Constexpr Lambda

Document #: WG21 N4487

Date 2015-04-28
Revises None
Project: JTC1.22.32 Programming

Language C++

Working Group: — Evolution

Reply to: Faisal Vali
(faisalv(@yahoo.com)
Ville Voutilainen
(ville.voutilainen@gmail.com)

Faisal S Vali
Ville Voutilainen
Gabriel Dos Reis

Abstract

This proposal suggests allowing /ambda-expressions in constant
expressions, removing an existing restriction.. The authors
propose that certain /Jambda-expressions and operations on certain
closure objects be allowed to appear within constant expressions.
In doing so, we also propose that a closure type be considered a
literal type if the type of each of its data-members is a literal type;
and, that if the constexpr specifier is omitted within the
lambda-declarator, that the generated function call operator be
constexpr if it would satisfy the requirements of a constexpr
function (similar to the constexpr inference that already occurs
for implicitly defined constructors and the assignment operator
functions).

1 Motivation

In C++14, a lambda-expression is prohibited from appearing within a constant expression.
Furthermore, operations on closure objects — such as calling the function call operator, the
conversion function (to pointer-to-function), or any non-deleted special member functions —
are verboten inside constant expressions; either because those functions can not be specified
as constexpr, or because if a constructor is implicitly defined as constexpr, those
constructors can not be evaluated as core constant expressions (since closure objects are
non-literal types). These restrictions on lambda-expressions introduce inconsistencies,
surprises and unnecessary restrictions for users of our language.

To paraphrase in code:

// The following code is currently ill-formed.
constexpr auto L = [J(int i) { return i; }; // NOT OK!

auto L2 = [] { return 0; };
constexpr int I = L2(); // NOT OK!

// But the functionally synonymous code below is well-formed!
constexpr struct {
auto operator()(int i) const { return i; }

YUY

struct {
constexpr auto operator()() const { return 0; }

} L2}

constexpr int I = L2();

These constraints on lambda-expressions and closure objects have not only provoked a national
body comment' (FI 8 in the C++14 ballot, that was rejected as too significant a change at
that time) but have also compelled library writers such as Louis Dionne — CppCon 2014
presenter and author of the metaprogramming library Hana® — to petition for constexpr
lambdas in the next version of C++°. He presents the following use case*:

I would like to (re)open a discussion regarding the allowance of lambdas
inside constant expressions. One of my motivations for this feature is the
following use case. It is an efficient implementation of std.:tuple:

! http://www2.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3903.htmI#FI8

2 https://github.com/ldionne/hana

3 http:/Idionne.com/hana-cppcon-2014/ Slide 36

4 https://groups.google.com/forum/#!topic/comp.lang.c++.moderated/9Fa2Fzlvixg

N4487

http://www2.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3903.html#FI8
https://github.com/ldionne/hana
http://ldionne.com/hana-cppcon-2014
https://groups.google.com/forum/#!topic/comp.lang.c++.moderated/9Fa2Fzlvlxg

template <typename ...Xs>

constexpr auto make_storage(Xs ...xs) {
auto storage = [=](auto f) { return f(xs...); };
return storage;

}

template <typename ...Xs>
struct tuple {
explicit constexpr tuple(Xs ...xs)
: storage{make_storage(xs...)}

{}
decltype(make_storage(std: :declval<Xs>()...)) storage;
}s
template <std::size_t n, typename ...T>

constexpr decltype(auto) get(tuple<T...>& t) {
return t.storage([](auto&& ...xs) {
// implementing this efficiently 1is possible
1)
}

Other authors, such as Paul Fultz’, have resorted to various machinations to simulate
constexpr lambdas. Such issues have manifested often enough, that Richard Smith
(implementer of constexpr in clang®), in a characteristically illuminating post’ has asserted:

I'm confident we'll have a good answer for lambdas + constexpr in C++17.

