
Doc number: P0514R1
Revises: P0514R0
Date: 2017-6-14
Project: Programming Language C++, Concurrency Working Group
Reply-to: Olivier Giroux <ogiroux@nvidia.com>

Adding	std::*_semaphore	to	the	atomics	clause.	

We	 propose	 to	 create	 new	 specialized	 atomic	 types	 that	 likely	 replace	 atomic_flag	 in	
practice,	and	new	atomic	free	functions	that	provide	useful	and	efficient	waiting	functionality	for	
other	atomic	types.	

The	current	atomic	objects	make	it	easy	to	implement	inefficient	blocking	synchronization	in	C++,	
due	to	lack	of	support	for	waiting	in	a	more	efficient	way	than	polling.	One	problem	that	results,	
is	poor	system	performance	under	oversubscription	and/or	contention.		Another	is	high	energy	
consumption	under	contention,	regardless	of	oversubscription.	

The	current	atomic_flag	object	does	nothing	to	help	with	this	problem,	despite	its	name	that	
suggests	it	 is	suitable	for	this	use.	Its	 interface	is	tightly-fitted	to	the	demands	of	the	simplest	
spinlocks	without	contention	or	energy	mitigation	beyond	what	timed	back-off	can	achieve.	

Presenting	a	simple	abstraction	for	scalable	waiting.	

On	its	own,	a	binary	semaphore	is	analogous	to	a	lock	without	thread	ownership.	It	is	natural,	
therefore,	that	our	std::binary_semaphore	object	can	easily	be	adapted	to	serve	the	role	
of	a	lock:	

 struct semlock {
 void lock() {
 s.acquire();
 }
 void unlock() {
 s.release();
 }
 private:
 std::experimental::binary_semaphore s(1);
 };

	

This	example	uses	the	binary	semaphore	type.	A	counting	semaphore	type	is	also	provided,	which	
permits	the	simultaneous	release	and	acquisition	of	multiple	credits	to	the	semaphore.	

New	atomic	free	functions	are	provided	to	enable	pre-existing	uses	of	atomics	to	benefit	from	
the	same	efficient	waiting	implementation	that	is	behind	the	semaphore:		
 struct simple_lock {
 void lock() {
 bool old;
 while(!b.compare_exchange_weak(old = false, true))
 std::experimental::atomic_wait(&b, old);

 }
 void unlock() {
 b = false;
 std::experimental::atomic_signal(&b);
 }
 private:
 std::atomic<bool> b(false);
 };

Note	that	in	high-quality	implementations	this	necessitates	a	semaphore	table	owned	by	the	
implementation,	which	causes	some	unavoidable	interference	due	to	aliasing	unrelated	atomic	
updates.	

For	greater	control	over	this	sort	of	interference,	it	is	also	possible	to	supply	a	semaphore	
owned	by	the	program,	using	the	atomic	semaphore	type,	restricted	for	this	use:	

 struct improved_simple_lock {
 void lock() {
 bool old;
 while(!b.compare_exchange_weak(old = false, true))
 s.wait(&b, old);
 }
 void unlock() {
 b = false;
 s.signal(&b);
 }
 private:
 std::atomic<bool> b(false);
 std::experimental::atomic_semaphore s;
 };

	

Note	that	atomic_semaphore	has	no	public	interface,	it	is	a	semaphore	in	name	and	
implementation	only.	

A	reference	implementation	is	provided	for	your	evaluation.	

It’s	here	-	https://github.com/ogiroux/semaphore	-	though	as	of	press	time	it	is	not	up-to-date.	

See	P0514R0	for	past	performance	analysis	that	has	not	been	invalidated.	

Note:	the	synchronic<T>	interface	of	either	P0126	or	N4195	is	no	longer	recommended.	
In	short,	 the	highest	performance	 is	not	achievable	with	the	most	 recent	synchronic<T>	 interface	
because	 additional	 atomic	 operations	 are	 imposed	 by	 the	 abstraction.	 Specifically,	 two	 atomics	 are	
needed	to	synchronize	and	manage	contention,	whereas	an	optimized	implementation	may	be	able	to	
fuse	them	into	one.	

This	 new	 approach	 provides	 strictly	 more	 implementation	 freedom,	 including	 the	 freedom	 to	 fuse	
contention-management	with	synchronization.	The	implementation	is	not	made	any	simpler,	note.	

