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This document is based on WG21/P0279R1 com-
bined with feedback at the 2015 Kona and 2016 Jack-
sonville meetings, which most notably called for a
C++-style method of handling different RCU im-
plementations or domains within a single transla-
tion unit, and which also contains useful background
material and references. Unlike WG21/P0279R1,
which simply introduced RCU’s C-language prac-
tice, this document presents proposals for C++-style
RCU APIs. At present, it appears that these are
not conflicting proposals, but rather ways of han-
dling different C++ use cases resulting from inheri-
tance, templates, and different levels of memory pres-
sure. This document also incorporates content from
WG21/P0232R0[4].

Note that this proposal is related to the hazard-
pointer proposal in that both proposals defer destruc-
tive actions such as reclamation until all readers have
completed.

Note also that a redefinition of the infamous
memory order consume is the subject of a separate
paper.

1 Introduction

This document proposes C++ APIs for read-copy
update (RCU). For more information on RCU,
including RCU semantics, see WG21/P0462R0
(“Marking memory order consume Dependency

1 void std::rcu_read_lock();
2 void std::rcu_read_unlock();
3 void std::synchronize_rcu();
4 void std::call_rcu(struct std::rcu_head *rhp,
5 void cbf(class rcu_head *rhp));
6 void std::rcu_barrier();
7 void std::rcu_register_thread();
8 void std::rcu_unregister_thread();
9 void std::rcu_quiescent_state();

10 void std::rcu_thread_offline();
11 void std::rcu_thread_online();

Figure 1: Base RCU API

Chains”), WG21/P0279R1 (“Read-Copy Update
(RCU) for C++”), WG21/P0190R2 (“Proposal
for New memory order consume Definition”), and
WG21/P0098R1 (“Towards Implementation and Use
of memory order consume”).

Section 2 presents the base (C-style) RCU API,
Section 3 presents a proposal for scoped RCU read-
ers, Section 4 presents proposals for handling of RCU
callbacks, Section 5 presents a table comparing refer-
ence counting, hazard pointers, and RCU, and finally
Section 6 presents a summary.

2 Base RCU API

Figure 1 shows the base RCU API as provided by
implementations such as userspace RCU [1, 3]. This
API is provided for compatibility with existing prac-
tice as well as to provide the highest performance for
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fast-path code. (See Figure 2 for a proposed API
that permits multiple RCU domains, as requested by
several committee members.)

Lines 1 and 2 show rcu read lock() and rcu

read unlock(), which mark the beginning and the
end, respectively, of an RCU read-side critical sec-
tion. These primitives may be nested, and matching
rcu read lock() and rcu read unlock() calls need
not be in the same scope. (That said, it is good prac-
tice to place them in the same scope in cases where
the entire critical section fits comfortably into one
scope.)

Line 3 shows synchronize rcu(), which waits for
any pre-existing RCU read-side critical sections to
complete. The period of time that synchronize

rcu() is required to wait is called a grace period.
Note that a given call to synchronize rcu() is not
required to wait for critical sections that start later.

Lines 4 and 5 show call rcu(), which, af-
ter a subsequent grace period elapses, causes the
cbf(rhp) RCU callback function to be invoked.
Thus, call rcu() is the asynchronous counterpart
to synchronize rcu(). In most cases, synchronize
rcu() is easier to use, however, call rcu() has the
benefit of moving the grace-period delay off of the
updater’s critical path. Use of call rcu() is thus
critically important for good performance of update-
heavy workloads, as has been repeatedly discovered
by any number of people new to RCU [2].

Note that although call rcu()’s callbacks are
guaranteed not to be invoked too early, there is no
guarantee that their execution won’t be deferred for
a considerable time. This can be a problem if a given
program requires that all outstanding RCU callbacks
be invoked before that program terminates. The rcu
barrier() function shown on line 6 is intended for
this situation. This function blocks until all call-
backs corresponding to previous call rcu() invoca-
tions have been invoked and also until after those
invocations have returned. Therefore, taking the fol-
lowing steps just before terminating a program will
guarantee that all callbacks have completed:

1. Take whatever steps are required to ensure that
there are no further invocations of call rcu().

2. Invoke rcu barrier().

Carrying out this procedure just prior to program
termination can be very helpful for avoiding false pos-
itives when using tools such as valgrind.

Many RCU implementations require that every
thread announce itself to RCU prior to entering the
first RCU read-side critical section, and to announce
its departure after exiting the last RCU read-side crit-
ical section. These tasks are carried out via the rcu

register thread() and rcu unregister thread(),
respectively.