Stroustrup has pointed out that “not everything is best done at compile time”®. While we
would agree, there seem to be many reasonable uses for constexpr lambdas, especially with
algorithms that take predicates or other functors, that can be constant-folded when applied
to objects of literal types. It seems that constexpr lambdas aren’t inherently wrong, so
forcing programmers to resort to more verbose alternative ways to express their designs
seems like an unfair imposition.

5 http://pfultz2.com/blog/2014/09/02/static-lambda/

8 http://llvm.org/viewve/llvm-project?view=revision&revision=141561 (and subsequent commits)
7 https://groups.google.com/a/isocpp.org/d/msg/std-proposals/qcKUf-U7_YU/SRfxv76_ekkl]

8 http://accu.org/cgi-bin/wg2 1/message?wg=ext&msg=16688

N4487

http://pfultz2.com/blog/2014/09/02/static-lambda/
http://llvm.org/viewvc/llvm-project?view=revision&revision=141561
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/qcKUf-U7_YU/SRfxv76_ekkJ
http://accu.org/cgi-bin/wg21/message?wg=ext&msg=16688

2 Précis
We propose the following:

1) lambda-expressions should be allowed to appear within constant
expressions if the initialization of each of its closure-type's data

members are allowed within a constant expression:
constexpr int AddEleven(int n) {
// Initialization of the ‘'data member' for n can
// occur within a constant expression since 'n
// of literal type.
return [n] { return n + 11; }();

}
static_assert(AddEleven(5) == 16, "");

is

2) The closure type should be a literal type if the type of each of its
data-members is a literal type. This would allow the relevant special
member functions to be constexpr (if not deleted) and thus
evaluatable within constant expressions:

constexpr auto add = [] (int n, int m) {
auto L = [=] { return n; };
auto R = [=] { return m; };
return [=] { return L() + R(); };

¥
static_assert(add(3, 4)() == 7, "");

3) The constexpr specifier should be allowed within the lawbda-declarator

to specify the function call operator (or template) as constexpr:
auto ID = [] (int n) constexpr { return n; };
constexpr int I = ID(3);

4) If the constexpr specifier is omitted within the /ambda-declarator, the
function call operator (or template) is constexpr if it would satisfy the
requirements of a constexpr function:

auto ID = [](int n) { return n; };
constexpr int I = ID(3);

5) The conversion function (to pointer-to-function) should, if it exists,
be constexpr. If the corresponding function call operator is
constexpr, the conversion function shall return the address of a

function that is constexpr:
auto addOne = [] (int n) {
return n + 1;
}s
constexpr int (*addOneFp)(int) = addOne;
static_assert(addOneFp(3) == addOne(3), "");

N4487

3 Details and Technicalities

As a caveat, this section discusses technicalities using examples that some readers might
consider disturbing and irresponsible. Through these (potentially epileptogenic) examples
we hope to facilitate exposition (and not trigger PTSD in those who have suffered through
enough uncivilized C++ code). The ensuing analysis is aimed at formalists who concern
themselves with the details that harmonize or conflict with the rest of the language's
intricacies — other readers are encouraged to skip this section.

3.1 A lambda-expression should be a core-constant-expression
if the initialization of its data members are core constant
expressions.

We propose that the evaluation of a lambda expression be a core constant expression if the
initialization of all of its data members (that correspond to each capture) are core constant
expressions:

// The following contrived function definition is valid C++14.
constexpr int eval_lambda(bool eval) {
// X is a literal type (even though it is a "stranger" type than
// most closure types) with its default and copy constructor
// inferred as constexpr.
struct X {
constexpr X makeX() { return X{}; }
union {
int i = 10;
double d;
}s

} x;

// These initializations are core-constant-expressions in C++14
auto x1 = x.makeX();
{ auto x = x1; }

// The initialization of the init-capture x1 and the byvalue

// capture of 'x' below invoke makeX(), and X's default and copy

// constructors - which are core constant expressions similar to the
// code above.

// Therefore we proppose that the lambda expression below also be a
// core constant expression.