Note:	the	extended	atomic_flag	interface	of	P0514R0	is	no	longer	recommended.	

Lock-freedom	is	guaranteed	to	atomic_flag	and	could	not	be	preserved	with	the	extension.	

Note:	this	slide	from	the	Kona	meeting	summarizes	the	above,	and	a	few	more.	

	

Except	that	we	recommend,	now,	to	include	both	“try_acquire(…)”	and	“acquire(count)”	equivalents	(now	
dubbed	try_wait	and	wait)	instead	and	let	them	degenerate	to	either	zero-time	timed	operations	or	
a	loop	over	scalar	operations.		

Note:	this	is	proposed	for	addition	to	clause	32	(atomics)	instead	of	33	(thread	support).	

Why?	Several	reasons.	Some	semaphore	functions	take	memory_order	operands,	operations	on	
semaphores	do	not	introduce	data-races	without	synchronization,	memory	consistency	effects	
of	 semaphores	match	 read-modify-write	operations	on	atomic	objects,	 semaphore	 semantics	
refer	 to	 a	 modification	 order	 for	 the	 integral	 counter	 that	 the	 semaphore	 models,	 some	
semaphores	 functions	 take	 atomic	 objects	 as	 operands,	 some	 atomic	 free	 functions	 take	
semaphore	enums	as	operands,	all	semaphore	objects	are	designed	to	leave	room	open	for	C	
compatibility.	Clause	33	wouldn’t	be	an	awful	bad	fit,	but	not	as	good	a	fit.	

C++	Proposed	Wording	
Apply	 the	 following	edits	 to	 the	working	draft	 of	 the	 Standard.	 The feature	 test	macro	
__cpp_lib_semaphore	should	be	added.	

Why	not…

Futex?	 Extremely	hard	to	use	for	top	perf.

N4195	synchronic?	 Huge	API.	(+Next.)

P0126	synchronic?	 Can’t	achieve	top-end	performance.

P0514	atomic_flag?	 Breaks	lock-freedom	guarantee	from	‘11.

A	new	clone	atomic_flag?	 Counting	type	is	forcibly	new,	match	that.

Semaphore::read?	 Rules	out	lower-QoI options.

Semaphore::try_acquire()?	 Rules	out	lower-QoI options.

Semaphore::acquire(count	>	1)? Rules	out	mid-QoI options.

Semaphore::acquire_if(pred)?	 Rules	out	mid-QoI options.

Semaphore::release(count	=	0)? Unclean	but	we	can	have	it.

Modify	32.2	Header	<atomic>	synopsis	[atomics.syn]:	
//	32.9,	fences	
 extern "C" void atomic_thread_fence(memory_order) noexcept;
 extern "C" void atomic_signal_fence(memory_order) noexcept;

		//	32.10,	semaphore	type	and	operations	
 enum semaphore_notify {
 semaphore_notify_all,
 semaphore_notify_one,
 semaphore_notify_none
 };
 class binary_semaphore;
 class counting_semaphore;
 class atomic_semaphore;

		//	32.10.1,	atomic	free	functions	for	waiting	
 template <class T>
 void atomic_signal_explicit(const atomic<T>*, semaphore_notify);
 template <class T>
 void atomic_signal(const atomic<T>*);
 template <class T>
 void atomic_wait_explicit(const atomic<T>*,
 typename atomic<T>::value_type, memory_order);
 template <class T>
 void atomic_wait(const atomic<T>*, typename atomic<T>::value_type);
 template <class T>
 bool atomic_try_wait_explicit(const atomic<T>*,
 typename atomic<T>::value_type, memory_order);
 template <class T>
 bool atomic_try_wait(const atomic<T>*, typename atomic<T>::value_type);

