

Doc number: P0514R0
Revises: None.
Date: 2016-11-15
Project: Programming Language C++, Concurrency Working Group
Reply-to: Olivier Giroux <ogiroux@nvidia.com>

Enhancing	std::atomic_flag	for	waiting.	

TL;DR	summary	of	the	goals:	

1 The atomic_flag type provides combines the classic test-and-set functionality with the ability to block
until the object is in a specified state. It has two states, set and clear.

	

	

We	propose	to	make	atomic_flag	more	useful	and	efficient,	without	loss	of	compatibility.	

The	current	atomic	objects	make	it	easy	to	implement	inefficient	blocking	synchronization	in	C++,	
due	to	lack	of	support	for	waiting	in	a	more	efficient	way	than	polling.	One	problem	that	results,	
is	poor	system	performance	under	oversubscription	and/or	contention.		Another	is	high	energy	
consumption	under	contention,	regardless	of	oversubscription.	

The	current	atomic_flag	object	does	nothing	to	help	with	this	problem,	despite	its	name	that	
suggests	it	 is	suitable	for	this	use.	Its	 interface	is	tightly-fitted	to	the	demands	of	the	simplest	
spinlocks	without	contention	or	energy	mitigation	beyond	what	timed	backoff	can	achieve.	

	

Presenting	a	simple	abstraction	for	scalable	waiting.	

Our	proposed	enhancements	for	atomic_flag	objects	make	it	easier	to	implement	scalable	
and	efficient	synchronization	using	atomic	objects.		

For	example:
 struct atomic_flag_lock {
 void lock() {
 while (f.test_and_set())
 f.wait(false);
 }
 void unlock() {
 f.clear();
 }
 private:
 std::experimental::atomic_flag f = ATOMIC_FLAG_INIT;
 };

	

A	reference	implementation	is	provided	for	your	evaluation.	

It’s	here	-	https://github.com/ogiroux/atomic_flag.	

We	show	a	gently-optimized	version	of	the	previous	program	correspdonging	to	the	data	plot	(below)	
that	shows	aggregate	throughput	(in	lock	grants	per	unit	time)	under	different	operating	conditions:	

 using align = std::hardware_destructive_interference_size;
 struct alignas(align) atomic_flag_lock {
 void lock() {
 while (f.test_and_set(std::memory_order_acquire))
 f.wait(false, std::memory_order_relaxed);
 }
 void unlock() {
 f.clear(std::memory_order_release);
 }
 private:
 std::experimental::atomic_flag f = ATOMIC_FLAG_INIT;
 };

(We	apologize	that	memory	model	and	alignment	optimizations	are	required	in	the	real	world.)	

	
Operating conditions: Single-threaded, uncontended, and rare use 1 lock per thread. | Rare

has threads acquire randomly-chosen locks. | Shortest, short, long use 1 lock.
All but the single-threaded operating condition use the maximum number of physical threads.

System information: MacOS, Linux (x86), Windows: i7-4850HQ | Linux (arm): Jetson TX1.
= Repeatability error of approx. 5%,. = YMMV. =

50%

100%

200%

400%

single-thread uncontended rare shortest short long

Throughput	of	an	efficient	std::atomic_flag
spinlock	relative	to	std::mutex.

MacOS Windows	10 Windows	7 Linux	(x86) Linux	(arm)

The	synchronic<T>	interface	of	either	P0126	or	N4195	is	no	longer	recommended.	
In	short,	 the	highest	performance	 is	not	achievable	with	the	most	 recent	synchronic<T>	 interface	
because	 additional	 atomic	 operations	 are	 imposed	 by	 the	 abstraction.	 Specifically,	 two	 atomics	 are	
needed	to	synchronize	and	manage	contention,	whereas	an	optimized	implementation	may	be	able	to	
fuse	them	into	one.	

This	 new	 approach	 provides	 strictly	 more	 implementation	 freedom,	 including	 the	 freedom	 to	 fuse	
contention-management	with	synchronization.	The	implementation	is	not	made	any	simpler,	note.	

