
P0461R2: Proposed RCU C++ API

Doc. No.: WG21/P0461R2
Date: 2017-10-15

Reply to: Paul E. McKenney, Maged Michael, Michael Wong,
Isabella Muerte, Arthur O’Dwyer, David Hollman,
Andrew Hunter, Geoffrey Romer, and Lance Roy

Email: paulmck@linux.vnet.ibm.com, maged.michael@gmail.com,
fraggamuffin@gmail.com, isabella.muerte@mnmlstc.com,

arthur.j.odwyer@gmail.com, dshollm@sandia.gov,
ahh@google.com, gromer@google.com, and ldr709@gmail.com

October 15, 2017

This document is based on WG21/P0279R1 combined with feedback at the
2015 Kona, 2016 Jacksonville, 2016 Issaquah, 2017 Kona, and 2017 Toronto
meetings, which most notably called for a C++-style method of handling dif-
ferent RCU implementations or domains within a single translation unit, and
which also contains useful background material and references. Later feedback
and evaluation of existing RCU implementations permitted significant simplifi-
cation. These simplifications eliminated domains, and this elimination will likely
be revisited, certainly before any merge into the International Standard. Unlike
WG21/P0279R1, which simply introduced RCU’s C-language practice, this doc-
ument presents proposals for C++-style RCU APIs. At present, it appears that
these are not conflicting proposals, but rather ways of handling different C++
use cases resulting from inheritance, templates, and different levels of memory
pressure. This document also incorporates content from WG21/P0232R0[9].

Note that this proposal is related to the hazard-pointer proposal in that
both proposals defer destructive actions such as reclamation until all readers
have completed. See P0233R3, which updates “P0233R2: Hazard Pointers: Safe
Resource Reclamation for Optimistic Concurrency” at http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2016/p0233r2.pdf.

This proposal is also related to “P0561R0 An RAII Interface for Deferred
Reclamation” at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2017/p0561r0.html. This RAII proposal has replaced the C++ wrapper APIs
that appeared in earlier revisions of this document. There have been other
proposals for C++ RCU APIs [4].

Note also that a redefinition of the infamous memory order consume is the
subject of two separate papers:

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0233r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0233r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0561r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0561r0.html

WG21/P0461R2 2

1. P0190R3, which updates “P0190R2: Proposal for New memory order

consume Definition”, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2016/p0190r2.pdf.

2. P0462R1, which updates “P0462R0: Marking memory order consume De-
pendency Chains”, http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2016/p0462r0.pdf. Note however that P0462R1 is expected to
be obsoleted by an alternative proposal by JF Bastien that has seen pro-
duction use.

Draft wording for this proposal may be found in the new working paper
“P0566R2: Proposed Wording for Concurrent Data Structures: Hazard Pointer
and Read-Copy-Update (RCU)”.

A detailed change log appears starting on page 17.

1 Introduction

This document proposes C++ APIs for read-copy update (RCU). For more
information on RCU, including RCU semantics, see WG21/P0462R0 (“Marking
memory order consume Dependency Chains”), WG21/P0279R1 (“Read-Copy
Update (RCU) for C++”), WG21/P0190R2 (“Proposal for New memory order

consume Definition”), WG21/P0098R1 (“Towards Implementation and Use of
memory order consume”), and WG21/P0750R0 (“Consume”).1

Specifically, this document proposes rcu reader (Figure 2), rcu obj base

(Figure 3), and several free functions (Figures 3 and 4).
Section 2 presents the base (C-style) RCU API, Section 3 presents a pro-

posal for scoped RCU readers, Section 4 presents proposals for handling of RCU
callbacks, Section 6 presents a table comparing reference counting, hazard point-
ers, and RCU, and finally Section 7 presents a summary. This is followed by an
informational-only appendix that shows some alternatives that were considered
and rejected.

A fully functional implementation is available on github: https://github.
com/paulmckrcu/RCUCPPbindings. See the Test/paulmck directory: Other di-
rectories contain other alternatives that were considered and rejected, although
the efforts of their respective authors are deeply appreciated. Their work was a
critically important part of the learning process leading to the solution presented
in this document.

2 Existing C-Language RCU API

Figure 1 shows the existing C-language RCU API as provided by implementa-
tions such as userspace RCU [2, 6]. This API is provided for compatibility with
existing C-language practice as well as to provide the highest performance for

1 WG21/P0750R0 expands on WG21/P0462R0 and WG21/P0190R2.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0190r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0190r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0462r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0462r0.pdf
https://github.com/paulmckrcu/RCUCPPbindings
https://github.com/paulmckrcu/RCUCPPbindings

WG21/P0461R2 3

1 void rcu_read_lock();
2 void rcu_read_unlock();
3 void synchronize_rcu();
4 void call_rcu(struct rcu_head *rhp,
5 void (*cbf)(struct rcu_head *rhp));
6 void rcu_barrier();
7 void rcu_register_thread();
8 void rcu_unregister_thread();
9 void rcu_quiescent_state();

10 void rcu_thread_offline();
11 void rcu_thread_online();
12 void defer_rcu(void (*fct)(void *p), void *p);

Figure 1: Existing C-Language RCU API

fast-path code. As we will see in Section 2.2, the C++ user will not need to be
concerned with most of these API members.

