
P0501R0 2017-02-06 Reply-To: gdr@microsoft.com

C++ Module TS Issues List
Gabriel Dos Reis

Microsoft

1. export import M; [Richard Smith, 9/7/2016]
Remove from grammar. Or ban it through semantics prose. Same thing with export { import M; }

Proposed Resolution
See P0500R0 adopted at the Fall 2016 Issaquah meeting.

2. Import M; at interface level [Richard Smith, 9/7/2016]
Ban it from interface units.

Proposed Resolution
See P0500R0 adopted at the Fall 2016 Issaquah meeting.

3. export const int n = 5; [Richard Smith, 9/8/2016]
Clarify that this is allowed.

Proposed Resolution
See P0500R0 adopted at the Fall 2016 Issaquah meeting.

4. Import declaration and namespace partitions; [Lukasz Mendakiewicz,
11/3/2016]

Problem:
I was reading N4610 and have a question:

module M;
export namespace N
{
 struct A {};
}
namespace N
{
 struct B {};
}

7.7.1/4 says that all members of namespace-body are exported, meaning N::A.

 import M;

7.7.2/1 says that import declaration adds the namespace partitions with external linkage from
M to the current TU.
Namespace partition N from M contains both N::A and N::B.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0500r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0500r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0500r0.pdf

P0501R0 2017-02-06 Module TS Issues

So is N::B visible and can be used in the second TU or not?

Proposed Resolution
See P0500R0 adopted at the Fall 2016 Issaquah meeting.

5. Static local variables [John Spicer, 11/8/2016]
Question
Should there be a restriction on local statics in exported function template?

Proposed Resolution
The current design purposefully does not place any restriction. It even has an explicit note to that effect
for inline functions. Maybe that note should be clarified to apply also for templated functions.

6. Entities referenced from exported templates [John Spicer, 11/8/2016]
Question
Are there any restrictions on the linkage of the entities that can be referenced from an exported template
definition?

Proposed Resolution
For function templates, by design, there is no restriction on the linkage of entities that can be referenced
from a definition. Note, this is the same restriction as for inline functions.

7. Default arguments for exported declarations [John Spicer, 11/8/2016]
Question
Consider

// interface unit of M
module M;
export namespace N {
 int f(int);
}
namespace N {
 int f(int = 5);
}

// 1.cxx, not part of M
import M;
int main() { return N::f(); } // OK?

Proposed Resolution
Only default arguments in exported declarations are effectively exported, i.e. visible to importing
translation units. This issue is resolved by the new wording for issue #4. Add a note to the specification.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0500r0.pdf

P0501R0 2017-02-06 Module TS Issues

8. Point of instantiation across name lookup and name lookup [John
Spicer, 11/8/2016]

See paper P0582R0 titled "Modules: Contexts of template instantiations and name lookup".

Point of definition of implicitly defined special member functions [Roger
Orr, 11/7/2016]
Question
What is the point of definition of delayed implicitly defined special member functions?

Proposed Resolution
When the definition of an implicitly defined special member function is needed, the context of the
definition shall be right after the last exported declaration from the owning module’s interface unit.

9. Annotation of module declaration in module interface unit [Nathan
Sidwell, 2/2/2017]

See discussion on the ‘modules’ reflector with title ‘modules’. Request:

It would be nice if the module declaration was decorated in some unique way to denote
the interface unit.

Proposed Resolution
From specification perspective, there is no ambiguity about which translation unit is a module interface
unit. It might however be convenient for some to see a redundant annotation in the source code indicating
that a source file is indeed a module interface unit. See proposal P0273R1 and proposal P0584R0 titled
“Module Interface and Preamble”.

10. Redeclaration within the purview of a module [Nathan Sidwell
1/9/2017]

See discussion titled ‘modules’ on the ‘modules’ reflector.

Question
In the purview of a module, can a redeclaration an export an entity that wasn’t previously declared as
exported?

Proposed Resolution
No. This was expressly forbidden, and that restriction is encoded via the forbidden change of linkage (from
module linkage to external linkage).
Add a note in the specification to illustrate this.

11. Exported partial specialization [Nathan Sidwell, 1/30/2017]
See the discussion ‘export and templates’ on the ‘modules’ reflector.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0273r1.pdf

P0501R0 2017-02-06 Module TS Issues

Question
Given an exported class template declaration X, is it possible to declare two non-exported partial
specialization of X in two modules?

Proposed Resolution
Yes; however, the partial specialization shall depend on non-exported types or templates.