// NOTE: Even though the return statement within the lambda

// expression's compound-statement can not be evaluated as a core
// constant expression (lvalue-to-rvalue conversion on a volatile),
// the lambda-expression itself can be evaluated as a

// core-constant-expression - although invocation of its

// corresponding closure object's function call operator can never
// be a core constant expression.

N4487

if (eval)
[x1 = x.makeX(), x] { extern volatile int V; return V; };
return 0;

}
static_assert(eval_lambda(false) == @, ""); // OK in C++14

// Also OK in C++14.

void run_time(bool b) {
int Z = eval_lambda(b);

}

// NOT OK in C++14, BUT OK under this proposal.
static_assert(eval_lambda(true) == 0, "");

Once a lambda expression can be a core constant expression, they can be evaluated in constexpr
functions within constant expressions. 1f all their data-member initializations are not guaranteed
to be core constant expressions, the constexpr function has to be invoked with the right
arguments for the lambda-expression to be a core constant expression. This is analogous to certain
behavior in C++14. Consider:

struct Literal { };

struct NonLiteral : Literal {
NonLiteral() { };

¥

constexpr int eval_lambda2(bool eval nonliteral) {
// #1 below is OK in C++14.

auto Lit = eval_nonliteral ? NonLiteral{} : Literal{}; // #1
// #2 below should also be OK under this proposal.

[1 = eval _nonliteral ? NonLiteral{} : Literal{}] { }; // #2
return 0;

static_assert(eval lambda2(false) == @, ""); // OK in C++14, if #2 is
// commented.
// OK under this proposal
// at #1 & #2.

While, at least one of the authors remains unconvinced that the notion of literal types is

important to specifying constexpr, that discussion is certainly beyond the scope of this paper
(and has been presented before by others’).

% http://www.open-std.org/jtc1/sc22/wg2 1/docs/papers/2011/n3308.pdf

N4487

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3308.pdf

3.2 The closure object should be a literal type if the type of
each of its data-members is a literal type.

A closure type in C++14 can never be a literal type — even if all its data members are literal
types — because it lacks a constexpr constructor that is not a copy or move constructor. If
such a closure type was allowed to have an implicitly defined default constructor it would be
constexpr, making it a literal type. But, because closure types, by definition, must have their
default constructors deleted, the implementation is prohibited from implicitly defining one.
Additionally, even though such a closure type has its implicit copy or move constructor be
constexpr, that constructor can never be invoked as a core constant expression because the
enclosing type is not a literal type.

Since we wish to allow constexpr functions to define and return certain closure objects, it is
important that their copy and move constructors be invokable as core constant expressions.
Therefore, we propose that closure types whose data members are literal types be considered
a literal type. Under this proposal, the following code would behave uniformly:

// In C++14, for the type 'Literal' below the implicitly defined copy
// and move constructor are constexpr. And even though the default
// constructor is deleted, it counts as a constexpr constructor, and
// makes it a Lliteral type.
// This is somewhat analogous to a closure type that has its default
// constructor deleted (such as the type of Lambda below) - but
// admittedly not the exact same.
struct Literal {

constexpr Literal() = delete;

Literal(void *) {}

int operator()(int n) { return n; }
s
Literal Lit{nullptr};

// The type of 'Lambda' could be considered as very similar to the type
// of 'Lit’'
auto Lambda = [](int n) { return n; };

template<typename T>

constexpr int foo(T t, int n) {
T t2{t};
return n;

}

static_assert(foo(Lit, 5) == 5, ""); // OK in C++14.
static_assert(foo(Lambda, 5) == 5, ""); // NOT OK in C++14.

// OK per our proposal:
constexpr auto make_lambda(int n) {
return [=] { return n; };

}

constexpr auto L = make_lambda(5);

N4487

3.3 The constexpr specifier should be allowed within the
lambda declarator, and if not specified, inferred for the function
call operator (or template).