The	requirements	placed	on	legacy	platforms	are	not	(much)	worse.	

Legacy,	 or	 lower-quality	 implementations,	 will	 need	 to	 ensure	 that	 they	 can	 atomically	 read	 the	
underlying	type.	Although	the	current	interface	of	atomic_flag	doesn’t	expose	this	ability	to	users,	
we	 believe	 that	 there	 exist	 no	 platform	 that	 support	atomic_flag	 and	 could	 not	 expose	 a	load	
capability.	

Higher-quality	implementations	will	want	to	use	an	atomic<int8_t>,	or	better,	and	make	use	of	the	
full	expressiveness	of	this	type	in	order	to	efficiently	deal	with	contention.	

There	is	no	obvious	ABI	problem.	

We	do	not	foresee	a	need	to	break	the	ABI	for	this	feature	because	good	implementations	are	available	
that	 fit	 in	 a	 single	 byte	 on	 all	 modern	 systems,	 and	 the	 prior	 interface	 is	 still	 supported.	 Modest	
simplifications	to	the	implementation	are	possible	if	an	atomic<int32_t>	can	be	used,	nevertheless.	

This	extension	was	foreseen	when	atomic_flag	was	introduced.	

For	example,	wait	functions	figure	in	N2145,	N2324	and	N2393	but	are	not	proposed	for	inclusion.	The	
arguments	 given	 are	 twofold:	 1)	 that	 the	 authors	 did	 not	 expect	 the	 type	 to	 be	 used	outside	 of	 lock	
implementations	for	atomic	types	that	aren’t	lock-free,	and	2)	that	the	implementation	quality	foreseen	
at	the	time	was	low.	Notably	these	papers	don’t	mention	platform	concerns.	

Does	the	extension	preserve	the	guarantee	of	lock-freedom?	

TBD.	The	current	implementation	does	not.	

	 	

Example	implementation	of	the	functionality	in	the	prior	paper	using	features	of	this	paper.	

Standardization	of	this	functionality	is	not	proposed	in	this	paper.	

template <class T, class V>
void atomic_notify(
 std::experimental::atomic_flag& f,
 std::atomic<T>& a,
 V newval,
 std::memory_order order = std::memory_order_seq_cst,
 std::experimental::atomic_notify notify = std::experimental::atomic_notify::all) {

 a.store(newval); //requires sc
 if (f.test()) //requires sc
 f.set(false, std::memory_order_relaxed, notify);
}

template <class T, class V>
void atomic_wait(
 std::experimental::atomic_flag& f,
 std::atomic<T> const& a,
 V current,
 std::memory_order order = std::memory_order_seq_cst) {

 for (int i = 0; i < 32; ++i, std::this_thread::yield())
 if (a.load(order) != current)
 return;
 while (1) {
 f.set(true, std::memory_order_seq_cst,
 std::experimental::atomic_notify::none); //requires sc
 if (a.load() != current) //requires sc
 return;
 f.wait(false, std::memory_order_relaxed);
 }
}

	 	

C++	Proposed	Wording	
Apply	 the	 following	edits	 to	 the	working	draft	 of	 the	 Standard.	 The feature	 test	macro	
__cpp_lib_atomic_flag_wait	should	be	added.	

Add	to	[atomics.syn]:	

