
Wording for lambdas in unevaluated contexts

Document #: P0315R3
Date: 2017-10-11
Project: Programming Language C++
Audience: Core Working Group
Reply-to: Louis Dionne <ldionne.2@gmail.com>

Hubert Tong <hubert.reinterpretcast@gmail.com>

Contents
1 Revision history 1

2 Discussion on wording 2

3 Proposed Wording 6

4 References 8

1 Revision history

• R0 – Initial draft

• R1 – Changed the wording to work around the resolution of [DR1607], which conflicted with
the initial wording. Also address the potential additional concerns raised by this wording
change.

• R2 – Applied feedback from EWG and CWG in Issaquah and CWG in Kona:

– a lambda expression is not part of the immediate context

– add a discussion about lambdas as non-type template arguments

– clarify the difference between the types of lambda expressions in alias templates

– clarify ODR-equivalence of lambda expressions declared in different TUs, and the meaning
for function template declarations

– clarify the situation for redeclarations of functions with lambda-expressions

– rebase on top of the C++17 DIS

– editorial: extract the wording into its own section

• R3 – Applied changes per guidance from CWG in Toronto:

1

mailto:ldionne.2@gmail.com
mailto:hubert.reinterpretcast@gmail.com

– editorial: hyphenate the term full-expression, italicize the term lambda-expression, and
remove sections useless for wording purposes

– replace wording in [temp.over.link] by equivalent but much simpler wording as suggested
by Richard Smith

– add a discussion about implicit captures in lambda-expressions in unevaluated contexts

2 Discussion on wording

The core language changes introduced in this paper are a bit tricky. The reason is that we remove
many restrictions on lambda expressions, yet we still want to keep closure types out of the signature
of external functions, which would be a nightmare for implementations. This discussion goes over
all known possible points of contingency to clarify them.

1. (wording) With the removal of the restrictions on lambdas in unevaluated contexts, a concern
is that lambda-expressions might then be able to appear in the signature of functions with
external linkage, which would require implementations to generate a name for the associated
closure type. However, since we wouldn’t be able to attach to another ABI entity in some cases
(such as lambda-expressions appearing at global scope), that would mean coming up with a
mangling scheme that identifies the closure type from nothing but its own form. This, in turn,
would require encoding its complete definition, which is burdensome for implementations and
motivated the original restrictions on lambda-expressions.

Fortunately, this specific problem can’t arise in the case of non-template functions, even with
the above removal of constraints on lambda-expressions. Indeed, according to [basic.link]
6.5/8, closure types have no linkage, and therefore they cannot appear in the signature of a
function with external linkage (a function is a compound type):

[...] A type is said to have linkage if and only if:
[...]
- it is a compound type (6.9.2) other than a class or enumeration, compounded
exclusively from types that have linkage; or
[...]

However, to make it clear that closure types are never given a name for linkage purposes, we
propose modifying [dcl.typedef].

2. (wording) Another similar problem is that of lambda-expressions appearing in the signature of
function templates. There are two ways this could happen. First, a lambda expression could
appear not by itself, but indirectly, by being part of an expression which references a template
parameter. Indeed, per [temp.over.link] 17.5.6.1/4:

When an expression that references a template parameter is used in the function
parameter list or the return type in the declaration of a function template, the
expression that references the template parameter is part of the signature of the
function template.

2

Thus, a function template declaration such as the following will require the implementation to
make the lambda-expression part of the signature, which is specifically what we would like to
avoid:

template <int N>
void f(const char (*s)[([]{}, N)]) { }

The other situation we would like to avoid is for implementations to have to figure out that the
two following expressions are equivalent, either for linkage purposes (in different translation
units) or for redeclaration purposes (in the same translation unit):

template <int N> void f(const char (*s)[([]{ return N; })()]) { }
template <int N> void f(const char (*s)[([]{ return N; })()]) { }

This case is slightly different from the first one, since the template parameter appears in
the body of the lambda-expression, which is not considered part of the full-expression in
the function parameter list. To make sure these cases do not happen, we propose amending
[temp.over.link].

3. Another possible concern is the appearance of lambda-expressions in contexts that are con-
strained by the ODR. For example:

// a.h:
template <typename T>
int counter() {

static int cnt = 0;
return cnt++;

}

inline int f() {
return counter<decltype([] {})>();

}

// translation unit 1:
#include "a.h"
int foo() { return f(); }

// translation unit 2:
#include "a.h"
int bar() { return f(); }

Given such code, a question might be whether foo and bar modify the same cnt variable,
since f is defined in a header and it calls counter with a closure type that is supposed to be
unique. However, since f is inline, the resulting program is as-if there was a single definition
of it, and so both functions end up modifying the same cnt variable. This turns out not to be
a problem for implementations, because they must already handle such cases where there is
an ODR context to attach the closure type to. Thus, no wording change is required.

