just-listed ex-

amples of existing practice specify a non-equal return value’s sign, rather than requiring a non-

equal return to be exactly -1 or +1.

 Basing everything on <=> and its return type: This model has major advantages, some unique to

this proposal compared to previous proposals for C++ and the capabilities of other languages:

 (1) Clean tagging: It implicitly “tags” types’ ordering, without resorting to separate tag traits;

code can query a type’s ordering by just querying the return type of <=>. Only this proposal and

P0100R2 (Crowl) give the standard library the option of enabling its algorithms to check, and

even overload based on, the ordering of the type being supplied.

 (2) Uniform tagging for user-defined and fundamental types: In the following section we pro-

vide <=> for fundamental types, including that for the first time we have a model that tags the

fundamental types’ ordering (see §2.2.3). Any comparison queries/overloading on <=>’s return

type that STL and other algorithms might perform work uniformly across all comparable types.

 (3) Consistency: As noted, it consistently gives a @ b the default meaning a<=>b @ 0 (i.e., the de-

fault for those @ compiler-generated by rewrite; see §2.3) Then the only difference among the

comparison categories is “which” operators get compiler-generated, not what they mean if

compiler-generated, which seems correct and is much cleaner.

 (4) Powerful expressiveness for all comparison categories: This is the only proposal other than

P0100R2 (Crowl) that is designed to give direct support for partial orders, and the first proposal

that actually regularizes partial ordering into the operators, that is, bringing partial ordering sup-

port also to the language operators instead of doing something asymmetric such as resorting to

a named function.

 (5) Simplicity: It regularizes what we tell type authors to write for comparisons, namely “just

write one function, <=>, returning the appropriate comparison category type.”

 (6) Efficiency, including finally achieving zero-overhead abstraction for comparisons: The vast

majority of comparisons are always single-pass. The only exception is generated <= and >= in the

case of types that support both partial ordering and equality. For <, single-pass is essential to

achieve the zero-overhead principle to avoid repeating equality comparisons, such as for struct

Employee { string name; /*more members*/ }; used in struct Outer { Employee e; /*more

members*/ }; – today’s comparisons violates zero-overhead abstraction because operator< on

Outer performs redundant equality comparisons, because it performs if (e != that.e) return

e < that.e; which traverses the equal prefix of e.name twice (and if the name is equal,

traverses the equal prefixes of other members of Employee twice as well), and this cannot be

optimized away in general. As Kamiński notes, zero-overhead abstraction is a pillar of C++, and

achieving it for comparisons for the first time is a significant advantage of this design based on

<=>.

 Branches: I deliberately do not propose a three-way branch language extension, because that capa-

bility should just fall out of future general pattern matching rather than being baroquely hardwired

into if. As a historical example, Fortran had a three-way arithmetic IF and then later deprecated it.

However, Crowl notes that switch works fine with a comparison operator that returns an object

whose value is exactly one of {-1, 0, 1}.

http://wg21.link/P0100R2
http://wg21.link/P0100R1
http://wg21.link/P0100R1
http://wg21.link/P0100R2
http://wg21.link/P0100R1
http://wg21.link/P0100R1

P0515 R1: Consistent comparison — Sutter 13

 Language types and operator<=>
We additionally provide the following built-in <=> comparisons. All are constexpr. Except where otherwise

noted below, these are homogeneous (same-type) comparisons only, and cannot be invoked heterogeneously

using scalar promotions/conversions.

• For fundamental bool, integral, and pointer types, <=> returns strong_ordering.

• For pointer types, the different cv-qualifications and derived-to-base conversions are allowed to invoke

a homogeneous built-in <=>, and there is a built-in heterogeneous operator<=>(T*, nullptr_t). Also,

we distinguish that comparisons of pointers into the same object/allocation are constant expressions,

and otherwise are not constant expressions.

• For fundamental floating point types, <=> returns partial_ordering, and can be invoked heterogene-

ously by widening arguments to a larger floating point type.

• For enumerations, <=> returns the same as the enumeration’s underlying type’s <=>. If there is more

than one enumerator with the same value (where “same value” is determined using the same rules as

switch statements and non-type template arguments), which means substitutability does not hold,

then if the type is strong_ordering adjust it to weak_ordering, and if it is strong_equality adjust it

to weak_equality.

• For nullptr_t, <=> returns strong_ordering and always yields equal.

• For copyable arrays T[N] (i.e., that are nonstatic data members), T[N] <=> T[N] returns the same type

as T’s <=> and performs lexicographical elementwise comparison. For other arrays, there is no <=> be-

cause the arrays are not copyable.

• For void, there is no <=> because objects of type void are not allowed.

Notes For fundamental types except int, optionally the core language could consider removing the defini-

tions of the existing comparisons to let those comparisons just be compiler-generated.

 For integral types, the implementation can make use of as-if but should be sound. For example,

transforming a <=> b to use a - b typically does not work due to undefined behavior in the event of

overflow.

 For character types, which are “integral” types too, I’d love not to add <=>, but I think that ship has

sailed in the current language. The argument is that, because a character should not be an integer

(“char” and “int of size 1” should be distinct types if we had a time machine), the character funda-

mental types shouldn’t have been given arithmetic operations, and so it would be nice not to pro-

mote that further by adding another. However, they are arithmetic types, so we should just be con-

sistent and provide <=> too to avoid creating needless user surprise.

 For raw pointers we have two choices: (a) give them <=> that returns strong_ordering (which de-

liberately ignores segmented architectures) and is not constexpr (because even with flat memory it

is not possible to give a total ordering over pointers that is the same at compile time and run time,

due to compile/link/load time phases), or (b) don’t give them <=> at all. It would be wrong to give

raw pointers a <=> that returns something weaker than strong_ordering, because the issue with

segmented pointers applies to all six comparisons equally. – For now, I’m going with strong_order-

ing, on the basis of maintaining a strict parallel between default copying and default comparison

(we copy raw pointer members, so we should compare them too unless there is a good reason to do

otherwise – but the only such “otherwise” reason I know of would be if we want to explicitly keep

the door open for segmented architectures). Also, the standard library smart pointers support all

http://lists.isocpp.org/lib/2017/01/1816.php

P0515 R1: Consistent comparison — Sutter 14

comparison operators with a total ordering. – If we decide to provide <=> for raw pointers, we can

leave the existing two-way comparisons defined the way they are today, or make them a total or-

dering as well, but that is an independent choice. If we decide not to provide <=> for raw pointers,

however, then we should provide a std::strong_order for raw pointers too (see §2.5), and use it

in the default <=> comparison for a type’s pointer members.