A constexpr function is evaluatable within a constant expression (i.e. at compile time). For a
function or function template to be specified as constexpr, it must satisfy some minimal
constraints'’ by avoiding: goto; static, thread_local, non-literal and uninitialized variable
definitions; asm declarations; try blocks; non-literal types as parameters or as a return type.
Admittedly, what constitutes a well-formed constexpr function and what doesn't can surprise
some. Consider:

// This is a valid C++14 constexpr function, even though it contains
// a potential read from a volatile, a lambda expression and a label!
constexpr int fool(int n, bool runtime_only = false) {
int i = n + 10;
if (runtime_only) {
volatile int V = 0;
[&] {1 +=V; }(O);
}
return i;
UnReferencedlLabel:

}

// This is not a valid C++14 constexpr function. It contains an
// uninitialized variable somewhere in the body, even though
// it will never be evaluated.
constexpr int foo2(int n) {

int i = n + 10;

if (false) {

int Vv;
}

return i;

}

10N4431 7.1.5 [dcl.constexpr]/3 The definition of a constexpr function shall satisfy the following constraints:
— it shall not be virtual (10.3);
— its return type shall be a literal type;
— each of its parameter types shall be a literal type;
— its function-body shall be = delete, = default, or a compound-statement that does not contain
— an asm-definition,
— a goto statement,
— a try-block, or
— a definition of a variable of non-literal type or of static or thread storage duration or for which no
initialization is performed.

N4487

// This is valid (might involve some serious squinting in the standard)
// in Clang.
constexpr int foo(int n) {
struct NonLiteral {
NonLiteral(int) { }
constexpr int get(int n) { return n; }
s
extern NonLiteral NL;
return NL.get(n);

}

While one could claim that some of these restrictions on constexpr could be perceived as
confusing and inconsistent, a coherent argument to support that claim is beyond the scope
of this paper. What is in scope is that in C++14 for a function to be evaluatable within a
constant expression, that function must be explicitly marked constexpr or, for an implicitly
defined assignment operator, must satisfy certain requirements'!. Building on this
precedence of inferring an implicitly defined member function operator as constexpr when
the enclosing class meets certain criteria, we propose that the function call operator
(template for generic lambdas) be inferred as constexpr when it satisfies the requirements of
a constexpr function. We also propose that for a generic lambda, the function call operator
template be inferred as constexpr, unless no possible instantiation of that template would
satisfy the requirements of a constexpr function.

Consider the following examples that illustrate when we would expect a lambda's call
operator to be constexpr and when not:

struct NonLiteral { NonLiteral() { } };
strict Literal { };

auto L = [NL = NonLiteral{}] { return 0; };

constexpr int I = L(); // OK under this proposal.
// Closure type is non-literal, but function
// call operator satisfies the constraints of a
// constexpr function and so can be called in
// constexpr context.

auto L2 = [L = Literal{}] (int n) { return n + n; };

constexpr int J = L2(3); // OK under this proposal.

auto L3 = [](NonLiteral nl) { return 0; };

11'N4431 12.8 [class.copy]/26 ... The implicitly-defined copy/move assignment operator [for a class X] is
constexpr if
— X is a literal type, and
— the assignment operator selected to copy/move each direct base class subobject is
a constexpr function, and
— for each non-static data member of X that is of class type (or array thereof), the assignment operator
selected to copy/move that member is a constexpr function.

N4487

10

constexpr int K = L3(NonLiteral{}); // NOT OK.

auto GL = [] { asm(""); return 0; };
constexpr int L = GL(); // NOT OK.

Additionally, if constexpr is explicitly specified, we propose that it be allowed either before
or after the mutable specifier (taking into account the resolution to EWG 135'%). Since we
are proposing that lambda-expressions be allowed within core-constant-expressions, a closure
object can be created during evaluation of a constant expression, and such closure objects
should be allowed to have call operators that are both mutable and constexpr (hence one
specifier should not exclude the other).

3.3.1 Why allow constexpr to be inferred for the function call operator?

Gabriel Dos Reis — one of the original designers of generalized constant expressions13 —has
voiced support for constexpr inference:

M. [..] It is sad that we needed to introduce a keyword to get the notion
accepted by the C++ community, and we couldn't just infer
‘constexprness’' from the (inline) definition and use context.