2.1 Existing C-Language RCU API Detailed Description

Lines 1 and 2 show rcu read lock() and rcu read unlock(), which mark
the beginning and the end, respectively, of an RCU read-side critical section.
These primitives may be nested, and matching rcu read lock() and rcu read

unlock() calls need not be in the same scope. (That said, it is good practice
to place them in the same scope in cases where the entire critical section fits
comfortably into one scope.)

Line 3 shows synchronize rcu(), which waits for any pre-existing RCU
read-side critical sections to complete. The period of time that synchronize

rcu() is required to wait is called a grace period. Note that a given call to
synchronize rcu() is not required to wait for critical sections that start later.

Lines 4 and 5 show call rcu(), which, after a subsequent grace period
elapses, causes the cbf(rhp) RCU callback function to be invoked. Thus, call
rcu() is the asynchronous counterpart to synchronize rcu(). In most cases,
synchronize rcu() is easier to use, however, call rcu() has the benefit of
moving the grace-period delay off of the updater’s critical path. Use of call
rcu() is thus critically important for good performance of update-heavy work-
loads, as has been demonstrated by implementation experience across a variety
of environments [7].

Note that although call rcu()’s callbacks are guaranteed not to be invoked
too early, there is no guarantee that their execution won’t be deferred for a con-
siderable time. This can be a problem if a given program requires that all
outstanding RCU callbacks be invoked before that program terminates. The
rcu barrier() function shown on line 6 is intended for this situation. This
function blocks until all callbacks corresponding to previous call rcu() invo-
cations have been invoked and also until after those invocations have returned.
Therefore, taking the following steps just before terminating a program will
guarantee that all callbacks have completed:

1. Take whatever steps are required to ensure that there are no further in-

WG21/P0461R2 4

vocations of call rcu().

2. Invoke rcu barrier().

Carrying out this procedure just prior to program termination can be very
helpful for avoiding false positives when using tools such as valgrind.

Many RCU implementations require that every thread announce itself to
RCU prior to entering the first RCU read-side critical section, and to announce
its departure after exiting the last RCU read-side critical section. These tasks
are carried out via the rcu register thread() and rcu unregister thread(),
respectively.

The implementations of RCU that feature the most aggressive implemen-
tations of rcu read lock() and rcu read unlock() require that each thread
periodically pass through a quiescent state, which is announced to RCU using
rcu quiescent state(). A thread in a quiescent state is guaranteed not to
be in an RCU read-side critical section. Threads can also announce entry into
and exit from extended quiescent states, for example, before and after blocking
system calls, using rcu thread offline() and rcu thread online().

Finally, defer rcu() can be thought of as a non-intrusive variant of call
rcu() that maintains an array of references to memory awaiting callback in-
vocation, as opposed to the traditional implementations of call rcu(), which
maintain references in a linked list.

2.2 Existing C-Language RCU API and C++

Because of recent advances in both userspace RCU and the Linux kernel’s sup-
port for userspace RCU, C++ users will not need to be concerned with most of
the C-language API members shown in Figure 1.

Both rcu read lock() and rcu read unlock() are encapsulated in a C++
RAII class named rcu reader. The synchronize rcu() function is exposed
via the std::synchronize rcu() free function, and the rcu barrier() free
function is exposed via the std::rcu barrier() free function. The call rcu()

function is exposed via the std::rcu obj base<T,D>::retire() member func-
tion, and a non-intrusive variant of call rcu() is exposed via the std::rcu

retire() templated free function.
We expect that rcu register thread() and rcu unregister thread() will

be buried into the thread-creation and thread-exit portions of the standard li-
brary.

Use of the sys membarrier() RCU implementation from the userspace RCU
library allows rcu quiescent state(), rcu thread offline(), and rcu thread

online() to be dispensed with.
Of course, implementation experience and use may result in changes to the

C++ API as well as to the userspace RCU library. For example, the possibility
of RCU domains is discussed in Appendix A, and a few historical methods of
handling retire are shown in Appendix B.