 For floating point types, we use partial_ordering which supports both signed zero and NaNs, with

the usual semantics that -0 <=> +0 returns equivalent and NaN <=> anything returns unordered.

 For enumeration types, the default ordering is never partial_ordering.

 For nullptr_t, since we always return equal we could also just return strong_equality, but return-

ing strong_ordering is usable in more contexts.

 For arrays, we don’t provide comparison if the array is not copyable in the language, to keep copy-

ing and comparison consistent. Note that for two arrays, arr1<=>arr2 is ill-formed because the ar-

ray-to-pointer conversion is not applied.

 Making scalar comparisons homogeneous without promotions/conversions avoids bugs like this:

 unsigned int i = 1;
 return -1 < i; // existing pitfall: returns ‘false’

 // -1 <=> i should not repeat this mistake

 Standard library types and operator<=>
For each standard library type that already supports comparison, provide a nonmember operator<=> compari-

son that returns the appropriate comparison category type and yields consistent results with the operators al-

ready specified.

Notes Some std:: types, such as pair, can use the =default definition to get memberwise comparison

(as shown in §1.4.1).

 Some std:: types, such as containers (including string), string_view, optional, any,

unique_ptr, and shared_ptr, would both declare and define a custom operator<=> to get custom

semantics. (Note that string and string_view in particular would gain an equivalent to strcmp,

and one that is superior because unlike strcmp it would respect embedded nulls.)

 Some std:: types, such as complex, would have operator<=> return a weaker comparison cate-

gory, such as an _equality.

 The std:: product types, such as pair and tuple, should have operator<=> adapt its comparison

category return type: Because the current types support all six existing comparison operators, with

the semantics that <= et al. are generated from < and ! (not < and ==), this means the current speci-

fication assumes at least a weak_ordering. Therefore, if the library wants to preserve backward

source compatibility, it should write elementwise <=> that returns strong_ordering if all element

types support that and weak_ordering otherwise.

 The standard library should review each “unspecified” and “implementation-defined” type, such as

jmp_buf, to determine whether comparisons needs to be specified explicitly for those types, or fol-

low naturally from the kinds of types permitted.

P0515 R1: Consistent comparison — Sutter 15

 We should consider providing <=> for random-access iterators, or at least contiguous iterators.

 We should consider providing heterogeneous <=> for std::chrono durations.

 Optionally, the existing comparison functions for standard library types could be removed to let

those comparisons just be compiler-generated. This would be a binary breaking change, however,

unless implementations were given latitude to continue providing all the operators; and it would be

a source breaking change for programs that take the address of a comparison operator.

This proposal does not currently attempt to list the recommended standard library changes, but could do so.

2.3 Generating two-way comparisons: Rewrite
For a comparison expression a @ b where @ is a two-way comparison operator, perform name lookup for a @ b, a

<=> b, and b <=> a. For each potential candidate <=> found, include it in overload resolution if any of the follow-

ing are true:

• <=> returns std::*_ordering and @ is one of == != < > <= >=

• <=> returns std::*_equality and @ is one of == !=

Then select the best match using normal overload resolution rules, with the addition that if a @ b, a <=> b,

and/or b <=> a are ambiguous, as a final tie-break we prefer a @ b over a <=> b over b <=> a.

Then:

• If a <=> b is the best match, then rewrite a @ b to a<=>b @ 0 .

• If b <=> a is the best match, then rewrite a @ b to 0 @ b<=>a .

Notes We try both a <=> b and b <=> a so that a member or heterogeneous comparison (e.g., opera-

tor<=>(const string&, const char*)) preserves symmetry, so that users don’t have to needlessly

remember to write both versions and leave another common source of error.

 For a user-declared operator<=>, we look up both @ and <=> (e.g., < and <=>) and let overload reso-

lution pick the better match. That favors getting the version that best matches the types even if

there is a more specific operator.

2.4 =default
To avoid having to write out the memberwise comparison cascade, a user-declared comparison operator can

opt into memberwise comparison by default using =default, with the following semantics:

• If the function is <=>, the parameter types must be the same, the return type must be one of the std::

comparison types, and the default body performs lexicographical comparison by successively comparing

the base (left-to-right depth-first) and then member (in declaration order) subobjects of T to compute

<=>, stopping early when a not-equal result is found, that is:

for each base or member subobject o of T

 if (auto cmp = lhs.o <=> rhs.o; cmp != 0) return cmp;

return strong_ordering::equal; // converts to everything

P0515 R1: Consistent comparison — Sutter 16

• If the function is <, >, <=, >=, ==, or !=, the parameter types must be the same, the return type must be

bool, and the default body is the same as applying the rewrite rules in §2.3 and invoking the corre-

sponding <=>.

Note =default for two-way operators is useful to conveniently force the creation of functions whose ad-

dresses can be taken.

Defaulting <=> in particular is useful to opt in to memberwise comparisons easily. For example:

class MyClass {

 // ... possibly many members here, taking lots of code to compare ...

 /*...*/ operator<=>(const MyClass&) const = default;

};

Notes We could restrict =default to respect accessibility; that is, prevent a nonmember nonfriend com-

parison function from using an =default definition on a class with nonpublic data members.

 As illustrated by the examples in §1.4, in this design, when opting into comparisons the programmer

writes operator<=> and the body usually takes the following form, when the members to be com-

pared are directly held data members:

 class MyClass { // ...