I3 [..] As we have been warming up to more compile-time computations, I
think it is becoming clearer and clearer that requiring constexpr is making
not only the code more verbose, but also that failure to repeat
syntactically the semantics information already in possession of the
compiler is making it harder to smoothly develop new programming
techniques and pattern around the language features and standard library
facilities.

And Richard Smith — also a constexpr pioneer'® — has in turn cautioned us:
17 [...] The constexpr keyword does have utility.
1t affects when a function template specialization is instantiated (constexpr

function template specializations may need to be instantiated if they're
called in unevaluated contexts; the same is not true for non-constexpr

12

http://www?2.open-std.org/jtc1/sc22/wg2 1/docs/papers/2015/n442 1 .html#135
13 http://www?2.open-std.org/jtc1/sc22/wg2 1/docs/papers/2003/n1521.pdf

' https://groups.google.com/a/isocpp.org/d/msg/std-proposals/gEbulrSSPdc/2wi9Gy3 8Mr4J
15 https://groups.google.com/a/isocpp.org/d/msg/std-proposals/gEbulrSSPdc/xcs8§-hPXOZkJ

16 http://www2.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3597.html
17 https://groups.google.com/a/isocpp.org/d/msg/std-discussion/nrAu_YbCbYM/0eQsx6ip1DwJ]

N4487

http://www2.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4421.html#135
http://www2.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1521.pdf
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/gEbulr5SPdc/2wi9Gy38Mr4J
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/gEbulr5SPdc/xcs8-hPXOZkJ
http://www2.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3597.html
https://groups.google.com/a/isocpp.org/d/msg/std-discussion/nrAu_YbCbYM/0eQsx6ip1DwJ

11

functions since a call to one can never be part of a constant expression). If
we removed the meaning of the keyword, we'd have to instantiate a bunch
more specializations early, just in case the call happens to be a constant
expression.

It reduces compilation time, by limiting the set of function calls that
implementations are required to try evaluating during translation. (This
matters for contexts where implementations are required to try constant
expression evaluation, but it's not an error if such evaluation fails -- in
particular, the initializers of objects of static storage duration.)

1t is also useful as a statement of intent: by marking a function as
constexpr, you request that a compiler issues a diagnostic if it can easily
see that a call to that function can never appear in a constant expression.
There is a limited set of cases in which such a diagnostic is mandatory,
and in the other cases it's a quality-of-implementation issue (but in
practice compilers do a reasonable job of checking this). This statement of
intent is also useful to human readers and maintainers of the code -- when
modifying a function marked 'constexpr’, you are aware that the function
is intended to be used in constant expressions, so you know not to add (for
instance) dynamic memory allocation to it, and if you do, the compiler
stands a chance of telling you that you broke the users of your library.
Obviously this checking is imperfect, because it doesn't provide a
guarantee, but it still has some value.

8 [...] Today, that third-party code can move its constructor definition out
of line, and the only impact that has on its consumers is a possible
performance change. With your proposed change, the third-party library
would *break source compatibility* every time it moved an inline function
out of line, or otherwise changed the set of cases where that function could
be part of a constant expression (for instance, if they added logging to the
function).

That's a horrible burden to impose on libraries. The status quo is that
library authors have to opt into this compatibility burden by marking their
functions as 'constexpr', and I think that's appropriate.

Since Richard has informed at least one of the authors privately that he supports inference
of constexpr for a lambda's function call operator — and since he was not pressed for his
rationale (although we shall try and elicit one should he have the time, and should EWG
require us to), we surmise this is probably because the issues having to do with inferring

18 https://groups.google.com/a/isocpp.org/d/msg/std-proposals/nxP9zixx FmY/yXnwRgKM?2g0]

N4487

https://groups.google.com/a/isocpp.org/d/msg/std-proposals/nxP9zixxFmY/yXnwRgKM2g0J

12

constexpr for general functions are mostly mitigated by the requirement that the function
call operator for lambda-expressions is inline.