WG21/P0461R2 5

1 class std::rcu_reader {
2 public:
3 rcu_reader() noexcept;
4 rcu_reader(std::defer_lock_t) noexcept;
5 rcu_reader(const rcu_reader &) = delete;
6 rcu_reader(rcu_reader &&other) noexcept;
7 rcu_reader& operator=(const rcu_reader&) = delete;
8 rcu_reader& operator=(rcu_reader&& other) noexcept;
9 ~rcu_reader() noexcept;

10 void swap(rcu_reader& other) noexcept;
11 void lock() noexcept;
12 void unlock() noexcept;
13 };

Figure 2: RAII RCU Readers

3 RAII RCU Readers

The rcu reader class shown in Figure 2 may be used for RAII RCU read-
side critical sections, and satisfies the requirements of BasicLockable. An
argumentless constructor enters an RCU read-side critical section, a constructor
with an argument of type defer lock t defers entering a critical section until a
later call to a std::rcu reader::lock() member function, and a constructor
taking another rcu reader instance transfers the RCU read-side critical section
from that instance to the newly constructed instance. The assignment operator
may be used to transfer an RCU read-side critical section from another rcu

reader instance to an already-constructed instance.
This class is intended to be used in a manner similar to std::lock guard,

so the destructor exits the RCU read-side critical section.
This implementation is movable but not copyable, which enables an RCU

read-side critical section’s scope to be arbitrarily extended across function bound-
aries via std::forward and std::move. The std::rcu reader::swap() mem-
ber function swaps the roles of a pair of rcu reader instances in the expected
manner. Finally, the std::rcu reader::lock() member function enters an
RCU read-side critical section and the std::rcu reader::unlock() member
function exits its critical section. Invoking std::rcu reader::lock() on an
instance already corresponding to an RCU read-side critical section and invok-
ing std::rcu reader::unlock() on an instance not corresponding to an RCU
read-side critical section results in undefined behavior.

4 Retiring RCU-Protected Objects

The traditional C-language RCU callback uses address arithmetic to map from
the rcu head structure to the enclosing struct, for example, via the container

of() macro. Of course, this approach also works for C++, but this section
describes a more palatable approach that is quite similar to that proposed for
hazard pointers. Other historical approaches may be found in Sections B.1
and B.2.

WG21/P0461R2 6

4.1 Retiring: Implementation Experience

Known implementation experience either (1) links newly retired objects together
or (2) references them from a set of vectors. Userspace RCU provides API mem-
bers that do both: call rcu() links retired objects and defer rcu() references
them from a vector.

The main advantage of the linking approach is that the retirement process
can easily and efficiently ensure that no allocations occur on the retirement path,
which is often part of the free path, thus avoiding out-of-memory deadlocks.
Such deadlocks could otherwise occur if there was no memory available, and
that lack of memory prevented retirement, and in turn preventing freeing.

However, many applications avoid out-of-memory deadlocks by overprovi-
sioning memory. For these applications, there is little or no reason to avoid
allocating memory during the process of retiring objects. Such applications
might choose to occasionally allocate vectors to keep track of newly retired
objects. And this choice brings additional benefits:

1. The greater cache locality of vectors has been shown to improve the effi-
ciency of the retirement process [3].

2. Removing the need to associate retirement-time objects with the RCU-
protected object also removes any restrictions in type and inheritance. For
but one example, the vector approach allows retiring an RCU-protected
string instance.

3. If retirement is infrequent, but there is a very large number of RCU-
protected objects in existence, the vector approach can offer a smaller
memory footprint.

There are a number of ways to manage the vectors:

1. Fixed per-thread allocation, as is done for the defer rcu() interface in
userspace RCU, with a synchronize rcu() invoked internally to defer

rcu() when the vector fills. This performs quite well [3], but is not appro-
priate in environments where it is necessary to retire objects from within
RCU read-side critical sections.

2. Provide an initial set of per-thread vectors, allocating more as these vectors
fill, and enqueuing them for reuse after their element’s deleters have been
invoked.

3. As above, but also using some mechanism to free vectors that are not
being used.

4. Allocate the retirement vectors as needed during memory allocation, en-
suring that there are enough slots to handle sudden retirement of all in-
stances of all dynamically allocated objects.2 The amount of retirement-
path allocation can of course be reduced by enqueuing them for reuse after

2 Kudos to Lance Roy for pointing out this possibility.

WG21/P0461R2 7

1 template<typename T, typename D = std::default_delete<T>>
2 class std::rcu_obj_base {
3 public:
4 void retire(D d = {}) noexcept;
5 };
6
7 template<typename T, typename D = std::default_delete<T>>
8 void std::rcu_retire(T *p, D d = {});

Figure 3: Retiring RCU-Protected Objects

their element’s deleters have been invoked. However, please note that this
approach assumes that retirement leads to freeing, and that there are
some rare but important algorithms for which this is not the case,3 with
the Linux kernel’s rcu sync mechanism perhaps being the most promi-
nent. The key point is that RCU’s function is waiting for readers, not
necessarily reclaiming memory. Furthermore, C++ allows special-purpose
memory allocators to be created easily, and it is not likely to be practical
to require all of them to interact with RCU.

We expect further implementation experience to uncover additional strate-
gies for tracking newly retired objects. In particular, we expect to see hybrid
schemes that make use of per-object space via the retire() member function
and that use vectors to track object passed to the rcu retire() free function.