 /*category */ operator<=>(/*...*/) {

 if (auto cmp = lhs.member1 <=> rhs.member1; cmp != 0) return cmp;

 if (auto cmp = lhs.member2 <=> rhs.member2; cmp != 0) return cmp;

 // ... etc. ...

 return lhs.memberN <=> rhs.memberN;

 }

 };

 Given that everything except the comparison category is now regularized, it is tempting to provide a

shorthand syntax for the entire function that just lists the members to be compared in order:

 /*category*/ operator<=>(const MyClass& that) const = default(member1,...,memberN);

 However, I’m not adding such a novelty to the proposal unless EWG tells me to (and picks a syntax).

 Note that this could alternatively be enabled via std::tie as follows, at least for homogenous com-

parison categories:

 /*category*/ operator<=>(const MyClass& that) const {

 return std::tie(member1, ..., memberN) <=>

 std::tie(that.member1, ..., that.memberN);
 }

A defaulted operator<=> is implicitly deleted and returns void if not all base and member subobjects have a

compiler-generated or user-declared operator<=> declared in their scope (i.e., as a nonstatic member or as a

friend) whose result is one of the std:: comparison category types.

P0515 R1: Consistent comparison — Sutter 17

A homogeneous defaulted operator<=> may have a return type of auto, in which case the return type is

std::common_comparison_category_t<Ms> where Ms is the list (possibly empty) of base and member subob-

ject types. This makes it easier to write cases where the return type non-trivially depends on the members, such

as:

template<class T1, class T2>

struct P {
 T1 x1;

 T2 x2;

 auto operator<=>(const P&, const P&) = default;

};

2.5 Named comparison functions and algorithms
Following the example of the < operator and std::less, in addition to the operators we provide the following

standard comparison function templates in header <functional> that default to using <=> if available, and can

be customized by user-defined types (by specialization or ADL overload).

LEWG Q: Should these additionally be made conditionally noexcept and constexpr, and the comparisons

should be specialized for <>?

 Q: Should these SFINAE away (“don’t participate in overload resolution [etc.]”) if none of the under-

lying operations are valid, like greater<> (with <>) et al. do?

Notes These are intended to be implemented using reflection if available, compiler support otherwise.

template<class T, class Comparison>

constexpr bool can_3compare_as() { // to save typing

 { return std::is_convertible_v<decltype(compare_3way(declval<T>(), declval<T>())), Comparison)>; }

template<class T>

std::strong_ordering strong_order(const T& a, const T&b) {

 if constexpr (can_3compare_as<T, std::strong_ordering>()) return a <=> b;

 else return void();
}

template<class T>

std::weak_ordering weak_order(const T& a, const T&b) {

 if constexpr (can_3compare_as<T, std::weak_ordering>()) return a <=> b;

 else if constexpr (/* can invoke a<b and a==b */) return a==b ? weak_ordering::equal :

 a<b ? weak_ordering::less : weak_ordering::greater;
 else if constexpr (/* can invoke weak_order(a.M, b.M) for each member M of T */) /* do that */;

}

template<class T>

std::partial_ordering partial_order(const T& a, const T&b) {

 if constexpr (can_3compare_as<T, std::partial_ordering>()) return a <=> b;

 else if constexpr (/* can invoke a<b and a==b */) return a==b ? weak_ordering::equal :

 a<b ? weak_ordering::less : weak_ordering::greater;

 // --- no fallback here to only a < b, existing operator< usually tries to express a weak order

 else if constexpr (/* can invoke partial_order(a.M, b.M) for each member M of T */) /* do that */;

}

P0515 R1: Consistent comparison — Sutter 18

template<class T>

std::strong_equality strong_equal(const T& a, const T&b) {

 if constexpr (can_3compare_as<T, std::strong_equality>()) return a <=> b;
 else if constexpr (/* can invoke strong_equal(a.M, b.M) for each member M of T */) /* do that */;

}

template<class T>

std::weak_equality weak_equal(const T& a, const T&b) {

 if constexpr (can_3compare_as<T, std::weak_equality>()) return a <=> b;

 else if constexpr (/* can invoke a==b */) return a == b;
 else if constexpr (/* can invoke weak_equal(a.M, b.M) for each member M of T */) /* do that */;

}

Note that the user never has to explicitly specialize or overload these, except in exactly the cases where they

want to provide something that is explicitly different and inconsistent with the operators. For example, a type

that has a non-total order (e.g., struct F { float f; };) would not get std::strong_order by default, but

could customize std::strong_order if wants to opt into an imposed total ordering, thereby simultaneously

providing the total ordering and also documenting that it is “something different” from the operators.

We also provide a std::strong_order<F> specialization for (only) each fundamental floating point type F for

which std::numeric_limits<F>::is_iec559 is true, that implements the IEEE totalOrder operation:

template<class T, std::enable_if_t<std::numeric_limits<T>::is_iec559, int> = 0>

std::strong_ordering strong_order(const T& a, const T&b) { return /* IEEE totalOrder */; }

Note It is deliberate that for floating point types <=> is a partial ordering to be consistent with the existing

two-way comparison operators, but total ordering is available as a named function. A total ordering

should not be provided through the comparison operators because the operators (including now

<=>) should be fully compatible with the existing comparison operator semantics for floating point

types, and because imposing the ordering incurs at least minimal overhead. However, having a total

ordering available (outside the operators) is desirable because it makes floating point types work as

intended with STL containers and algorithms.