Additionally, there is already precedent within C++14 for inference of constexpr when it
comes to constructors and assignment operators (which have more involved rules for being
constexpr than for regular functions).

3.4 The conversion function (to pointer-to-function) should, if it
exists, be constexpr.

The conversion function of a lambda (with no lawbda-capture) should always be constexpr,
considering that it always returns a constant expression (the address of a function). If the
function call operator of that lambda is constexpr, then its conversion function should
return the address of a constexpr function. Consider:

// OK. The conversion function is constexpr, and returns a constant
// expression. The function call operator is also constexpr.
constexpr int (*cfp)(int) = []J(auto i) { return i; };

// The function call operator of this lambda can not be constexpr
// given a static local variable. But the conversion function still is.
constexpr int (*ncfp)(int) = [](auto i) { static int L; return i; };

static_assert(cfp(3) == 3, "");
static_assert(ncfp(3) == 3, ""); // Error. ncfp does NOT point to a
// constexpr function.
// As another example ...
struct Literal { };
struct NonLiteral : Literal {
NonLiteral() { };
s
auto GL = [](auto 1) { return 1; };

constexpr Literal (*cfp2)(Literal) = GL;
constexpr NonLiteral (*ncfp2)(NonLiteral) = GL;
constexpr Literal Lit = cfp2(Literal{});

constexpr NonLiteral NLit

ncfp2(NonLiteral{}); // Error.

3.5 Lambda expressions in unevaluated operands are not being
proposed

When the prototype implementation of constexpr lambdas' was reported, the question
arose whether /lambda-expressions should be allowed within unevaluated operands®. The

19 https://github.com/faisalv/clang/tree/constexpr-lambdas
20

N4487

https://github.com/faisalv/clang/tree/constexpr-lambdas

13

issues related to allowing /lambda-expressions within unevaluated operands® (mangling within
signatures etc.) are unrelated to this proposal and so will not be discussed further. Those
interested are encouraged to explore the references in the afore-referenced footnotes.

4 Implementation

An implementation using clang has been prototyped on github® by one of the authors.
Examples of code that the implementation is successfully able to compile is available for
review” and a sample extended example is included in Appendix A.

As Richard Smith has outlined, there appear to be two approaches to implementing
constexpr:

24[...] There are basically two different ways that people have historically
implemented constant expression evaluation in C and C++ compilers:

1) "fold": the AST is rewritten as constant expressions are simplified. In
some implementations this happens as you parse, in others it happens as a
separate step. So when you build a + operation whose operands are I and
1, you end up with an expression "2" and no evidence that you ever had a
'+'. This also means you can use essentially the same code to perform
various kinds of optimization.

2) Real evaluation: the AST represents the code as written, and a separate
process walks it and produces a symbolic value from it.

Most implementations seem to do (1) in some way or another. [...]
Clang has always done (2).

Given the framework Richard Smith composed for constexpr and the foundation Doug
Gregor orchestrated for lambda expressions, teaching clang how to evaluate lambda
expressions during constant evaluation was fairly straightforward. The trickiest aspect was
teaching the constant expression visitor for lambdas to deal with nested captures (especially
the interleaving of reference captures with by-value captures) and array captures; while
making sure each capture — during the compile-time execution of the function call operator
— was substituted with the right value from the activations on the stack.

http://www.isocpp.org/forums/iso-c-standard-future-proposals?place=msg%2Fstd-proposals%2FWIIlUuPBDyxQ%2FV

uZrxNxD8GgJ
2! http://accu.org/cgi-bin/wg2 1 /message?wg=core&msg=23350 /

http://www?2.open-std.org/jtc1/sc22/wg2 1/docs/cwg_defects.html#1607
22 https://github.com/faisalv/clang/tree/constexpr-lambdas

2 https://github.com/faisalv/clang/blob/constexpr-lambdas/test/CXX/clambdas/cxx 1 z-constexpr-lambdas.cpp
24 https://groups.google.com/a/isocpp.org/d/msg/std-proposals/qcKUf-U7_YU/SRfxv76_ekkl]