The implementations of RCU that feature the most
aggressive implementations of rcu read lock() and
rcu read unlock() require that each thread period-
ically pass through a quiescent state, which is an-
nounced to RCU using rcu quiescent state(). A
thread in a quiescent state is guaranteed not to be in
an RCU read-side critical section. Threads can also
announce entry into and exit from extended quiescent
states, for example, before and after blocking system
calls, using rcu thread offline() and rcu thread

online().

2.1 RCU Domains

The userspace RCU library features several RCU im-
plementations, each optimized for different use cases.

The quiescent-state based reclamation (QSBR)
implementation is intended for standalone applica-
tions where the developers have full control over
the entire application, and where extreme read-
side performance and scalability is required. Ap-
plications use #include "urcu-qsbr.hpp" to select
QSBR and -lurcu -lurcu-qsbr to link to it. These
applications must use rcu register thread() and
rcu unregister thread() to announce the com-
ing and going of each thread that is to execute
rcu read lock() and rcu read unlock(). They
must also use rcu quiescent state(), rcu thread

offline(), and rcu thread online() to announce
quiescent states to RCU.

The memory-barrier implementation is intended
for applications that can announce threads (again
using rcu register thread() and rcu unregister

thread()), but for which announcing quiescent
states is impractical. Such applications use
#include "urcu-mb.hpp" and -lurcu-mb to select
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1 class rcu_domain {
2 public:
3 virtual void register_thread() = 0;
4 virtual void unregister_thread() = 0;
5 static inline bool register_thread_needed()
6 { return true; }
7 virtual void read_lock() noexcept = 0;
8 virtual void read_unlock() noexcept = 0;
9 virtual void synchronize() noexcept = 0;

10 virtual void call(class rcu_head *rhp,
11 void cbf(class rcu_head *rhp)) = 0;
12 virtual void barrier() noexcept = 0;
13 virtual void quiescent_state() noexcept = 0;
14 virtual void thread_offline() noexcept = 0;
15 virtual void thread_online() noexcept = 0;
16 };

Figure 2: RCU Domain Base Class

the memory-barrier implementation. Such applica-
tions will incur the overhead of a full memory bar-
rier in each call to rcu read lock() and rcu read

unlock().
The signal-based implementation represents a mid-

point between the QSBR and memory-barrier imple-
mentations. Like the memory-barrier implementa-
tion, applications must announce threads, but need
not announce quiescent states. On the one hand,
readers are almost as fast as in the QSBR imple-
mentation, but on the other applications must give
up a signal to RCU, by default SIGUSR1. Such
applications use #include "urcu-signal.hpp" and
-lurcu-signal to select signal-based RCU.

So-called “bullet-proof RCU” avoids the need to
announce either threads or quiescent states, and is
therefore the best choice for use by libraries that
might well be linked with RCU-oblivious applica-
tions. The penalty is that rcu read lock() incurs
both a memory barrier and a test and rcu read

unlock() incurs a memory barrier. Such applica-
tions or libraries use #include urcu-bp.hpp and
-lurcu-bp.

2.2 Run-Time Domain Selection

Figure 2 shows the abstract base class for runtime
selection of RCU domains. Each domain creates a
concrete subclass that implements its RCU APIs:

• Bullet-proof RCU: class rcu bp

1 class rcu_scoped_reader {
2 public:
3 rcu_scoped_reader() noexcept
4 {
5 this->rd = nullptr;
6 rcu_read_lock();
7 }
8
9 explicit rcu_scoped_reader(rcu_domain *rd)

10 {
11 this->rd = rd;
12 rd->read_lock();
13 }
14
15 rcu_scoped_reader(const rcu_scoped_reader &) = delete;
16
17 rcu_scoped_reader&operator=(const rcu_scoped_reader &) = delete;
18
19 ~rcu_scoped_reader() noexcept
20 {
21 if (this->rd)
22 this->rd->read_unlock();
23 else
24 rcu_read_unlock();
25 }
26
27 private:
28 rcu_domain *rd;
29 };

Figure 3: RCU Scoped Readers

• Memory-barrier RCU: class rcu mb

• QSBR RCU: class rcu qsbr

• Signal-based RCU: class rcu signal

3 Scoped Readers

In some cases, it might be convenient to use a scoped
style for RCU readers, especially if the read-side crit-
ical section might be exited via exception. The rcu

scoped reader class shown in Figure 3 may be used
for this purpose. An argumentless constructor uses
the API, or an rcu domain class may be passed to
the constructor to use the specified RCU implemen-
tation.