For cases like implementing optional<T> on existing types that do not have <=>, we need a function that will

give the strongest ordering available for a given type T:

template<class T, class U>
auto compare_3way(const T& a, const U& b) {

 if constexpr (/* can invoke a <=> b */)

 return a <=> b;

 else if constexpr (/* can invoke a<b and a==b */)

 return a==b ? strong_ordering::equal : a<b ? strong_ordering::less : strong_ordering::greater;

 else if constexpr (/* can invoke a==b */)

 return a == b ? strong_equality::equal : strong_equality::unequal;

 // note: heterogeneous case has no fallback to memberwise (the homogeneous case below adds this)

}

template<class T>

auto compare_3way(const T& a, const T& b) {

 if constexpr (/* can invoke a <=> b */)

 return a <=> b;

P0515 R1: Consistent comparison — Sutter 19

 else if constexpr (/* can invoke a<b and a==b */)

 return a==b ? strong_ordering::equal : a<b ? strong_ordering::less : strong_ordering::greater;

 else if constexpr (/* can invoke a==b */)
 return a == b ? strong_equality::equal : strong_equality::unequal;

 else if constexpr (/* can invoke a.M <=> b.M for each member M of T */) /* do that */;

}

We also provide a comparison algorithm:

auto lexicographical_compare_3way(

 InputIterator b1, InputIterator e1,

 InputIterator b2, InputIterator e2,

 Comparison comp = [](auto l, auto r) { return l <=> r; }

) {

 for (; b1!=e1 && b2 != e2; ++b1, ++b2)

 if (auto cmp = comp(*b1,*b2); cmp != 0) return cmp;

 return strong_ordering::equal;

}

Additionally, although most user code will not use <=> directly (see note in §2.2.2), for code that does some

have expressed a preference for having an operation to write a named function rather than a<=>b @ 0:

bool is_eq (std::weak_equality cmp) { return cmp == 0; };

bool is_neq (std::weak_equality cmp) { return cmp != 0; };

bool is_lt (std::partial_ordering cmp) { return cmp < 0; };

bool is_lteq (std::partial_ordering cmp) { return cmp <= 0; };

bool is_gt (std::partial_ordering cmp) { return cmp > 0; };

bool is_gteq (std::partial_ordering cmp) { return cmp >= 0; };

2.6 Library compatibility
This is seamlessly compatible with C++17 code including all of STL, because the new comparison is merely a uni-

fied way of generating efficient and consistent versions of all the existing comparisons. Nearly all new calling

code, and all existing C++17 calling code, uses the existing two-way comparison operators. Existing code that

uses distinct-style types transparently gains the performance and semantic benefits without any change; the

caller is not aware of <=> and so never calls it directly, and the ordinary comparisons generated by default have

consistent and efficient implementations. Additionally, new calling code that wants to use the new three-way

comparison can call it directly on the types that support it.

This subsumes namespace std::rel_ops, so we propose also removing (or deprecating) std::rel_ops.

Note For total orders, which are common, this is important for both clarity and efficiency, because it

avoids losing information and repeating computation. It also has long-standing precedent in the C

standard library strcmp/qsort, and all other major languages. See Crowl’s analysis in P0100R2.

 The C language comparison operators and the STL library focus on < and == as the primitive or fun-

damental comparison operations. This works but has some drawbacks:

 (1) Clarity: This design leads to simpler defaults. In STL relops, to get all six comparison functions,

the type author must write two functions, < and ==, from which the rest are generated (and with the

http://wg21.link/P0100R2
http://wg21.link/P0100R1
http://wg21.link/P0100R1

P0515 R1: Consistent comparison — Sutter 20

foregoing caveats). In this proposal, the type author must write only one, <=>, and the other six are

generated (and with optimal efficiency).

 (2) Correctness: This design avoids semantic pitfalls. In STL, the major pitfall is taught as “equality vs.

equivalence”: For many types, the type author must remember to implement consistent compari-

sons where a==b gives the same result as !(a<b) && !(b<a). Type users must be aware whether a

given type is consistent, and can encounter pitfalls when using containers or algorithms where some

use equality and others use equivalence (e.g., switching between unordered_map and map, or be-

tween find and lower_bound, respectively). Another example is Lawrence Crowl’s suggested opti-

mization for special-casing the comparison of a single-element struct (to preserve the same behavior

and efficiency as if the element were not in a struct), which here falls out for the single-element

struct case.

 (3) Performance (algorithmic): This design avoids inefficiencies by not throwing away common

work. For example, in STL relops, expressing <= in terms of == and < requires making two function

calls, and the functions typically repeat work because each throws away work the other could know

about; this leaves a performance incentive to write <= and the others manually. The usual problem

arises from compound operations like <= and common prefixes, such as comparing name1 <= name2

that share a common prefix that must be traversed twice individually by the calls to < and ==, which

does not arise when calling a single three-way comparison function.

 (4) Performance (hardware): This design avoids potential inefficiencies from less optimal mapping

to hardware. Some processors support three-way comparison instructions for machine types, and

code generation can naturally take advantage of this capability where present. Conversely, having

three-way comparison in the language does not disadvantage hardware that does not support it

(such as x86 SIMD vector instructions); code generation can fall back to < and ==, and is no worse

than without three-way comparison in the source semantics.

 This proposal makes programmers generally immune to all of these problems, because it lets the

programmer follow the “don’t repeat yourself” principle and write just one function.

P0515 R1: Consistent comparison — Sutter 21

3 Sample category types implementation
Notes These types themselves would be much shorter if this paper were adopted, because the bulk of the

boilerplate is writing the comparison functions.

 I would prefer using enums, but for now the language doesn’t allow expressing what we need using

enums. In particular, enums don’t currently support a way to express value conversion relationships,

for example that a strong_ordering value converts correctly to a weak_ordering or partial_or-

dering value (which preserve the integral enumerator value) or an strong_equality or

weak_equality value (which adjust the integral value because of mapping it to fewer options).

 We want to allow comparing against 0, but not comparing against just any integer. In this sample

implementation, I’m comparing with nullptr_t as a “hacky but useful” way to permit comparison

against literal 0 (abusing its wonky dual nature) but no other integer value, not even an int lvalue

holding value 0. The only wacky bug that allows is comparing against nullptr itself, and that’s a

much less likely mistake than accidentally comparing against a nonzero int and getting nonsense

results.

LEWG Q: Should these all additionally be unconditionally noexcept constexpr literal types?

