
Proposal/Wording for Bit-field Default
Member Initializer Syntax
Document No.: R0187R1
Project: Programming Language C++ - Evolution
Author: Andrew Tomazos <​andrewtomazos@gmail.com​>
Date: 2016-06-28

Summary
We propose a new syntax for bit-fields that allows them to have default member initializers.

The consensus after discussing P0187R0 at EWG Oulu was to “add a new syntax for being able
to provide both a bitfield-width and an initializer”, with 21 for and 0 against.

Further to this, we have designed a new syntax that is simple, easy to teach, requires no
disambiguation rules, is easy to parse and requires only a one line addition to the grammar.

Motivation
The motivation for bit-field default member initializers is the same as for default member
initializers for non-bit-field members. It can be argued the motivation for bit-fields is even
stronger, as they usually occur in simple structs.

Design
Several alternatives were considered in the syntax design. In the first version of the proposal
we offered allowing the ambiguous syntax by providing a set of disambiguation rules:

struct S { int x : 5 = 42; } // not proposed

This approach was rejected at Oulu as the disambiguation rules were considered too difficult to
teach and communicate.

We then offered a declarator-like syntax on the EWG reflector:

struct S { int x:[5] = 42; } // not proposed
struct S { int x[:5] = 42; } // not proposed

mailto:andrewtomazos@gmail.com

This approach was rejected as we explicitly do not want to make the bitfield width look like a
declarator, so not to confuse it with a compound type.

There were several other syntaxes considered on the reflector.

Finally we settled on the proposed syntax:

struct S { int x : 5 : = 42; } // proposed

The reaction to this syntax was positive.

Example
 struct S {
 int name : width;

 int name : width : = init;

 int name : width : { init };
 };

Explanation
The syntax can be taught as follows: “To use a default member initializer for a bit-field, separate
the initializer from the bit-field width with a second colon.”

Background
For background and motivation on the problem we are solving see P0187R0.

Wording
Add to grammar:

member-declarator​ :
 ​declarator virt-specifier-seq​ opt​ pure-specifier​ opt

 ​declarator brace-or-equal-initializer​ opt

 ​identifier​ opt​ attribute-specifier-seq​ opt​ :​ ​constant-expression
 ​identifier​ ​attribute-specifier-seq​ opt​ : \
 ​constant-expression​ : ​brace-or-equal-initializer

Modify [class.bit]:

A ​member-declarator​ of ​one of the forms:

 ​identifier​ opt​ attribute-specifier-seq​ opt​ :​ ​constant-expression
 ​identifier​ ​attribute-specifier-seq​ opt​ : \
 ​constant-expression​ : ​brace-or-equal-initializer

specifies a bit-field; [...]