}

Create	32.10	Semaphore	types	and	operations	[atomics.semaphore]:	
namespace std {

 class binary_semaphore {

 using count_type = implementation-defined; //	see	32.10.1
 static constexpr count_type max = 1;

 void signal(memory_order = memory_order_seq_cst) noexcept;
 void signal(semaphore_notify, memory_order = memory_order_seq_cst) noexcept;
 void wait(memory_order = memory_order_seq_cst) noexcept;
 bool try_wait(memory_order = memory_order_seq_cst) noexcept;
 template <class Clock, class Duration>
 bool try_wait_until(chrono::time_point<Clock, Duration> const&,
 memory_order = memory_order_seq_cst) noexcept;
 template <class Rep, class Period>
 bool try_wait_for(chrono::duration<Rep, Period> const&,
 memory_order = memory_order_seq_cst) noexcept;

 constexpr binary_semaphore(count_type = 0) noexcept;
 ~binary_semaphore();
 binary_semaphore(const binary_semaphore&) = delete;
 binary_semaphore& operator=(const binary_semaphore&) = delete;
 };

 struct counting_semaphore {

 using count_type = implementation-defined;	//	see	32.10.1

 static constexpr count_type max = implementation-defined;

 void signal(memory_order = memory_order_seq_cst) noexcept;
 void signal(count_type, memory_order = memory_order_seq_cst) noexcept;
 void signal(count_type, semaphore_notify,
 memory_order = memory_order_seq_cst) noexcept;
 void wait(memory_order = memory_order_seq_cst) noexcept;
 bool try_wait(memory_order = memory_order_seq_cst) noexcept;
 template <class Clock, class Duration>
 bool try_wait_until(chrono::time_point<Clock, Duration> const&,
 memory_order = memory_order_seq_cst) noexcept;
 template <class Rep, class Period>
 bool try_wait_for(chrono::duration<Rep, Period> const&,
 memory_order = memory_order_seq_cst) noexcept;

 constexpr counting_semaphore(count_type = 0) noexcept;
 ~counting_semaphore();
 counting_semaphore(const counting_semaphore&) = delete;
 counting_semaphore& operator=(const counting_semaphore&) = delete;
 };

 struct atomic_semaphore {

 template <class T>
 void signal(const atomic<T>*, semaphore_notify = semaphore_notify_all) noexcept;
 template <class T>
 void wait(const atomic<T>*, typename atomic<T>::value_type,
 memory_order = memory_order_seq_cst) noexcept;
 template <class T>
 bool try_wait(const atomic<T>*, typename atomic<T>::value_type,
 memory_order = memory_order_seq_cst) noexcept;
 template <class T, class Clock, class Duration>
 bool try_wait_until(const atomic<T>*, typename atomic<T>::value_type,
 chrono::time_point<Clock, Duration> const&,
 memory_order = memory_order_seq_cst) noexcept;
 template <class T, class Rep, class Period>
 bool try_wait_for(const atomic<T>*, typename atomic<T>::value_type,
 chrono::duration<Rep, Period> const&,
 memory_order = memory_order_seq_cst) noexcept;

 constexpr atomic_semaphore() noexcept;
 ~atomic_semaphore();
 atomic_semaphore(const atomic_semaphore&) = delete;
 atomic_semaphore& operator=(const atomic_semaphore&) = delete;
 };

}

1 Semaphores	 are	 non-negative	 integral	 atomic	 objects	 with	 specialized	 operations	 that	 efficiently	
block	 the	 invoking	 thread	as	 long	as	 they	would	 result	 in	 a	negative	 value,	or	until	 a	 timeout	has	
elapsed.	Semaphores	are	widely	useful	to	efficiently	implement	concurrent	control	constructs	such	as	
locks,	barriers	and	queues.	

2 Class	binary_semaphore	 has	 two	 states,	 also	 known	 as	 available	 and	 unavailable,	while	 class	
counting_semaphore	 holds	 arbitrary	 positive	 integral	 values	within	 a	 specified	 representable	
range.	Operations	on	these	types	do	not	introduce	data-races,	are	considered	atomic	read-modify-
write	operations,	and	are	not	guaranteed	to	be	lock-free	(4.7).	

3 Class	atomic_semaphore	 refers	to	a	separate	atomic	object	 in	the	program	to	define	 its	state.	
This	facility	enables	the	combination	of	efficient	waiting	algorithms	with	atomic	objects	whose	usage	
is	not	limited	to	the	semaphore	concept.	[Note:	Programs	using	this	facility	are	not	guaranteed	to	
observe	transient	atomic	values,	an	issue	known	as	the	A-B-A	problem,	resulting	in	continued	blocking	
if	a	condition	is	only	temporarily	met.	–	End	Note.]	