#include <stdexcept>

enum class eq { equal = 0, equivalent = 0, nonequal = 1, nonequivalent = 1 };
enum class ord { less = -1, greater = 1 };
enum class ncmp { unordered = -127 };

//==
// _equality:
// - use int as underlying type + default copying semantics
// - can only be constructed from specific values
// - can be compared against literal 0 (== and != only)
//==

//--
class weak_equality {
 int value;

public:
 // constructors
 explicit weak_equality(eq v) : value{ (int)v } { }

 // valid values
 static const weak_equality equivalent, nonequivalent;

 // comparisons (this boilerplate would be mostly eliminated if we could use P0515 itself)
 friend bool operator==(weak_equality v, nullptr_t) { return v.value == 0; }
 friend bool operator!=(weak_equality v, nullptr_t) { return v.value != 0; }
 friend bool operator==(nullptr_t i, weak_equality v) { return 0 == v.value; }
 friend bool operator!=(nullptr_t i, weak_equality v) { return 0 != v.value; }
 friend bool operator==(weak_equality v, weak_equality v2) { return v.value == v2.value; }
 friend bool operator!=(weak_equality v, weak_equality v2) { return v.value == v2.value; }
};
const weak_equality weak_equality::equivalent{ eq::equivalent };
const weak_equality weak_equality::nonequivalent{ eq::nonequivalent };

//--

P0515 R1: Consistent comparison — Sutter 22

class strong_equality {
 int value;
public:
 // constructors
 explicit strong_equality(eq v) : value{ (int)v } { }

 // valid values
 static const strong_equality equal, equivalent, nonequal, nonequivalent;

 // implicit conversions to weaker types
 operator weak_equality() const { return *this == equal ? weak_equality::equivalent : weak_equality::nonequivalent; }

 // comparisons (this boilerplate would be mostly eliminated if we could use P0515 itself)
 friend bool operator==(strong_equality v, nullptr_t) { return v.value == 0; }
 friend bool operator!=(strong_equality v, nullptr_t) { return v.value != 0; }
 friend bool operator==(nullptr_t, strong_equality v) { return 0 == v.value; }
 friend bool operator!=(nullptr_t, strong_equality v) { return 0 != v.value; }
 friend bool operator==(strong_equality v, strong_equality v2) { return v.value == v2.value; }
 friend bool operator!=(strong_equality v, strong_equality v2) { return v.value == v2.value; }
};
const strong_equality strong_equality::equal{ eq::equal };
const strong_equality strong_equality::equivalent{ eq::equivalent }; // for convenient substitutability in generic code
const strong_equality strong_equality::nonequal{ eq::nonequal };
const strong_equality strong_equality::nonequivalent{ eq::nonequivalent }; // for convenient substitutability in generic code

//==
// _ordering:
// - use int as underlying type + default copying semantics
// - can only be constructed from specific values
// - can be compared against literal 0
// - can be explicitly converted to int
// - do not convert to bool, to prevent the "if(strcmp(...))" mistake
//==

//--
class partial_ordering {
public:
 struct result {
 int cmp : 7;
 bool unordered : 1;
 };
private:
 result value;

public:
 // constructors
 explicit partial_ordering(eq v) : value{ (int)v, false } { }
 explicit partial_ordering(ord v) : value{ (int)v, false } { }
 explicit partial_ordering(ncmp v) : value{ (int)v, true } { }

 // valid values
 static const partial_ordering less, equivalent, greater, unordered;

 // raw value access
 operator result() const { return value; }

 // implicit conversions to weaker types
 operator weak_equality() const { return *this == equivalent ? weak_equality::equivalent : weak_equality::nonequivalent; }

P0515 R1: Consistent comparison — Sutter 23

 // comparisons (this boilerplate would be mostly eliminated if we could use P0515 itself)
 friend bool operator==(partial_ordering v, nullptr_t) { return !v.value.unordered && v.value.cmp == 0; }
 friend bool operator!=(partial_ordering v, nullptr_t) { return v.value.unordered || v.value.cmp != 0; }
 friend bool operator< (partial_ordering v, nullptr_t) { return !v.value.unordered && v.value.cmp < 0; }
 friend bool operator<=(partial_ordering v, nullptr_t) { return !v.value.unordered && v.value.cmp <= 0; }
 friend bool operator> (partial_ordering v, nullptr_t) { return !v.value.unordered && v.value.cmp > 0; }
 friend bool operator>=(partial_ordering v, nullptr_t) { return !v.value.unordered && v.value.cmp >= 0; }
 friend bool operator==(nullptr_t, partial_ordering v) { return !v.value.unordered && 0 == v.value.cmp; }
 friend bool operator!=(nullptr_t, partial_ordering v) { return v.value.unordered || 0 != v.value.cmp; }
 friend bool operator< (nullptr_t, partial_ordering v) { return !v.value.unordered && 0 < v.value.cmp; }
 friend bool operator<=(nullptr_t, partial_ordering v) { return !v.value.unordered && 0 <= v.value.cmp; }
 friend bool operator> (nullptr_t, partial_ordering v) { return !v.value.unordered && 0 > v.value.cmp; }
 friend bool operator>=(nullptr_t, partial_ordering v) { return !v.value.unordered && 0 >= v.value.cmp; }
 friend bool operator==(partial_ordering v, partial_ordering v2) { return v.value.unordered == v2.value.unordered && v.value.cmp == v2.value.cmp; }
 friend bool operator!=(partial_ordering v, partial_ordering v2) { return v.value.unordered != v2.value.unordered || v.value.cmp != v2.value.cmp; }
};
const partial_ordering partial_ordering::less{ ord::less };
const partial_ordering partial_ordering::equivalent{ eq::equivalent };
const partial_ordering partial_ordering::greater{ ord::greater };
const partial_ordering partial_ordering::unordered{ ncmp::unordered };

//--
class weak_ordering {
 int value;

public:
 // constructors
 explicit weak_ordering(eq v) : value{ (int)v } { }
 explicit weak_ordering(ord v) : value{ (int)v } { }

 // valid values
 static const weak_ordering less, equivalent, greater;

 // implicit conversions to weaker types
 operator weak_equality() const { return *this == equivalent ? weak_equality::equivalent : weak_equality::nonequivalent; }
 operator partial_ordering() const { return *this == equivalent ? partial_ordering::equivalent
 : *this == less ? partial_ordering::less : partial_ordering::greater; }