4.2 Retiring: Proposed C++ APIs

Bowing to both types of implementation experience, we propose an API that
lends itself to linking retired objects and an API that lends itself to referencing
retired objects via vectors. Note that a vector-based retirement implementation
can simply ignore any per-object storage, and a linked-list retirement implemen-
tation can simply allocate the required storage on each retire. Higher-quality
implementations can of course provide further optimizations.

The rcu obj base class provides a retire() method that takes a deleter, as
shown in Figure 3. This class contains any storage required by that deleter, so
that the implementation of std::rcu obj base<T,D>::retire() never needs
to allocate memory on the retire/free path. The deleter’s operator() is invoked
after a grace period. The deleter type defaults to std::default delete<T>, but
one could also use a custom functor class with an operator() that carries out
teardown actions before freeing the object, or a raw function pointer type such
as void(*)(T*). Given sufficient type erasure and reconstitution, the call

rcu() C-language free function from the userspace RCU library can be used to
implement retire().

We recommend avoiding deleter types such as std::function<void(T*)>

(and also any other type requiring memory allocation) because allocating mem-
ory on the free path can result in out-of-memory deadlocks, but we nevertheless

3 Especially when using synchronize rcu() instead of call rcu() [12, 1, 5, 10, 8].

WG21/P0461R2 8

1 void synchronize_rcu() noexcept;
2 void rcu_barrier() noexcept;

Figure 4: RCU Updaters

recognize that C++ applications that assume ample memory might use such
deleters for convenience. However, such users are better served by the std::rcu
retire() templated free function shown on lines 7-8 of Figure 3. Although
this function can allocate on the retire/free path, high-quality implementations
will take steps to ensure that such allocation is very rare, for example, by pre-
allocating sufficient storage to avoid such allocation in the common case. Simple
implementations can instead provide a trivial std::rcu retire() function that
is a thin wrapper around std::rcu obj base::retire().

Implementation experience has shown that high-quality implementations of
std::rcu retire() can achieve better cache locality than can high-quality im-
plementations of std::rcu obj base::retire(), which results in better perfor-
mance and scalability.4 Users wishing the best performance and scalability will
therefore tend to prefer std::rcu retire() over std::rcu obj base::retire().

Finally, std::rcu retire() is non-intrusive. This means that (for exam-
ple) an object of type std::string can be passed to std::rcu retire(). In
contrast, std::rcu obj base::retire() can only be passed types related to
std::rcu obj base.

5 RCU Updaters

RCU updaters can use the free functions shown in Figure 4. The <rcu> header
provides a synchronize rcu() free function, which maps to the C-language
synchronize rcu() function, which waits for all pre-existing RCU readers to
complete. This header also provides the rcu barrier() free function, which
maps to the C-language rcu barrier() function, which waits for all pending
retire() and rcu retire() deleters to be invoked.

Implementation experience thus far indicates that both of these functions
must scale well, but that it is OK for them to have significant latency. In fact,
the significant latency helps reduce per-request overhead by allowing concurrent
callers’ requests to be satisfied by the same underlying operation. Use cases
that might otherwise require synchronize rcu() to have lower latency should
instead use one of the retire APIs, as these retire APIs impose extremely low
latencies on their callers.

The rcu barrier() API is used when removing code or data structures that
are used by the deleters passed to call rcu(). In such cases, it is necessary to
wait for any outstanding deleters to complete before freeing any code or data
that those deleters might make accesses to.

4 Note that this implementation experience is not limited to Google [3].

WG21/P0461R2 9

6 Hazard Pointers and RCU: Which to Use?

Table 1 provides a rough summary of the relative advantages of reference count-
ing, RCU, and hazard pointers. Advantages are marked in bold with green
background, or with a blue background for strong advantages.

Although reference counting has normally had quite limited capabilities and
been quite tricky to apply for general linked data-structure traversal, given a
double-pointer-width compare-and-swap instruction, it can work quite well, as
shown in the “Reference Counting with DCAS” column.

As a rough rule of thumb, for best performance and scalability, you should
use RCU for read-intensive workloads and hazard pointers for workloads that
have significant update rates. As another rough rule of thumb, a significant
update rate has updates as part of more than 10% of its operations. Refer-
ence counting with DCAS is well-suited for small systems and/or low read-side
contention, and particularly on systems that have limited thread-local-storage
capabilities. Both RCU and reference counting with DCAS allow unconditional
reference acquisition.

Specialized workloads will have other considerations. For example, small-
memory multiprocessor systems might be best-served by hazard pointers, while
the read-mostly data structures in real-time systems might be best-served by
RCU.

The relationship between the Hazard Pointers proposal and this RCU pro-
posal is as follows:

1. The hazptr obj base class is analogous to rcu obj base.

2. There is no RCU counterpart to hazptr domain, in part because RCU
does not explicitly track read-side references to specific objects.

3. The private hazptr obj class is analogous to the pre-existing rcu head

struct used in many RCU implementations. Because this class is an im-
plementation detail, there is no need to have compatible names.