4 For	the	following	definitions:	
- Member	functions	that	match	the	name	signal,	and	non-member	functions	that	match	

the	pattern	atomic_signal...,	are	signaling	functions.	
- Member	functions	that	match	the	name	wait	or	try_wait_for	or	try_wait_until,	

and	non-member	functions	that	match	the	pattern	atomic_wait...,	are	waiting	functions.	
5 Waiting	 functions	 may	 block	 until	 they	 are	 unblocked	 by	 signaling	 functions,	 according	 to	 each	

function’s	effects.	
	

32.10.1	Operations	on	semaphore	types	[atomics.semaphore.operations]:	

using count_type = implementation-defined;

1 An	integral	type	able	to	represent	all	of	the	valid	values	of	the	semaphore	object.		

static constexpr count_type max = implementation-defined;

2 The	maximum	value	of	 the	 semaphore	object.	 If	 any	operation	on	a	 semaphore	would	 result	 in	a	
greater	value	then	the	result	is	undefined,	even	if	count_type	could	represent	it	exactly.	

constexpr binary_semaphore(count_type desired = 0) noexcept;

constexpr counting_semaphore(count_type desired = 0) noexcept;

constexpr atomic_semaphore() noexcept;

3 Effects:	 Initializes	 the	 object	 with	 the	 value	desired,	 if	 specified,	 or	 a	 default	 state	 otherwise.	
Initialization	is	not	an	atomic	operation	(4.7).		

~binary_semaphore();

~counting_semaphore();

~atomic_semaphore();

4 Requires:	 There	 are	 no	 threads	 blocked	 on	 *this.	 [Note:	 Returns	 from	 invocations	 of	 waiting	
functions	do	not	need	to	happen	before	destruction,	however	the	notification	by	signaling	functions	
to	unblock	the	waiting	functions	must	happen	before	destruction.	This	is	a	weaker	requirement	than	
normal.	–	end	note]	

5 Effects:	Destroys	the	object.	

void binary_semaphore::signal(semaphore_notify notify, memory_order order =
memory_order_seq_cst) noexcept;

void counting_semaphore::signal(count_type count, memory_order order =
memory_order_seq_cst) noexcept;

void counting_semaphore::signal(count_type count, semaphore_notify notify,
memory_order order = memory_order_seq_cst) noexcept;

6 Requires:	 The	 order	 argument	 shall	 not	 be	 memory_order_acquire	 nor	
memory_order_acq_rel.	

7 Effects:		
1. Atomically	 increments	 the	 value	 pointed	 to	 by	this	 by	 1	 or	count,	 if	 specified.	Memory	 is	

affected	according	to	the	value	of	order.	
2. If	 notify	 is	 semaphore_notify_all,	 unblocks	 all	 executions	 of	 waiting	 functions	 that	

blocked	after	observing	the	result	of	preceding	operations	in	the	object’s	modification	order.	
3. If	notify	is	semaphore_notify_one,	unblocks	at	least	one	execution	of	a	waiting	function	

that	blocked	after	observing	the	result	of	preceding	operations	in	the	object’s	modification	order.		

void binary_semaphore::signal(memory_order order = memory_order_seq_cst) noexcept;
void counting_semaphore::signal(memory_order order = memory_order_seq_cst) noexcept;

8 Effects:	Equivalent	to:		signal(semaphore_notify_all, order);	

template <class T>
void atomic_signal_explicit(const atomic<T>* object, semaphore_notify notify);

template <class T>
void atomic_semaphore::signal(const atomic<T>* object, semaphore_notify notify =
semaphore_notify_all) noexcept;

	
9 Effects:		

1. If	 notify	 is	 semaphore_notify_all,	 unblocks	 all	 executions	 of	 waiting	 functions	 that	
blocked	after	observing	the	result	of	preceding	operations	in	*object’s	modification	order.	

2. If	notify	is	semaphore_notify_one,	unblocks	at	least	one	execution	of	a	waiting	function	
that	blocked	after	observing	the	result	of	preceding	operations	in	*object’s	modification	order.	

template <class T>
void atomic_signal(const atomic<T>* object);

10 Effects:	Equivalent	to:	 atomic_signal_explicit(object, semaphore_notify_all);	

bool binary_semaphore::try_wait(memory_order order = memory_order_seq_cst) noexcept;

bool counting_semaphore::try_wait(memory_order order = memory_order_seq_cst) noexcept;

11 Requires:	 The	 order	 argument	 shall	 not	 be	 memory_order_release	 nor	
memory_order_acq_rel.	

12 Effects:	Subtracts	1	or	count,	if	specified,	from	the	value	pointed	to	by	this	then,	if	the	result	is	
positive	or	zero,	atomically	replaces	the	value	with	the	result.	Memory	is	affected	according	to	the	
value	of	order.	