 // comparisons (this boilerplate would be mostly eliminated if we could use P0515 itself)
 friend bool operator==(weak_ordering v, nullptr_t) { return v.value == 0; }
 friend bool operator!=(weak_ordering v, nullptr_t) { return v.value != 0; }
 friend bool operator< (weak_ordering v, nullptr_t) { return v.value < 0; }
 friend bool operator<=(weak_ordering v, nullptr_t) { return v.value <= 0; }
 friend bool operator> (weak_ordering v, nullptr_t) { return v.value > 0; }
 friend bool operator>=(weak_ordering v, nullptr_t) { return v.value >= 0; }
 friend bool operator==(nullptr_t, weak_ordering v) { return 0 == v.value; }
 friend bool operator!=(nullptr_t, weak_ordering v) { return 0 != v.value; }
 friend bool operator< (nullptr_t, weak_ordering v) { return 0 < v.value; }
 friend bool operator<=(nullptr_t, weak_ordering v) { return 0 <= v.value; }
 friend bool operator> (nullptr_t, weak_ordering v) { return 0 > v.value; }
 friend bool operator>=(nullptr_t, weak_ordering v) { return 0 >= v.value; }
 friend bool operator==(weak_ordering v, weak_ordering v2) { return v.value == v2.value; }
 friend bool operator!=(weak_ordering v, weak_ordering v2) { return v.value != v2.value; }
};
const weak_ordering weak_ordering::less{ ord::less };
const weak_ordering weak_ordering::equivalent{ eq::equivalent };
const weak_ordering weak_ordering::greater{ ord::greater };

//--
class strong_ordering {

P0515 R1: Consistent comparison — Sutter 24

 int value;

public:
 // constructors
 explicit strong_ordering(eq v) : value{ (int)v } { }
 explicit strong_ordering(ord v) : value{ (int)v } { }

 // valid values
 static const strong_ordering less, equal, equivalent, greater;

 // implicit conversions to weaker types
 operator weak_equality() const { return *this == equal ? weak_equality::equivalent : weak_equality::nonequivalent; }
 operator strong_equality() const { return *this == equal ? strong_equality::equal : strong_equality::nonequivalent; }
 operator partial_ordering() const { return *this == equal ? partial_ordering::equivalent
 : *this == less ? partial_ordering::less : partial_ordering::greater; }
 operator weak_ordering() const { return *this == equal ? weak_ordering::equivalent
 : *this == less ? weak_ordering::less : weak_ordering::greater; }

 // comparisons (this boilerplate would be mostly eliminated if we could use P0515 itself)
 friend bool operator!=(strong_ordering v, nullptr_t) { return v.value != 0; }
 friend bool operator< (strong_ordering v, nullptr_t) { return v.value < 0; }
 friend bool operator==(strong_ordering v, nullptr_t) { return v.value == 0; }
 friend bool operator<=(strong_ordering v, nullptr_t) { return v.value <= 0; }
 friend bool operator> (strong_ordering v, nullptr_t) { return v.value > 0; }
 friend bool operator>=(strong_ordering v, nullptr_t) { return v.value >= 0; }
 friend bool operator==(nullptr_t, strong_ordering v) { return 0 == v.value; }
 friend bool operator!=(nullptr_t, strong_ordering v) { return 0 != v.value; }
 friend bool operator< (nullptr_t, strong_ordering v) { return 0 < v.value; }
 friend bool operator<=(nullptr_t, strong_ordering v) { return 0 <= v.value; }
 friend bool operator> (nullptr_t, strong_ordering v) { return 0 > v.value; }
 friend bool operator>=(nullptr_t, strong_ordering v) { return 0 >= v.value; }
 friend bool operator==(strong_ordering v, strong_ordering v2) { return v.value == v2.value; }
 friend bool operator!=(strong_ordering v, strong_ordering v2) { return v.value != v2.value; }
};
const strong_ordering strong_ordering::less{ ord::less };
const strong_ordering strong_ordering::equal{ eq::equal };
const strong_ordering strong_ordering::equivalent{ eq::equivalent }; // for convenient substitutability in generic code
const strong_ordering strong_ordering::greater{ ord::greater };

P0515 R1: Consistent comparison — Sutter 25

4 Bibliography
[N3950] O. Smolsky. “Defaulted comparison operators” (WG21 paper, 2014-02-19). Initial proposal of the cur-

rent series of papers attempting to add comparisons to C++. Successively revised by N4114 and N4126 to imple-

ment EWG direction during 2014.

[N4475] B. Stroustrup. “Default Comparisons (R2)” (WG21 paper, 2015-04-09). Motivational and design paper.

Update of the original N4175 which was a counterproposal focused especially on default generation.

[N4476] B. Stroustrup. “Thoughts about Comparisons (R2)” (WG21 paper, 2015-04-09). Discussion paper. Up-

date of the original N4176 which was a response arguing against particular design points in the previous EWG

directions, including declaration verbosity.

[Smolsky 2015] O. Smolsky. “On generating default comparisons” (unpublished, Kona 2015 wiki, Oct 2015). Dis-

cussion paper on comparison generation.

[P0100R2] L. Crowl. “Comparison in C++” (WG21 paper, 2016-11-27). Update of N4367 initially presented in

Lenexa.

[P0221R2] J. Maurer. “Proposed wording for default comparisons, revision 4” (WG21 paper, 2016-06-23). Word-

ing for N4475.

[P0474R0] L. Crowl. “Comparison in C++: Basic Facilities” (WG21 paper, 2016-10-15). The first step of P0100R2.

[P0436R1] W. Brown. “An Extensible Approach to Obtaining Selected Operators” (WG21 paper, 2016-10-10).

[P0481R0] T. Van Eerd. “Bravely Default” (WG21 paper, 2016-10-15). Argues that default comparison follow de-

fault copying.

[P0432R0] D. Stone. “Implicit and Explicit Default Comparison Operators” (WG21 paper, 2016-09-18).