4. There is no RCU class analogous to hazptr rec because RCU does not
track (or need to track) references to individual RCU-protected objects.

5. There is no hazard pointers counterpart to the rcu reader class. This
is because hazard pointers does not have (or need) a counterpart to rcu

read lock() and rcu read unlock().

6. There is no hazard pointers counterpart to the rcu retire() templated
free function because no hazard-pointers user has expressed a need for it.

7 Summary

This paper demonstrates a way of creating C++ bindings for a C-language
RCU implementation, which has been tested against the userspace RCU library.

WG21/P0461R2 10

R
ef
er
en

ce
C
o
u
n
ti
n
g

R
ef
er
en

ce
C
o
u
n
ti
n
g

w
it
h
D
C
A
S

R
C
U

H
a
za
rd

P
o
in
te
rs

U
n
re
cl
a
im

ed
o
b
je
ct
s

B
o
u
n
d
e
d

B
o
u
n
d
e
d

U
n
b
o
u
n
d
ed

B
o
u
n
d
e
d

C
o
n
te
n
ti
o
n
a
m
o
n
g

re
a
d
er
s

C
a
n
b
e
v
er
y
h
ig
h

C
a
n
b
e
v
er
y
h
ig
h

N
o
c
o
n
te

n
ti
o
n

N
o
c
o
n
te

n
ti
o
n

T
ra
v
er
sa
l
fo
rw

a
rd

p
ro
g
re
ss

E
it
h
er

b
lo
ck
in
g

o
r

lo
ck
-f
re
e
w
it
h
li
m
it
ed

re
cl
a
m
a
ti
o
n

L
o
ck

fr
e
e

B
o
u
n
d
e
d

p
o
p
u
-

la
ti
o
n

o
b
li
v
io
u
s

w
a
it
-f
re

e

L
o
ck

-f
re

e

R
ec
la
m
a
ti
o
n
fo
rw

a
rd

p
ro
g
re
ss

∗
E
it
h
er

b
lo
ck
in
g

o
r

lo
ck
-f
re
e
w
it
h
li
m
it
ed

re
cl
a
m
a
ti
o
n

L
o
ck

fr
e
e

B
lo
ck
in
g

B
o
u
n
d
e
d

w
a
it
-f
re

e

T
ra
v
er
sa
l
sp

ee
d

A
to
m
ic

re
a
d
-m

o
d
if
y
-

w
ri
te

u
p
d
a
te
s

A
to
m
ic

re
a
d
-m

o
d
if
y
-

w
ri
te

u
p
d
a
te
s

N
o

o
r

lo
w

o
v
e
r-

h
e
a
d

S
to
re
-l
o
a
d
fe
n
ce

R
ef
er
en

ce
a
cq
u
is
it
io
n

U
n
c
o
n
d
it
io
n
a
l

U
n
c
o
n
d
it
io
n
a
l

U
n
c
o
n
d
it
io
n
a
l

C
o
n
d
it
io
n
a
l

A
u
to
m
a
ti
c

re
cl
a
m
a
ti
o
n

Y
e
s

Y
e
s

N
o

N
o

P
u
rp

o
se

o
f
d
o
m
a
in
s

N
/
A

N
/
A

Is
o
la
te

lo
n
g
-l
a
te
n
cy

re
a
d
er
s

L
im

it
co
n
te
n
ti
o
n
,
re
-

d
u
ce

sp
a
ce

b
o
u
n
d
s,

et
c.

T
ab

le
1:

C
om

p
a
ri

so
n

o
f

D
ef

er
re

d
-R

ec
la

m
a
ti

o
n

M
ec

h
a
n

is
m

s

*
D
o
es

n
o
t
in
cl
u
d
e
m
em

o
ry

a
ll
o
ca
to
r,

ju
st

th
e
re
cl
a
m
a
ti
o
n
it
se
lf
.

WG21/P0461R2 11

Specifically, this document proposes rcu reader (Figure 2), rcu obj base (Fig-
ure 3), and a few free functions (Figures 3 and 4). We believe that these bind-
ings are also appropriate for the type-oblivious C++ RCU implementations that
information-hiding considerations are likely to favor.

Acknowledgments

We owe thanks to Pedro Ramalhete for his review and comments. We are
grateful to Jim Wasko for his support of this effort.

WG21/P0461R2 12

This appendix contains historical proposals and directions. As such, it is
strictly informational.

A RCU Domains

All the RCU implementations we are aware of started with a single domain,
and many still support only one domain. Where domains were added, they
were added for two reasons:

1. To allow alternative implementations with different design tradeoffs, for
example, the “bottom half” variant of Linux-kernel RCU was added to
allow Linux-kernel networking to better defend against network-based
denial-of-service attacks.

2. In the case of Linux-kernel sleepable RCU (SRCU), to isolate different
SRCU users from each other, so that one user having unusually long SRCU
read-side critical sections would not delay the grace periods of other users.