This is intended to be used in a manner similar to
std::lock guard.
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1 template<typename T, typename D = default_delete<T>,
2 bool E = is_empty<D>::value>
3 class rcu_head_delete: private rcu_head {
4 D deleter;
5 public:
6 static void trampoline(rcu_head *rhp)
7 {
8 auto rhdp = static_cast<rcu_head_delete *>(rhp);
9 auto obj = static_cast<T *>(rhdp);

10 rhdp->deleter(obj);
11 }
12
13 void call(D d = {})
14 {
15 deleter = d;
16 call_rcu(static_cast<rcu_head *>(this), trampoline);
17 }
18
19 void call(rcu_domain &rd, D d = {})
20 {
21 deleter = d;
22 rd.call(static_cast<rcu_head *>(this), trampoline);
23 }
24 };
25

Figure 4: RCU Callbacks: Derived Function Call

4 RCU Callback Handling

The traditional C-language RCU callback uses ad-
dress arithmetic to map from the rcu head struc-
ture to the enclosing struct, for example, via the
container of() macro. Of course, this approach
also works for C++, but this section first looks at
some approaches that leverage C++ overloading and
inheritance, which has the benefit of avoiding macros
and providing better type safety. This will not be an
either-or situation: Several of these approaches are
likely to be generally useful.

4.1 Derived Function Call

The rcu head derived class provides overloaded
call() methods, as shown in Figure 4. These meth-
ods take a deleter and an optional rcu domain class
instance. The deleter’s operator() is invoked af-
ter a grace period. The deleter type defaults to
std::default delete<T>, but one could also use a
custom functor class with an operator() that car-
ries out teardown actions before freeing the object,
or a raw function pointer type such as void(*)(T*),
or a lambda type. We recommend avoiding deleter

1 template<typename T, typename D>
2 class rcu_head_delete<T,D,true>: private rcu_head {
3 public:
4 static void trampoline(rcu_head *rhp)
5 {
6 auto rhdp = static_cast<rcu_head_delete *>(rhp);
7 auto obj = static_cast<T *>(rhdp);
8 D()(obj);
9 }

10
11 void call(D d = {})
12 {
13 call_rcu(static_cast<rcu_head *>(this), trampoline);
14 }
15
16 void call(rcu_domain &rd, D d = {})
17 {
18 rd.call(static_cast<rcu_head *>(this), trampoline);
19 }
20 };

Figure 5: RCU Callbacks: Derived Deletion

types such as std::function<void(T*)> (and also
any other type requiring memory allocation) because
allocating memory on the free path can result in out-
of-memory deadlocks.

If an rcu domain is supplied, its call() member
function is used, otherwise the call rcu() free func-
tion is used.

The next section provides a specialization that only
permits delete, which allows omitting the deleter,
thus saving a bit of memory.

4.2 Derived Deletion

By far the most common RCU callback simply frees
the data structure. Figure 5 shows a specialization
of the rcu head delete class, which supports this id-
iom in cases where the RCU-protected data structure
may inherit from this class.

The rcu head delete class supplies a pair of over-
loaded call() member functions, the first of which
has no non-defaulted argument. This argument-free
member function arranges to delete the object after
a grace period, using call rcu() to do so.

The second call() member function takes an rcu

domain argument, and uses that domain’s call

rcu() function to wait for a grace period.

Use of this approach is quite straightforward. For
example, a class foo would inherit from rcu head
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delete<foo>, and given a foo pointer fp, would ex-
ecute fp->call() to cause the object referenced by
fp to be passed to delete at the end of a subsequent
grace period. No further action is required.

However, it is sometimes necessary to do more than
simply free an object. In many cases, additional tear-
down actions are required, and it is often necessary
to use a non-standard deallocator instead of the C++
delete. This possibility is covered by another spe-
cialization of the rcu head delete class, which was
described in the previous section.

4.3 Pointer To Enclosing Class

If complex inheritance networks make inheriting from
an rcu head derived type impractical, one alterna-
tive is to maintain a pointer to the enclosing class
as shown in Figure 6. This rcu head ptr class is in-
cluded as a member of the RCU-protected class. The
rcu head ptr class’s pointer must be initialized, for
example, in the RCU-protected class’s constructor.

If the RCU-protected class is foo and the name
of the rcu head ptr member function is rh, then
foo1.rh.call(my cb) would cause the function my

cb() to be invoked after the end of a subsequent grace
period. As with the previous classes, omitting the
deleter results in the object being passed to delete

and an rcu domain object may be specified.

4.4 Address Arithmetic

Figure 7 shows an approach that can be used if
memory is at a premium and the inheritance tech-
niques cannot be used. The set field() method
sets the offset of the rcu head container of mem-
ber within the enclosing RCU-protected structure,
and the enclosing class() member function ap-
plies that offset to translate a pointer to the rcu

head container of member to the enclosing RCU-
protected structure.