[P0515R0] H. Sutter. “Consistent comparison” (WG21 paper, 2017-02-05).

http://wg21.link/N3950
http://wg21.link/N4114
http://wg21.link/N4126
http://wg21.link/N4475
http://wg21.link/N4476
http://wiki.edg.com/pub/Wg21kona2015/EvolutionWorkingGroup/On_generating_default_comparisons.pdf?twiki_redirect_cache=869267fed4d84725e6e527508ee3615c
http://wg21.link/P0100R2
http://wg21.link/P0221R2
http://wg21.link/P0474R0
http://wg21.link/P0436R1
http://wg21.link/P0481R0
http://wg21.link/P0432R0
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0515r0.pdf

P0515 R1: Consistent comparison — Sutter 26

5 Proposed wording

5.1 Language wording
Note An initial version of this wording appeared in paper P0564R0.

This section presents the detailed wording changes to implement the foregoing design. Any differences in se-

mantics are unintentional.

In 5.12 [lex.operators], add <=> as an option for the grammar non-terminal preprocessing-op-or-punc.

Add a new section 8.9 [expr.spaceship] before the existing 5.9 [expr.rel]:

8.9 Three-way comparison operator [expr.spaceship]

The three-way comparison operator groups left-to-right.

compare-expression:

 shift-expression

 compare-expression <=> shift-expression

If both operands have (possibly different) floating-point types, the usual arithmetic conversions are ap-

plied to the operands. The operator yields a prvalue of type std::partial_ordering. The expression a

<=> b yields std::partial_ordering::less if a is less than b, std::partial_ordering::greater if a

is greater than b, std::partial_ordering::equivalent if a is equivalent to b, and std::partial_or-

dering::unordered otherwise.

If both operands have the same enumeration type E: If E has more than one enumerator with a given

value, the operator yields a prvalue of type std::weak_ordering, otherwise it yields a prvalue of type

std::strong_ordering. In either case, the operator yields the result of converting the operands to the

underlying type of E and applying <=> to the converted operands.

If at least one of the operands is a pointer, pointer conversions (7.11 [conv.ptr]), function pointer con-

versions (7.13 [conv.fctptr]), and qualification conversions (7.5 [conv.qual]) are performed on both oper-

ands to bring them to their composite pointer type (Clause 8 [expr]). If at least one of the operands is a

pointer to member, pointer to member conversions (7.12) and qualification conversions (7.5) are per-

formed on both operands to bring them to their composite pointer type (Clause 8). If both operands are

null pointer constants, but not both of integer type, pointer conversions (7.11 [conv.ptr]) are performed

on both operands to bring them to their composite pointer type (Clause 8 [expr]). In all cases, after the

conversions, the operands shall have the same type. [Note: Array-to-pointer conversions (7.2 [conv.ar-

ray]) are not applied. -- end note]

If the composite pointer type is a function pointer type, a pointer-to-member type, or std::nullptr_t,

the operator yields a prvalue of type std::strong_equality; the operator yields std::strong_equal-

ity::equal if the (possibly converted) operands compare equal (8.10 [expr.eq]) and

std::strong_equality::unequal if they compare unequal, otherwise the result of the operator is un-

specified.

P0515 R1: Consistent comparison — Sutter 27

If the composite pointer type is an object pointer type, the operator yields the result of converting both

operands to std::uintptr_t and comparing the converted operands using <=>, where the result is con-

sistent with the result of equality and relational comparisons. [Note: That means, if two pointer oper-

ands p and q compare equal (8.10 [expr.eq]), p <=> q yields std::strong_ordering::equal; if p and q

compare unequal, p <=> q yields std::strong_ordering::less if q compares greater than p and

std::strong_ordering::greater if p compares greater than q (8.9 [expr.rel]). -- end note]

If both operands have the same integral type, the operator yields a prvalue of type std::strong_or-

dering. The result is std::strong_ordering::equal if both operands are arithmetically equal,

std::strong_ordering::less if the first operand is arithmetically less than the second operand, and

std::strong_ordering::greater otherwise. [Note: Integral promotions (7.6 [conv.prom]) or integral

conversions (7.8 [conv.integral]) are not applied. -- end note]

Otherwise, the program is ill-formed.

Change the grammar in 8.9(old) [expr.rel]:

relational-expression:

 shift-expression compare-expression

 relational-expression < shift-expression compare-expression

 relational-expression > shift-expression compare-expression

 relational-expression <= shift-expression compare-expression

 relational-expression >= shift-expression compare-expression

Change in 8.20 [expr.const] paragraph 2:

• ...

• a three-way comparison (8.9(new) [expr.spaceship]) comparing pointers that do not point to subobjects

of the same complete object;

• a relational (8.9) or equality (8.10) operator where the result is unspecified; or

• ...

Add a new section to clause 15 [special]:

15.9 Comparisons [class.compare]

A defaulted comparison operator function (8.9(new) [expr.spaceship], 8.9 [expr.rel], 8.10 [expr.eq]) for

some class C shall be a non-template function declared in the member-specification of C that

 • is a non-static member of C having one parameter of type const C& or

 • a static member or friend of C having two parameters of type const C&,

in all cases naming the injected-class-name.

15.9.1 Three-way comparison [class.spaceship]

P0515 R1: Consistent comparison — Sutter 28

For a defaulted three-way comparison operator function, the declared return type shall be either auto,

in which case the return type is deduced as described below, or one of the category types, in which case

a value of the deduced return type shall be implicitly convertible to the declared return type.

The direct base class subobjects of C, in the order of their declaration in the base-specifier-list of C, fol-

lowed by the non-static data members of C, in the order of their declaration in the member-specification

of C, form a list of subobjects. In that list, any subobject of array type is recursively expanded to the se-

quence of its elements, in the order of increasing subscript. Let xi denote the i-th element in the ex-

panded list of subobjects for an object x, where xi is an lvalue if it is has reference type, and a const

xvalue otherwise. [Note: This yields the same result as a class member access (8.2.5 [class.mem]) on

const C. -- end note] The type of the expression xi <=> xi is denoted by Ri. If any Ri is not a category

type, the return type is void and the operator function is defined as deleted.