It seems likely that the advent of a low-latency sys membarrier() system
call will permit almost all userspace RCU use cases to be addressed with a single
implementation, so the first reason seems unlikely to apply to Linux systems in
the short term. Note that Windows has had similar functionality for some time,
and sys membarrier() is quite simple, so can be easily added to other systems
as needed. In the meantime, systems lacking sys membarrier() can use one of
the several userspace-RCU algorithms not relying on it.

As to the second reason, SRCU did not appear until some years after RCU
was first accepted into the Linux kernel, and it was many years before SRCU was
used at all heavily. Even today, there are more than an order of magnitude more
uses of RCU than of SRCU. Furthermore, many of the recent SRCU uses were
motivated by the accidental fact that SRCU grace periods are shorter than non-
expedited RCU grace periods, and unlike expedited RCU grace periods, SRCU
grace periods do not degrade real-time response.

In addition, initial uses of RCU in C++ appear to be targeted towards
performance rather than abstraction (as expected), and performance use cases
tend to focus on short RCU read-side critical sections and low update rates, each
of which make domains less useful. Initial uses of RCU in C++ also seem to
be focused solely on memory reclamation, and this use case can tolerate longer
grace periods than can the more esoteric non-reclamation RCU use cases, again
making RCU domains less useful.

Finally, use of domains can reduce RCU’s update-side efficiency. To see this,
note that production-quality RCU implementations can serve many thousands
of grace-period requests with a single grace period [11], reducing the per-request
grace-period overhead to nearly zero. Introducing domains increases the per-
request overhead because each domain needs its own grace-period computation.
Therefore, introduction of domains is an expensive step that should not be taken
without a strong and urgent need.

WG21/P0461R2 13

In time, it is quite possible that a strong and urgent need for C++ RCU
domains will appear. However, we should start with a very simple non-domain
API for the initial TS, and drive any proposals for the addition of domains from
actual experience with both uses and implementations.

Nevertheless, the following sections describe some historical proposals for
RCU C++ domains. These were illustrated using the multiple userspace-RCU
implementations, but were also intended to address the potential need for iso-
lation of one user’s readers from other users’ grace periods.

A.1 Compile-Time Domain Selection

The quiescent-state based reclamation (QSBR) implementation is intended for
standalone applications where the developers have full control over the en-
tire application, and where extreme read-side performance and scalability is
required. Applications use #include "urcu-qsbr.hpp" to select QSBR and
-lurcu -lurcu-qsbr to link to it. These applications must use rcu register

thread() and rcu unregister thread() to announce the coming and going
of each thread that is to execute rcu read lock() and rcu read unlock().
They must also use rcu quiescent state(), rcu thread offline(), and rcu

thread online() to announce quiescent states to RCU.
The memory-barrier implementation is intended for applications that can

announce threads (again using rcu register thread() and rcu unregister

thread()), but for which announcing quiescent states is impractical. Such ap-
plications use #include "urcu-mb.hpp" and -lurcu-mb to select the memory-
barrier implementation. Such applications will incur the overhead of a full
memory barrier in each call to rcu read lock() and rcu read unlock().

The signal-based implementation represents a midpoint between the QSBR
and memory-barrier implementations. Like the memory-barrier implementa-
tion, applications must announce threads, but need not announce quiescent
states. On the one hand, readers are almost as fast as in the QSBR im-
plementation, but on the other applications must give up a signal to RCU,
by default SIGUSR1. Such applications use #include "urcu-signal.hpp" and
-lurcu-signal to select signal-based RCU.

So-called “bullet-proof RCU” avoids the need to announce either threads or
quiescent states, and is therefore the best choice for use by libraries that might
well be linked with RCU-oblivious applications. The penalty is that rcu read

lock() incurs both a memory barrier and a test and rcu read unlock() incurs
a memory barrier. Such applications or libraries use #include urcu-bp.hpp

and -lurcu-bp.

A.2 Run-Time Domain Selection

Figure 5 shows the abstract base class for runtime selection of RCU domains.
Each domain creates a concrete subclass that implements its RCU APIs:

• Bullet-proof RCU: class rcu bp

WG21/P0461R2 14

1 class rcu_domain {
2 public:
3 constexpr explicit rcu_domain() noexcept { };
4 rcu_domain(const rcu_domain&) = delete;
5 rcu_domain(rcu_domain&&) = delete;
6 rcu_domain& operator=(const rcu_domain&) = delete;
7 rcu_domain& operator=(rcu_domain&&) = delete;
8 virtual void register_thread() = 0;
9 virtual void unregister_thread() = 0;

10 static constexpr bool register_thread_needed() { return true; }
11 virtual void quiescent_state() noexcept = 0;
12 virtual void thread_offline() noexcept = 0;
13 virtual void thread_online() noexcept = 0;
14 static constexpr bool quiescent_state_needed() { return false; }
15 virtual void read_lock() noexcept = 0;
16 virtual void read_unlock() noexcept = 0;
17 virtual void synchronize() noexcept = 0;
18 virtual void retire(rcu_head *rhp, void (*cbf)(rcu_head *rhp)) = 0;
19 virtual void barrier() noexcept = 0;
20 };

Figure 5: RCU Domain Base Class

• Memory-barrier RCU: class rcu mb

• QSBR RCU: class rcu qsbr

• Signal-based RCU: class rcu signal

Of course, additional implementations of RCU may be constructed by de-
riving from rcu domain and/or by implementing the API shown in Figure 1.