This address arithmetic must be carried out in the
callback function, as shown in Figure 8.

1 template<typename T>
2 class rcu_head_ptr: public rcu_head {
3 public:
4 rcu_head_ptr()
5 {
6 this->container_ptr = nullptr;
7 }
8
9 rcu_head_ptr(T *containing_class)

10 {
11 this->container_ptr = containing_class;
12 }
13
14 static void trampoline(rcu_head *rhp)
15 {
16 T *obj;
17 rcu_head_ptr<T> *rhdp;
18
19 rhdp = static_cast<rcu_head_ptr<T> *>(rhp);
20 obj = rhdp->container_ptr;
21 if (rhdp->callback_func)
22 rhdp->callback_func(obj);
23 else
24 delete obj;
25 }
26
27 void call(void callback_func(T *obj) = nullptr)
28 {
29 this->callback_func = callback_func;
30 call_rcu(static_cast<rcu_head *>(this), trampoline);
31 }
32
33 void call(class rcu_domain &rd,
34 void callback_func(T *obj) = nullptr)
35 {
36 this->callback_func = callback_func;
37 rd.call(static_cast<rcu_head *>(this), trampoline);
38 }
39
40 private:
41 void (*callback_func)(T *obj);
42 T *container_ptr;
43 };

Figure 6: RCU Callbacks: Pointer
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1 template<typename T>
2 class rcu_head_container_of {
3 public:
4 static void set_field(const struct rcu_head T::*rh_field)
5 {
6 T t;
7 T *p = &t;
8
9 rh_offset = ((char *)&(p->*rh_field)) - (char *)p;

10 }
11
12 static T *enclosing_class(struct rcu_head *rhp)
13 {
14 return (T *)((char *)rhp - rh_offset);
15 }
16
17 private:
18 static inline size_t rh_offset;
19 };
20
21 template<typename T>
22 size_t rcu_head_container_of<T>::rh_offset;

Figure 7: RCU Callbacks: Address Arithmetic

5 Hazard Pointers and RCU:
Which to Use?

Table 1 provides a rough summary of the relative
advantages of reference counting, RCU, and hazard
pointers. Advantages are marked in bold with green
background, or with a blue background for strong
advantages.

Although reference counting has normally had
quite limited capabilities and been quite tricky to ap-
ply for general linked data-structure traversal, given a
double-pointer-width compare-and-swap instruction,
it can work quite well, as shown in the “Reference
Counting with DCAS” column.

As a rough rule of thumb, for best performance and
scalability, you should use RCU for read-intensive
workloads and hazard pointers for workloads that
have significant update rates. As another rough rule
of thumb, a significant update rate has updates as
part of more than 10% of its operations. Reference
counting with DCAS is well-suited for small systems
and/or low read-side contention, and particularly on
systems that have limited thread-local-storage ca-
pabilities. Both RCU and reference counting with
DCAS allow unconditional reference acquisition.

Specialized workloads will have other considera-

tions. For example, small-memory multiprocessor
systems might be best-served by hazard pointers,
while the read-mostly data structures in real-time
systems might be best-served by RCU.

6 Summary

This paper demonstrates a way of creating C++
bindings for a C-language RCU implementation,
which has been tested against the userspace RCU
library. We believe that these bindings are also
appropriate for the type-oblivious C++ RCU im-
plementations that information-hiding considerations
are likely to favor.
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1 void my_cb(struct std::rcu_head *rhp)
2 {
3 struct foo *fp;
4
5 fp = std::rcu_head_container_of<struct foo>::enclosing_class(rhp);
6 std::cout << "Callback fp->a: " << fp->a << "\n";
7 }

Figure 8: RCU Callbacks: Address Arithmetic in Callback

Reference Counting Reference Counting
with DCAS

RCU Hazard Pointers

Unreclaimed objects Bounded Bounded Unbounded Bounded

Contention among
readers

Can be very high Can be very high No contention No contention

Traversal forward
progress

Either blocking or
lock-free with limited
reclamation

Lock free Bounded popu-
lation oblivious
wait-free

Lock-free

Reclamation forward
progress ∗

Either blocking or
lock-free with limited
reclamation

Lock free Blocking Bounded wait-free

Traversal speed Atomic read-modify-
write updates

Atomic read-modify-
write updates

No or low over-
head

Store-load fence

Reference acquisition Unconditional Unconditional Unconditional Conditional

Automatic
reclamation

Yes Yes No No

Purpose of domains N/A N/A Isolate long-latency
readers

Limit contention, re-
duce space bounds,
etc.

Table 1: Comparison of Deferred-Reclamation Mechanisms

* Does not include memory allocator, just the reclamation itself.
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