 // 29.7, flag type and operations
 enum class atomic_notify {
 all, one, none
 };
 struct atomic_flag;
 bool atomic_flag_test_and_set(volatile atomic_flag*) noexcept;
 bool atomic_flag_test_and_set(atomic_flag*) noexcept;
 bool atomic_flag_test_and_set_explicit(volatile atomic_flag*,
 memory_order) noexcept;
 bool atomic_flag_test_and_set_explicit(atomic_flag*, memory_order) noexcept;
 bool atomic_flag_test_and_set_explicit_notify(volatile atomic_flag*,
 memory_order, atomic_notify) noexcept;
 bool atomic_flag_test_and_set_explicit_notify(atomic_flag*,
 memory_order, atomic_notify) noexcept;
 void atomic_flag_clear(volatile atomic_flag*) noexcept;
 void atomic_flag_clear(atomic_flag*) noexcept;
 void atomic_flag_clear_explicit(volatile atomic_flag*, memory_order) noexcept;
 void atomic_flag_clear_explicit(atomic_flag*, memory_order) noexcept;
 void atomic_flag_clear_explicit_notify(volatile atomic_flag*,
 memory_order, atomic_notify) noexcept;
 void atomic_flag_clear_explicit_notify(atomic_flag*, memory_order,
 atomic_notify) noexcept;
 bool atomic_flag_test(const volatile atomic_flag*) noexcept;
 bool atomic_flag_test(const atomic_flag*) noexcept;
 bool atomic_flag_test_explicit(const volatile atomic_flag*, memory_order) noexcept;
 bool atomic_flag_test_explicit(const atomic_flag*, memory_order) noexcept;
 void atomic_flag_wait(const volatile atomic_flag*, bool);
 void atomic_flag_wait(const atomic_flag*, bool);
 void atomic_flag_wait_explicit(const volatile atomic_flag*, bool, memory_order);
 void atomic_flag_wait_explicit(const atomic_flag*, bool, memory_order);
 #define ATOMIC_FLAG_INIT see below

Add	to	[atomics.flag]:	
namespace std {
 typedef struct atomic_flag {
 bool test_and_set(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) noexcept;
 bool test_and_set(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) volatile noexcept;
 void clear(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) noexcept;
 void clear(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) volatile noexcept;
 void set(bool state, memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) noexcept;
 void set(bool state, memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) volatile noexcept;
 bool test(memory_order order = memory_order_seq_cst) const noexcept;
 bool test(memory_order order = memory_order_seq_cst) const volatile noexcept;
 void wait(bool set, memory_order order = memory_order_seq_cst) const noexcept;
 void wait(bool set,
 memory_order order = memory_order_seq_cst) const volatile noexcept;
 template <class Clock, class Duration>
 bool wait_until(bool set, chrono::time_point<Clock, Duration> const& abs_time,

 memory_order order = memory_order_seq_cst) const;
 template <class Clock, class Duration>
 bool wait_until(bool set, chrono::time_point<Clock, Duration> const& abs_time,
 memory_order order = memory_order_seq_cst) const volatile;
 template <class Rep, class Period>
 bool wait_for(bool set, chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst) const;
 template <class Rep, class Period>
 bool wait_for(bool set, chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst) const volatile;

 atomic_flag(__base_t init) noexcept : atom(init) { }
 atomic_flag() noexcept = default;
 atomic_flag(const atomic_flag&) = delete;
 atomic_flag& operator=(const atomic_flag&) = delete;
 atomic_flag& operator=(const atomic_flag&) volatile = delete;
 } atomic_flag;

 bool atomic_flag_test_and_set(volatile atomic_flag*) noexcept;
 bool atomic_flag_test_and_set(atomic_flag*) noexcept;
 bool atomic_flag_test_and_set_explicit(volatile atomic_flag*,
 memory_order) noexcept;
 bool atomic_flag_test_and_set_explicit(atomic_flag*, memory_order) noexcept;
 bool atomic_flag_test_and_set_explicit_notify(volatile atomic_flag*,
 memory_order, atomic_notify) noexcept;
 bool atomic_flag_test_and_set_explicit_notify(atomic_flag*,
 memory_order, atomic_notify) noexcept;
 void atomic_flag_clear(volatile atomic_flag*) noexcept;
 void atomic_flag_clear(atomic_flag*) noexcept;
 void atomic_flag_clear_explicit(volatile atomic_flag*, memory_order) noexcept;
 void atomic_flag_clear_explicit(atomic_flag*, memory_order) noexcept;
 void atomic_flag_clear_explicit_notify(volatile atomic_flag*,
 memory_order, atomic_notify) noexcept;
 void atomic_flag_clear_explicit_notify(atomic_flag*, memory_order,
 atomic_notify) noexcept;
 bool atomic_flag_test(const volatile atomic_flag*) noexcept;
 bool atomic_flag_test(const atomic_flag*) noexcept;
 bool atomic_flag_test_explicit(const volatile atomic_flag*, memory_order) noexcept;
 bool atomic_flag_test_explicit(const atomic_flag*, memory_order) noexcept;
 void atomic_flag_wait(const volatile atomic_flag*, bool);
 void atomic_flag_wait(const atomic_flag*, bool);
 void atomic_flag_wait_explicit(const volatile atomic_flag*, bool, memory_order);
 void atomic_flag_wait_explicit(const atomic_flag*, bool, memory_order);