4. (wording) A concern with allowing lambda-expressions in declarations is that of dealing with

3

entities that can be redeclared. It is already the case that no two lambda-expressions share
the same closure type within a single translation unit:

static decltype([] { }) f();
static decltype([] { }) f(); // invalid; return type mismatch

static decltype([] { }) g();
static decltype(g()) g(); // okay

static void h(decltype([] { }) *) { }
static void h(decltype([] { }) *) { }
h(nullptr); // ambiguous

using A = decltype([] { });
static void i(A *);
static void i(A *) { }
i(nullptr); // okay

By further clarifying that the lambda-expressions in alias template specializations are unique
to each specialization even if non-dependent, we conclude the following:

template <typename T>
using B = decltype([] { });
static void j(B<char16_t> *) { }
static void j(B<char32_t> *) { }
j(nullptr); // ambiguous

To make the above interpretation of the standard more obvious, we propose modifying
[temp.alias].

Furthermore, some questions were raised on the Core reflector regarding redeclarations like
this:

template <int N> static void k(decltype([]{ return 0; }()));
template <int N> static void k(decltype([]{ return 0; }())); // okay
template <int N> static void k(int); // okay

These should be valid redeclarations, since the lambda expressions are evaluated, and they
neither contain a template parameter in their body nor are part of a full-expression that
contains one. Hence, the lambda-expression does not need to appear in the signature of the
function, and the behavior is equivalent to this, without requiring any special wording:

struct lambda { auto operator()() const { return 0; } };
template <int N> static void k(decltype(lambda{}()));
template <int N> static void k(decltype(lambda{}())); // okay today
template <int N> static void k(int); // okay today

5. (wording) A concern with allowing lambda-expressions outside the body of the declaration of
function templates is the need to evaluate the validity of potentially complex expressions as
part of template argument deduction. Indeed, without clarifying the wording, it is unclear

4

whether implementations would be expected to support SFINAE based on the validity of the
body of a lambda-expression found in the declaration of a function template. Since this could
be unwieldy for implementations, we choose not to require this in the current paper. Thus, if
a lambda-expression appears inside the declaration of a function template and any part of it
is ill-formed, then the program is ill-formed. To reflect this, we propose adding a note at the
end of [temp.deduct].

6. One usability question that has been raised with this paper is related to the usage of lambda
expressions as non-type template arguments.

// foo.h
template <auto> struct foo { };
foo<[]() {}> x;

// translation unit 1:
#include "foo.h"

// translation unit 2:
#include "foo.h"

With the current wording that would be an ODR violation. Is this something we want to do
something about?

7. Whether a lambda-expression implicitly captures an entity currently depends on whether the
lambda-expression ([expr.prim.lambda.capture] 8.1.5.2/7):

(a) odr-uses the entity (in the case of a variable),

(b) odr-uses this (in the case of the object designated by *this), or

(c) names the entity in a potentially-evaluated expression where the enclosing full-expression
depends on a generic lambda parameter declared within the reaching scope of the
lambda-expression.

Since an unevaluated context does not satisfy the above criteria, there was a question
regarding whether variables could be implicitly captured by a lambda-expression appearing in
an unevaluated context:

void f(int i) {
auto lambda = [=]{ return i; }; // captures i
static_assert(sizeof(L) == sizeof([=]{ return i; })); // Error, i was not captured?

}

The desire is that entities be implicitly captured by lambda-expressions even when the lambda
appears in an unevaluated context. However, according to the great oracle of C++, Richard
Smith, this already works as desired:

Lambdas in unevaluated operands have a lot more value if we also permit de-
fault initialization of non-capturing lambdas (that gives us the ability to use
std::set<T, decltype([](T a, T b) { return ... })>, for instance). If we
do permit that, then we should treat the body of at least a non-capturing lambda

5

as *not* being an unevaluated operand even when the lambda-expression is lexi-
cally within one. That’s actually already the result that our current definition of
"subexpression" gives. And that in turn means that lambdas would need to capture
enclosing variables that they use, even in unevaluated operands.

Hence, no wording change is required.

8. Consider the following example:

auto f(int i) -> decltype([=](auto g) { return g(i); }) { }

As Richard Smith says:

It’s not completely clear whether this would be valid: the lambda-expression is
not lexically within a block scope, but names from the function’s block scope are
visible at the point of the lambda-expression, so is this a local lambda-expression
or not? If f were a non-defining function declaration, I think [basic.scope.proto]
makes it clear that the lambda would not be a local lambda-expression and
[expr.prim.lambda.capture] 8.1.5.2/3 would disallow it having any captures.
It’d be good to clear up exactly what it means for the smallest enclosing scope of a
lambda-expression to be a block scope; I don’t think this mattered up until now.