B Historical RCU-Protected Retirement Plans

This section lists alternative methods of retiring RCU-protected objects. These
might prove helpful for some use cases, and can be implemented in terms of the
intrusive approach described in Section 4.

B.1 Pointer To Enclosing Class (Informational Only)

If complex inheritance networks make inheriting from an rcu head derived type
impractical, one alternative is to maintain a pointer to the enclosing class as
shown in Figure 6. This rcu head ptr class is included as a member of the
RCU-protected class. The rcu head ptr class’s pointer must be initialized, for
example, in the RCU-protected class’s constructor.

If the RCU-protected class is foo and the name of the rcu head ptr member
function is rh, then foo1.rh.retire(my cb) would cause the function my cb()

to be invoked after the end of a subsequent grace period. As with the previous
classes, omitting the deleter results in the object being passed to delete and
an rcu domain object may be specified.

Please note that this section is informational only: This approach is not
being proposed for standardization.

WG21/P0461R2 15

1 template<typename T>
2 class rcu_head_ptr: public rcu_head {
3 public:
4 rcu_head_ptr()
5 {
6 this->container_ptr = nullptr;
7 }
8
9 rcu_head_ptr(T *containing_class)

10 {
11 this->container_ptr = containing_class;
12 }
13
14 static void trampoline(rcu_head *rhp)
15 {
16 T *obj;
17 rcu_head_ptr<T> *rhdp;
18
19 rhdp = static_cast<rcu_head_ptr<T> *>(rhp);
20 obj = rhdp->container_ptr;
21 if (rhdp->callback_func)
22 rhdp->callback_func(obj);
23 else
24 delete obj;
25 }
26
27 void retire(void callback_func(T *obj) = nullptr)
28 {
29 this->callback_func = callback_func;
30 call_rcu(static_cast<rcu_head *>(this), trampoline);
31 }
32
33 void retire(class rcu_domain &rd,
34 void callback_func(T *obj) = nullptr)
35 {
36 this->callback_func = callback_func;
37 rd.retire(static_cast<rcu_head *>(this), trampoline);
38 }
39
40 private:
41 void (*callback_func)(T *obj);
42 T *container_ptr;
43 };

Figure 6: RCU Callbacks: Pointer (Informational Only)

WG21/P0461R2 16

1 template<typename T>
2 class rcu_head_container_of {
3 public:
4 static void set_field(const struct rcu_head T::*rh_field)
5 {
6 T t;
7 T *p = &t;
8
9 rh_offset = ((char *)&(p->*rh_field)) - (char *)p;

10 }
11
12 static T *enclosing_class(struct rcu_head *rhp)
13 {
14 return (T *)((char *)rhp - rh_offset);
15 }
16
17 private:
18 static inline size_t rh_offset;
19 };
20
21 template<typename T>
22 size_t rcu_head_container_of<T>::rh_offset;

Figure 7: RCU Callbacks: Address Arithmetic (Informational Only)

1 void my_cb(struct std::rcu_head *rhp)
2 {
3 struct foo *fp;
4
5 fp = std::rcu_head_container_of<struct foo>::enclosing_class(rhp);
6 std::cout << "Callback fp->a: " << fp->a << "\n";
7 }

Figure 8: RCU Callbacks: Address Arithmetic in Callback (Informational Only)

B.2 Address Arithmetic (Informational Only)

Figure 7 shows an approach that can be used if memory is at a premium and the
inheritance techniques cannot be used. The set field() method sets the offset
of the rcu head container of member within the enclosing RCU-protected
structure, and the enclosing class() member function applies that offset to
translate a pointer to the rcu head container of member to the enclosing
RCU-protected structure.

This address arithmetic must be carried out in the callback function, as
shown in Figure 8.

Please note that this section is informational only: This approach is not
being proposed for standardization.

References

[1] Bhat, S. S. percpu rwlock: Implement the core design of per-CPU reader-
writer locks. https://patchwork.kernel.org/patch/2157401/, Febru-
ary 2014.

https://patchwork.kernel.org/patch/2157401/

WG21/P0461R2 17

[2] Desnoyers, M. [RFC git tree] userspace RCU (urcu) for Linux. http:

//liburcu.org, February 2009.

[3] Desnoyers, M., McKenney, P. E., Stern, A., Dagenais, M. R.,
and Walpole, J. User-level implementations of read-copy update. IEEE
Transactions on Parallel and Distributed Systems 23 (2012), 375–382.