 #define ATOMIC_FLAG_INIT see below
}

2 The atomic_flag type provides combines the classic test-and-set functionality, with the ability to block
until the object is in a specified state. It has two states, set and clear.

3 Operations on an object of type atomic_flag shall be lock-free. [Note: Hence the operations should
also be address-free. No other type requires lock-free operations, so the atomic_flag type is the
minimum hardware-implemented type needed to conform to this International standard. The remaining
types can be emulated with atomic_flag, though with less than ideal properties. — end note]

4 The atomic_flag type shall have standard layout. It shall have a trivial default constructor, a deleted
copy constructor, a deleted copy assignment operator, and a trivial destructor.

5 The macro ATOMIC_FLAG_INIT shall be defined in such a way that it can be used to initialize an object
of type atomic_flag to the clear state. The macro can be used in the form:

 atomic_flag guard = ATOMIC_FLAG_INIT;

It is unspecified whether the macro can be used in other initialization contexts. For a complete static-
duration object, that initialization shall be static. Unless initialized with ATOMIC_FLAG_INIT, it is
unspecified whether an atomic_flag object has an initial state of set or clear.

6 The set_and_set and clear member functions are notifying functions. The wait, wait_for,
and wait_until member functions are waiting functions. Executions of waiting functions may block
until they are unblocked by a notifying function, according to each function’s effects.

7 [Note: Programs using atomic_flag waiting functions may be susceptible to transient values, an
issue known as the ABA problem, resulting in continued blocking if a condition is only temporarily
met. – End Note.]

 bool atomic_flag_test_and_set(volatile atomic_flag* object) noexcept;
 bool atomic_flag_test_and_set(atomic_flag* object) noexcept;
 bool atomic_flag_test_and_set_explicit(volatile atomic_flag* object,
 memory_order order) noexcept;
 bool atomic_flag_test_and_set_explicit(atomic_flag* object,
 memory_order order) noexcept;
 bool atomic_flag_test_and_set_explicit_notify(volatile atomic_flag* object,
 memory_order order, atomic_notify notify) noexcept;
 bool atomic_flag_test_and_set_explicit_notify(atomic_flag* object,
 memory_order, atomic_notify notify) noexcept;
 bool atomic_flag::test_and_set(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) noexcept;
 bool atomic_flag::test_and_set(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) volatile noexcept;

8 Effects: 	
1. Atomically sets the value pointed to by object or by this to true. Memory is affected according

to the value of order. These operations are atomic read-modify-write operations (1.10).	
2. If	the value of the object is changed by the effects and notify	is	atomic_notify::all,	

unblocks	 all	 executions	of	waiting	 functions	 that	blocked	after	observing	 the	 result	of	
preceding	operations	in	the	object’s	modification	order.	

3. If	the value of the object is changed by the effects and notify	is	atomic_notify::one,	
unblocks	at	 least	one	execution	of	a	waiting	 function	that	blocked	after	observing	 the	
result	of	preceding	operations	in	the	object’s	modification	order.