For the time being, and for the purpose of making this paper progress, we do not tackle this
limitation and leave it ill-formed to perform such captures.

3 Proposed Wording

The wording is based on the C++17 DIS [N4659]:

1. In [expr.prim.lambda] 8.1.5/2:

The evaluation of a lambda-expression results in a prvalue temporary (12.2). This
temporary is called the closure object. A lambda-expression shall not appear in
an unevaluated operand (Clause 8), in a template-argument, in an alias-declaration,
in a typedef declaration, or in the declaration of a function or function template
outside its function body and default arguments. [Note: The intention is to prevent
lambdas from appearing in a signature. – end note] [Note: A closure object behaves
like a function object (23.14). – end note]

2. (discussion) In [dcl.typedef] 10.1.3/9:

If the typedef declaration defines an unnamed class (or enum), the first typedef-name
declared by the declaration to be that class type (or enum type) is used to denote
the class type (or enum type) for linkage purposes only (6.5). However, a closure
type is never given a name for linkage purposes. [Example:

typedef struct { } *ps, S; // S is the class name for linkage purposes
typedef decltype([]{}) C; // the closure type has no name for linkage purposes

– end example]

6

3. (discussion) In [temp.over.link] 17.5.6.1/5:

Two expressions involving template parameters are considered equivalent if two
function definitions containing the expressions would satisfy the one-definition rule
(6.2), except that the tokens used to name the template parameters may differ as
long as a token used to name a template parameter in one expression is replaced
by another token that names the same template parameter in the other expression.
Two lambda-expressions are never considered equivalent. [Note: The intent is to
avoid lambda-expressions appearing in the signature of a function template with
external linkage. – end note]

Also, add the following example after [temp.over.link] 17.5.6.1/5:
// ill-formed, no diagnostic required: the two expressions are
// functionally equivalent but not equivalent
template <int N> void foo(const char (*s)[([]{}, N)]); // TU 1
template <int N> void foo(const char (*s)[([]{}, N)]); // TU 2

// ill-formed, no diagnostic required: the two lambda-expressions are
// functionally equivalent but not equivalent
template <int N> void bar(const char (*s)[([]() { return N; })()]); // TU 1
template <int N> void bar(const char (*s)[([]() { return N; })()]); // TU 2

// two different declarations because the non-dependent portions differ
template <class T> void baz(T, char (*s)[sizeof(decltype([]{ return 0; }))]);
template <class T> void baz(T, char (*s)[sizeof(decltype([]{ return 0; }))]);

// two different declarations because the non-dependent portions differ
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);

4. (discussion) Add the following paragraph at the end of [temp.alias] 17.5.7:

The type of a lambda expression appearing in an alias template declaration is
different between instantiations of that template, even when the lambda expression
is not dependent. [Example:

template <class T>
using A = decltype([] { });
// A<int> and A<char> refer to different closure types

– end example]

5. (discussion) Add the following after [temp.deduct] 17.8.2/8 (note that the term immediate
context is not defined formally in the standard, which is the subject of [CWG1844]):

A lambda expression appearing in a function type or a template parameter is not
considered part of the immediate context for the purposes of template argument
deduction. [Note: The intent is to avoid requiring implementations to deal with
substitution failure involving arbitrary statements. [Example:

7

template <class T>
auto f(T) -> decltype([]() { T::invalid; } ());
void f(...);
f(0); // error: invalid expression not part of the immediate context

template <class T, std::size_t = sizeof([]() { T::invalid; })>
void g(T);
void g(...);
g(0); // error: invalid expression not part of the immediate context

template <class T>
auto h(T) -> decltype([x = T::invalid]() { });
void h(...);
h(0); // error: invalid expression not part of the immediate context

template <class T>
auto i(T) -> decltype([]() -> typename T::invalid { });
void i(...);
i(0); // error: invalid expression not part of the immediate context

template <class T>
auto j(T t) -> decltype([](auto x) -> decltype(x.invalid) { } (t));
void j(...);
j(0); // deduction fails on #1, calls #2

– end example] – end note]

4 References

[N4659] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

[DR1607] Daniel Krügler, Lambdas in template parameters
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1607

[CWG1844] Richard Smith, Defining "immediate context"
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1844

8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1607
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1844

	1 Revision history
	2 Discussion on wording
	3 Proposed Wording
	4 References