N4487

https://github.com/faisalv/clang/tree/constexpr-lambdas
https://github.com/faisalv/clang/blob/constexpr-lambdas/test/CXX/clambdas/cxx1z-constexpr-lambdas.cpp
http://www.isocpp.org/forums/iso-c-standard-future-proposals?place=msg%2Fstd-proposals%2FWllUuPBDyxQ%2FVuZrxNxD8GgJ
http://www.isocpp.org/forums/iso-c-standard-future-proposals?place=msg%2Fstd-proposals%2FWllUuPBDyxQ%2FVuZrxNxD8GgJ
http://accu.org/cgi-bin/wg21/message?wg=core&msg=23350
http://www2.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1607
https://github.com/faisalv/clang/tree/constexpr-lambdas
https://github.com/faisalv/clang/blob/constexpr-lambdas/test/CXX/clambdas/cxx1z-constexpr-lambdas.cpp
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/qcKUf-U7_YU/SRfxv76_ekkJ

14

5 Teachability

We expect that this feature would be easily teachable — imposing little, if any, additional
burden — once students have been taught about constexpr and lambdas. There is no new
syntax (unless you insist on annotating the function call operator as constexpr) so we expect
that the use of constexpr lambdas by students should come naturally, should they find
themselves having to perform compile time computations.

One might hypothesize that the introduction of constexpr lambdas to the language might
facilitate beginner-to-intermediate students benefitting inadvertently from compile time
computations in their code, without having to worry about the technicalities.

The current rules are easy to teach in the sense that it’s easy to state that lambdas cannot be
used in constant expressions, but it’s rather harder to explain why. Advanced users tend to
ask why such a prohibition is in place when their lambda bodies and captures would
otherwise fulfill the requitements for a constexpr function and/or a literal type, and there’s
no good technical reason for it that can be easily explained.

With that in mind, if EWG still raises significant concerns about the teachability of this
feature, we will attempt to address them in greater detail, in a future revision of this paper.

6 Core Wording

We shall await feedback from EWG before presenting core wording that would be
appropriate for a CWG audience. However, we present a general strategy (based on the
working paper N4296) hoping for CWG members who find themselves reading this section
to provide us with early feedback should they identify fundamental flaws in our approach:
In [basic.types] 3.9/10.5.2:
Allow closure types to be literal types if all of their non-static data
members are of non-volatile literal types .

In [expr.prim.]lambda] 5.1.2/1:
Add the constexpr, terminal to the /lambda-declarator production
(don't ignore EWG 1357?)

In [expr.prim.]ambda] 5.1.2/5:
State that if the function call operator (member template) for
lambdas satisfies the requirement of a constexpr function, it is
constexpr.

In [expr.const] 5.20/2:
Remove bullets 2.6 and 2.10 to allow /lambda-expressions and
evaluations within /ambda-expressions within core constant exipressions.

N4487

15

7 Acknowledgment

We would like to thank Richard Smith for all his contributions and comments (publicly and
privately) in this space. We are also grateful to those users (such as Louis Dionne, Joel
Falcou) who have struggled with the lack of this feature, and articulated support for it.

N4487

Appendix A
Sample Code Compiled by the Prototype Implementation

constexpr auto getFactorializer = [] {
unsigned int optimization[6] = {};

auto for_each = [](auto *b, auto *e, auto pred) {
auto *it = b;
while (it != e) pred(it++ - b);

¥

for_each(optimization, optimization + 6, [&](int n) {
if (!n) optimization[n] = 1;
else
optimization[n] = n * optimization[n-1];

s

auto FacImpl = [=](auto fac, unsigned n) {
if (n <= 5) return optimization[n];
return n * fac(fac, n - 1);

¥

auto Fact = [=](int n) {
return FacImpl(FacImpl, n);

s

return Fact;

s
constexpr auto Factorial = getFactorializer();

static_assert(Factorial(5) == 120, "");
static_assert(Factorial(10) == 3628800, "");

N4487

16

