Wording for [[nodiscard]] attribute.

Document No.: PO189R0

Revises: POO68RO In Part

Project: Programming Language C++ - Evolution

Author: Andrew Tomazos <andrewtomazos@gmail.com>
Date: 2016-01-03

Summary

A wording for the [[nodiscard]] attribute described in PO0O68RO is proposed for application to the
C++17 working draft, with modifications based on Kona EWG feedback. [[nodiscard]] marks
functions and return types where discarding the return value has surprising consequences. It
has heavy use in existing practice. Kona EWG voted SF=10, F=6, N=0, A=2, SA=0 in favor of
[[nodiscard]] from PO068R0O. See PO068RO for detailed motivation/rationale.

Changes From POO68RO0

As per Kona EWG change request, we replaced a facility where a warning about a nodiscard
call could be suppressed with [[unused]] to suppressing it with the existing practice of explicitly
casting to void.

Wording

7.6.7 Nodiscard attribute [dcl.attr.nodiscard]

1.

The attribute-token nodiscard can be used to mark a function, a function template specialization
or a type. It shall appear at most once in each attribute-list, with no attribute-argument-clause.
A nodiscard call is a function call expression, other than an assignment or compound assignment,
that:

a. isto afunction marked nodiscard, or

b. isto an instantiation of a function template specialization marked nodiscard, or

c. returns a type marked nodiscard.
Appearance of a nodiscard call as a discarded-value expression is discouraged if it is not explicitly
cast to void. [Note: Implementations are encouraged to issue a warning in such cases. This is
typically because discarding the return value of a nodiscard call has surprising consequences. --end
note]

mailto:andrewtomazos@gmail.com

Example

template< class Function, class... Args>
[[nodiscard]] future async(Function&& f, Args&&... args);
int main() {

async([1{ £(); y; // WARNING: return value discarded

}
async([1{ g(); }); // WARNING: return value discarded

}
FAQ

1. Why is [[nodiscard]] being proposed as an attribute and not a
context-sensitive-keyword? Why doesn’t nodiscard make the
program ill-formed?

We have considered three different options in the design process of nodiscard:

(1) A [[nodiscard]] attribute that generates a warning, like

[[deprecated]]:

[[nodiscard]] int f£();

[[nodiscard]] struct S { ... }
S g();

int main() {

£(); // WARNING
g(); // WARNING

}

(2) A [[nodiscard]] attribute that causes ill-formed, no diagnostic
required, like [[noreturn]]

[[nodiscard]] int £();
[[nodiscard]] struct S { ... };
S g();

int main() {
f(); // UNDEFINED BEHAVIOUR
g(); // UNDEFINED BEHAVIOUR

(Note that “ill-formed no diagnostic required” and “undefined behaviour” are normatively synonyms,
they both revoke any and all requirements on the implementation with respect to the enclosing
program.)

(3) A nodiscard context-sensitive keyword that causes ill-formed,
diagnostic required - like override:

int f£() nodiscard;

struct S nodiscard { ... };
S g();
int main() {

f(); // ERROR
g(); // ERROR

After careful deliberation we decided on proposing 1 with the following rationale:

The existing practice demonstrates there are cases when the programmer intentionally wants to discard the
result of a nodiscard function, even though in most cases they do not. The existing nodiscard is a hint from
the function designer to the function user, that immediately destroying the result is most likely not what you

want, but it isn’t a straight-jacket and isn’t used as such.

In the intentional case, under option 1, the implementation is encouraged to emit a warning, but the
semantics of the program remain untouched. The return value is destroyed at the end of the statement in
well-defined order.

In the intentional case, under option 2, the program could potentially have arbitrary unexpected
consequences. Undefined behaviour is not allowed in many codebases. Some consider undefined

behaviour a semantic effect and not in spirit with the intended use of attributes.

In the intentional case, under option 3, the program is ill-formed and won’t compile. The programmer is
strictly denied what they want to do.

This design decision was reviewed and voted on at Kona EWG, and the decision was strongly upheld.