13 Returns:	true	if	the	value	was	replaced,	otherwise	false.	

template <class T>
bool atomic_try_wait_explicit(const atomic<T>* object, typename atomic<T>::value_type
old, memory_order order);

template <class T>
bool atomic_semaphore::try_wait(const atomic<T>* object, typename
atomic<T>::value_type old,
 memory_order order = memory_order_seq_cst);

14 Effects:	Equivalent	to:	return object->load(order) != old;	

template <class T>
bool atomic_try_wait(const atomic<T>* object, typename atomic<T>::value_type old);

15 Effects:	Equivalent	to:		

 return atomic_try_wait_explicit(object, old, memory_order_seq_cst);

template <class T>
void atomic_wait_explicit(const atomic<T>* object, typename atomic<T>::value_type old,
memory_order order);

void binary_semaphore::wait(memory_order order = memory_order_seq_cst) noexcept;

void counting_semaphore::wait(memory_order order = memory_order_seq_cst) noexcept;

template <class T>
void atomic_semaphore::wait(const atomic<T>* object, typename atomic<T>::value_type
old, memory_order = memory_order_seq_cst) noexcept;

template <class Clock, class Duration>
bool binary_semaphore::try_wait_until(chrono::time_point<Clock, Duration> const&
abs_time, memory_order order = memory_order_seq_cst) noexcept;

template <class Clock, class Duration>
bool counting_semaphore::try_wait_until(chrono::time_point<Clock, Duration> const&
abs_time, memory_order order = memory_order_seq_cst) noexcept;

template <class T, class Clock, class Duration>
bool atomic_semaphore::try_wait_until(const atomic<T>* object, typename
atomic<T>::value_type old, chrono::time_point<Clock, Duration> const& abs_time,
memory_order order = memory_order_seq_cst) noexcept;

template <class Rep, class Period>
bool binary_semaphore::try_wait_for(chrono::duration<Rep, Period> const& rel_time,
memory_order order = memory_order_seq_cst) noexcept;

template <class Rep, class Period>
bool counting_semaphore::try_wait_for(chrono::duration<Rep, Period> const& rel_time,
memory_order order = memory_order_seq_cst) noexcept;

template <class T, class Rep, class Period>
bool atomic_semaphore::try_wait_for(const atomic<T>* object, typename
atomic<T>::value_type old, chrono::duration<Rep, Period> const& rel_time, memory_order
order = memory_order_seq_cst) noexcept;

16 Each	waiting	function	has	a	corresponding	try-waiting	function.	For	member	functions	named	wait,	
try_wait_until	or	try_wait_for,	the	try-waiting	function	is	named	try_wait.	For	the	non-

member	template	function	named	atomic_wait_explicit,	the	try-waiting	function	is	named	
atomic_try_wait_explicit.	

17 Requires:	 The	 order	 argument	 shall	 not	 be	 memory_order_release	 nor	
memory_order_acq_rel.	

18 Effects:	Each	execution	of	a	waiting	function	is	performed	as:	
1. Invokes	the	try-waiting	function	with	the	values	of	the	parameters,	except	for	timeouts,	as	the	

arguments	of	the	function	call,	in	order.	If	it	returned	true,	returns.	
2. If	a	timeout	is	specified,	may	return	spuriously.	
3. Blocks.	
4. Unblocks	when:	

- As	a	result	of	some	signaling	operations,	as	described	in	that	function's	effects.	
- The	timeout	expires.	
- At	the	implementation's	discretion.	

5. Each	time	the	execution	unblocks,	it	repeats.		
19 Returns:	if	a	timeout	is	specified,	the	value	returned	by	the	last	invocation	of	try_wait,	otherwise	

nothing.		
template <class T>
void atomic_wait(const atomic<T>* object, typename atomic<T>::value_type old);

20 Effects:	Equivalent	to:		

 atomic_wait_explicit(object, old, memory_order_seq_cst);	