Otherwise, the return type R is deduced as follows:

 • If the list of subobjects is empty, R is std::strong_ordering.

 • Otherwise, if

 • at least one Ri is std::weak_equality or

 • at least one Ri is std::strong_equality and at least one Rj is std::partial_ordering

or std::weak_ordering,

 R is std::weak_equality.

 • Otherwise, if at least one Ri is std::strong_equality, R is std::strong_equality.

 • Otherwise, if at least one Ri is std::partial_ordering, R is std::partial_ordering.

 • Otherwise, if at least one Ri is std::weak_ordering, R is std::weak_ordering.

 • Otherwise, R is std::strong_ordering.

The return value V of the three-way comparison operator function invoked with arguments x and y of

the same type is determined by comparing corresponding elements xi and yi in the expanded lists of

subobjects for x and y and converting each of the resulting values to type R. Let i denote the first index

where xi <=> yi yields a result value different from Ri::equivalent; V is that result value converted to R.

If no such index exists, V is std::strong_ordering::equal converted to R.

15.9.2 Other comparison operators [class.rel.eq]

A defaulted relational (8.9 [expr.rel]) or equality (8.10 [expr.eq]) operator function for some operator @

shall have a declared return type bool.

The operator function with parameters x and y is defined as deleted if

 • overload resolution (16.3), as applied to x <=> y (also considering synthesized candidates with

reversed order of parameters), results in an ambiguity or a function that is deleted or inaccessi-

ble from the operator function, or

 • the operator @ cannot be applied to the return type of x <=> y or y <=> x.

P0515 R1: Consistent comparison — Sutter 29

Otherwise, the operator function yields x <=> y @ 0 if an operator<=> with the original order of parame-

ters was selected, or 0 @ y <=> x otherwise.

[Example:

 struct C {

 friend std::strong_equality operator<=>(const C&, const C&);

 bool operator==(const C& x, const C& y) = default; // ok, returns x <=> y == 0

 bool operator<(const C&, const C&) = default; // ok, function is deleted

 };

-- end example]

Change in 16.3.1.2 [over.match.oper] paragraph 6 and add a new paragraph after that:

The set of candidate functions for overload resolution is the union of the member candidates, the non-

member candidates, and the built-in candidates , all for operator@. If the operator is a relational (5.9

[exp.rel]) or equality (5.10 [expr.eq]) operator, a member or non-member candidate operator<=> is

added to the set of candidate functions for overload resolution if

• the candidate has return type std::strong_ordering, std::weak_ordering, or std::par-

tial_ordering or

• the candidate has return type std::strong_equality or std::weak_equality and @ is == or

!=.

For each such added candidate whose parameter types differ, a synthesized candidate is added to the

candidate set where the order of the two parameters is reversed.

The argument list contains all of the operands of the operator. The best function from the set of candi-

date functions is selected according to 16.3.2 and 16.3.3. [Footnote: ...] [Example: ... -- end example]

If a candidate for operator<=> is selected by overload resolution, but @ is not <=>, the call to opera-

tor@ with arguments x and y yields the value of 0 @ operator<=>(y,x) if the selected candidate is a

synthesized candidate with reversed order of parameters, or operator<=>(x,y) @ 0 otherwise.

If a built-in candidate is selected by overload resolution, the operands of class type are converted to the

types of the corresponding parameters of the selected operation function, except that ...

Add new bullets before bullet 6 in 16.3.3 [over.match.best] paragraph 1:

• ...

• F1 is an operator function for a relational (8.9 [expr.rel]) or equality (8.10 [expr.eq]) operator and F2

is not [Example:

 struct S {

 auto operator<=>(const S&, const S&) = default; // #1

 bool operator<(const S&, const S&); // #2
 };

 bool b = S() < S(); // calls #2

-- end example] or, if not that,

P0515 R1: Consistent comparison — Sutter 30

• F1 and F2 are operator functions for operator<=> and F2 is a synthesized candidate with reversed

order of parameters and F1 is not [Example:

 struct S {

 std::weak_ordering operator<=>(const S&, int); // #1

 std::weak_ordering operator<=>(int, const S&); // #2

 };

 bool b = 1 < S(); // calls #2

-- end example] or, if not that,

• F1 is generated from a deduction-guide (16.3.1.8) and F2 is not [Example: ...]

In 16.5 [over.oper] paragraph 1, add <=> as an option for the grammar non-terminal operator.

Add two new paragraphs after 16.6 [over.built] paragraph 12:

For every integral type T there exist candidate operator functions of the form

 std::strong_ordering operator<=>(T , T);

For every pair of floating-point types L and R, there exist candidate operator functions of the form

 std::partial_ordering operator<=>(L , R);

Change in 16.6 [over.built] paragraphs 15 and 16:

For every T, where T is an enumeration type or a pointer type, there exist candidate operator functions

of the form

 bool operator<(T , T);

 bool operator>(T , T);

 bool operator<=(T , T);

 bool operator>=(T , T);

 bool operator==(T , T);

 bool operator!=(T , T);

 R operator<=>(T , T);

where R is the result type specified in 8.9 [expr.spaceship].

For every pointer to member type T or type std::nullptr_t there exist candidate operator functions of

the form

 bool operator==(T , T);

 bool operator!=(T , T);

 std::strong_equality operator<=>(T , T);

Add a new paragraph after 16.6 [over.built] paragraphs 16:

For every array type T there exist candidate operator functions of the form

 R operator<=>(T& , T&);

P0515 R1: Consistent comparison — Sutter 31

 R operator<=>(T&& , T&&);

where R is the result type specified in 8.9 [expr.spaceship].

Add a new paragraph after 18.4 [except.spec] paragraph 10:

A deallocation function (6.7.4.2) with no explicit noexcept-specifier has a non-throwing exception speci-

fication.

The exception specification for a three-way comparison without a noexcept-specifier that is defaulted on

its first declaration, is potentially-throwing if and only if the invocation of any comparison operator in

the implicit definition is potentially-throwing.

5.2 Library wording
To be added in R2.