9 Returns: Atomically, the value of the object immediately before the effects.

 void atomic_flag_clear(volatile atomic_flag* object) noexcept;
 void atomic_flag_clear(atomic_flag* object) noexcept;
 void atomic_flag_clear_explicit(volatile atomic_flag* object,
 memory_order order) noexcept;
 void atomic_flag_clear_explicit(atomic_flag* object, memory_order order) noexcept;
 void atomic_flag_clear_explicit_notify(volatile atomic_flag* object,
 memory_order order, atomic_notify notify) noexcept;
 void atomic_flag_clear_explicit_notify(atomic_flag* object, memory_order order,
 atomic_notify notify) noexcept;
 void atomic_flag::clear(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) noexcept;
 void atomic_flag::clear(memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) volatile noexcept;

10 Requires: The order argument shall not be memory_order_consume,
memory_order_acquire, nor memory_order_acq_rel.

11 Effects: 	
1. Atomically sets the value pointed to by object or by this to false. Memory is affected according

to the value of order.	
2. If	the value of the object is changed by the effects and notify	is	atomic_notify::all,	

unblocks	 all	 executions	of	waiting	 functions	 that	blocked	after	observing	 the	 result	of	
preceding	operations	in	the	object’s	modification	order.	

3. If	the value of the object is changed by the effects and notify	is	atomic_notify::one,	
unblocks	at	 least	one	execution	of	a	waiting	 function	that	blocked	after	observing	 the	
result	of	preceding	operations	in	the	object’s	modification	order.	

 void set(bool state, memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) noexcept;
 void set(bool state, memory_order order = memory_order_seq_cst,
 atomic_notify notify = atomic_notify::all) volatile noexcept;

12 Effects: Equivalent	to:
 if (state)
 test_and_set(order, notify);
 else
 clear(order, notify);

 bool atomic_flag_test(const volatile atomic_flag* object) noexcept;
 bool atomic_flag_test(const atomic_flag* object) noexcept;
 bool atomic_flag_test_explicit(const volatile atomic_flag* object,
 memory_order order) noexcept;
 bool atomic_flag_test_explicit(const atomic_flag* object,
 memory_order order) noexcept;
 bool atomic_flag::test(memory_order order = memory_order_seq_cst) const noexcept;
 bool atomic_flag::test(
 memory_order order = memory_order_seq_cst) const volatile noexcept;

13 Requires: The order argument shall not be memory_order_release nor
memory_order_acq_rel.

14 Effects: Memory is affected according to the value of order.
15 Returns: Atomically returns the value pointed to by object or by this.

 void atomic_flag_wait(const volatile atomic_flag* object, bool set);
 void atomic_flag_wait(const atomic_flag* object, bool set);
 void atomic_flag_wait_explicit(const volatile atomic_flag* object,
 bool set, memory_order order);
 void atomic_flag_wait_explicit(const atomic_flag* object, bool set,
 memory_order order);
 void atomic_flag::wait(bool set,
 memory_order order = memory_order_seq_cst) const noexcept;
 void atomic_flag::wait(bool set,
 memory_order order = memory_order_seq_cst) const volatile noexcept;
 template <class Clock, class Duration>
 bool atomic_flag::wait_until(bool set,
 chrono::time_point<Clock, Duration> const& abs_time,
 memory_order order = memory_order_seq_cst) const;
 template <class Clock, class Duration>

 bool atomic_flag::wait_until(bool set,
 chrono::time_point<Clock, Duration> const& abs_time,
 memory_order order = memory_order_seq_cst) const volatile;

16 Effects:	Each	execution	of	a	waiting	function	is	performed	as:	
1. Evaluates	test(order) == set	then,	if	it	is	satisfied,	returns.	
2. If	wait_until	was	invoked,	may	return	spuriously.	
3. Blocks.	
4. Unblocks	when:	

- As	a	result	of	some	notifying	operations,	as	described	in	that	function's	effects.	
- The	absolute	timeout	expires.	
- At	the	implementation's	discretion.	

5. Each	time	the	execution	unblocks,	it	repeats.	
17 Returns: The result of test(order) == set, or false if spuriously.

 template <class Rep, class Period>
 bool wait_for(bool set, chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst) const;
 template <class Rep, class Period>
 bool wait_for(bool set, chrono::duration<Rep, Period> const& rel_time,
 memory_order order = memory_order_seq_cst) const volatile;

18 Effects:	Equivalent	to:
 wait_for(set,chrono::steady_clock::now() + rel_time, order);