[4] Khiszinsky, M. Lock-free data structures. the inside. rcu. https:

//kukuruku.co/post/lock-free-data-structures-the-inside-rcu/,
February 2015.

[5] Liu, R., Zhang, H., and Chen, H. Scalable read-mostly synchroniza-
tion using passive reader-writer locks. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14) (Philadelphia, PA, June 2014), USENIX
Association, pp. 219–230.

[6] McKenney, P. E., Desnoyers, M., and Jiangshan, L. User-space
RCU. https://lwn.net/Articles/573424/, November 2013.

[7] McKenney, P. E., and Prasad, A. Recent read-mostly research in
2015. http://lwn.net/Articles/667593/, December 2015.

[8] McKenney, P. E., and Slingwine, J. D. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and Distributed
Computing and Systems (Las Vegas, NV, October 1998), pp. 509–518.

[9] McKenney, P. E., Wong, M., and Michael, M. P0232r0:
A concurrency toolkit for structured deferral or optimistic specula-
tion. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/

p0232r0.pdf, February 2016.

[10] Ramalhete, P. Implementing a reader-writer lock us-
ing rcu. http://concurrencyfreaks.blogspot.com/2015/10/

implementing-reader-writer-lock-using.html, October 2015.

[11] Sarma, D., and McKenney, P. E. Making RCU safe for deep sub-
millisecond response realtime applications. In Proceedings of the 2004
USENIX Annual Technical Conference (FREENIX Track) (June 2004),
USENIX Association, pp. 182–191.

[12] Shenoy, G. R. [patch 4/5] lock cpu hotplug: Redesign - lightweight imple-
mentation of lock cpu hotplug. Available: http://lkml.org/lkml/2006/

10/26/73 [Viewed January 26, 2009], October 2006.

Change Log

This paper first appeared as P0461R0 in October of 2016. Revisions to this
document are as follows:

http://liburcu.org
http://liburcu.org
https://kukuruku.co/post/lock-free-data-structures-the-inside-rcu/
https://kukuruku.co/post/lock-free-data-structures-the-inside-rcu/
https://lwn.net/Articles/573424/
http://lwn.net/Articles/667593/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0232r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0232r0.pdf
http://concurrencyfreaks.blogspot.com/2015/10/implementing-reader-writer-lock-using.html
http://concurrencyfreaks.blogspot.com/2015/10/implementing-reader-writer-lock-using.html
http://lkml.org/lkml/2006/10/26/73
http://lkml.org/lkml/2006/10/26/73

WG21/P0461R2 18

• Convert to single-column mode. (November 16, 2016.)

• Change call() to retire() for hazard-pointer compatibility. (January
4, 2017.)

• Change rcu scoped reader to rcu guard for compatibility with existing
RAII mechanisms. (January 19, 2017.)

• Change rcu head delete to rcu obj base for compatibility with hazard
pointers. (January 19, 2017.)

• Update to indicate preferred C++ RCU approach. (January 19, 2017.)

• Call out relationships between classes for RCU and for hazard pointers.
(January 19, 2017.)

• Add constructors to rcu domain to match those of hazptr domain. (Febru-
ary 1, 2017.)

• Add quiescent state needed() member function to rcu domain to allow
code using RCU to complain if its requirements are not met, based on
discussions with Geoffrey Romer and Andrew Hunter. (February 3, 2017.)

• Added references to related papers. (February 5, 2017.)

At this point, the paper was published as P0461R1.
Further revisions to this document are as follows:

• Indicate which sections are preferred vs. informational. (February 17,
2017.)

• Update document number and boilerplate. (March 2, 2017.)

• Drop RCU domains, focusing on the sys membarrier() implementation
from the userspace RCU library.

• Provide rcu reader as RAII class, replacing the old rcu guard.

• Trim down the rcu obj base class.

• Remove implementation details from the code shown in the figures.

• Add a pointer to the github repository containing a working implementa-
tion.

• Add free functions for grace-period wait, retire-invocation wait, and non-
intrusive retire.

• Add Khiszinsky citation. (August 31, 2017.)

• Add explanation of the purpose of domains. (October 2, 2017.)

• Add reference to WG21/P0750R0. (October 15, 2017.)

	1 Introduction
	2 Existing C-Language RCU API
	2.1 Existing C-Language RCU API Detailed Description
	2.2 Existing C-Language RCU API and C++

	3 RAII RCU Readers
	4 Retiring RCU-Protected Objects
	4.1 Retiring: Implementation Experience
	4.2 Retiring: Proposed C++ APIs

	5 RCU Updaters
	6 Hazard Pointers and RCU: Which to Use?
	7 Summary
	A RCU Domains
	A.1 Compile-Time Domain Selection
	A.2 Run-Time Domain Selection

	B Historical RCU-Protected Retirement Plans
	B.1 Pointer To Enclosing Class (Informational Only)
	B.2 Address Arithmetic (Informational Only)

