C++ Latches and Barriers

ISO/IEC JTC1 SC22 WG21 N4392 - 2015-03-03

Alasdair Mackintosh, alasdair@google.com, alasdair.mackintosh@gmail.com

Olivier Giroux, OGiroux(@nvidia.com, ogiroux(@gmail.com

C++ Latches and Barriers

Revision History

Introduction

Solution

N. Coordination Mechanisms [thread.coordination]
N.1 Terminology [thread.coordination.terminology]
N.2 L atches [thread.coordination.latch]
Header <experimental/latch> Synopsis
N.2.1 Class latch [thread.coordination.latch.class]
N.3 Barrier types [thread.coordination.barrier]
Header <experimental/barrier> synopsis
N.3.1 Class barrier [thread.coordination.barrier.class]
N.3.2 Class flex_barrier [thread.coordination.flexbarrier.class]

Revision History
N3666 |[2013-04-18 |Initial Version
N3817 12013-10-11 Clarlfy destructor behaviour. Add comment on templatised completion
functions.
N3885 |2013-01-21 |Add Alternative Solutions section. (Not formally published)
N3998 |2014-05-21 |Add Concepts, simplify latch and barrier, add notifiying barrier
N4204 |2014-08-06 |Minor revisions after Rapperswil meeting
D4281 |2014-11-06 [Revisions after LEWG feedback
Reformat for LWG review.
XXXX [2015-02-24 |Add deleted move constructors.
Remove 'throws' clause from count_down
Improved wording and formatting after various comments from
XXXX [2015-02-25 |LEWG and LWG members. Remove 'Concepts' section. Add
exposition variables
N4392 (2015-03-03 [Final cleanup. Remove 'Notes' section.

mailto:alasdair@google.com
mailto:alasdair.mackintosh@gmail.com
mailto:OGiroux@nvidia.com
mailto:ogiroux@gmail.com
mailto:ogiroux@gmail.com

Introduction

Certain idioms that are commonly used in concurrent programming are missing from the
standard libraries. Although many of these these can be relatively straightforward to
implement, we believe it is more efficient to have a standard version.

In addition, although some idioms can be provided using mutexes, higher performance can
often be obtained with atomic operations and lock-free algorithms. However, these algorithms
are more complex to write, and are prone to error.

Other standard concurrency idioms may have difficult corner cases, and can be hard to
implement correctly. For these reasons, we believe that it is valuable to provide these in the
standard library.

Note: This paper uses the term 'thread' throughout. Where relevant, it should be updated to
refer to execution agents when these are adopted in the standard. See N4231 and N4156.

Solution

We propose a set of commonly-used concurrency classes, some of which may be implemented
using efficient lock-free algorithms where appropriate. This paper describes various concepts
related to thread co-ordination, and defines the latch, barrier and flex barrier classes. The
remainder of this paper contains the proposed wording. We use 'N' as a placeholder for the
main section number.

N. Coordination Mechanisms [thread.coordination]

N.1 Terminology [thread.coordination.terminology]

In this sub-clause, a synchronization point represents a point at which a thread may block until
a given condition has been reached.

N.2 Latches [thread.coordination.latch]

Latches are a thread coordination mechanism that allow one or more threads to block until an
operation is completed. An individual latch is a single-use object; once the operation has been
completed, the latch cannot be reused.

Header <experimental/latch> Synopsis

namespace std {

namespace experimental {

inline namespace concurrency vl {
class latch {

public:
explicit latch(ptrdiff t count);
latch (const latché&) = delete;
latch (latch&&) = delete;
~latch();
latch& operator=(const latché&) = delete;
latch& operator=(latché&&) = delete;

void count down and wait();
void count down (ptrdiff t n);

bool is ready() const noexcept;
volid wait () const;

private:
ptrdiff t counter ; // exposition only
i
} // namespace concurrency vl
} // namespace experimental
} // namespace std

N.2.1 Class 1latch [thread.coordination.latch.class]

A latch maintains an internal counter_that is initialized when the latch is created. Threads
may block at a synchronization point waiting for counter to be decremented to 0. When
counter reaches 0, all such blocked threads are released.

Calls to countdown and wait (), count down(),wait (), and is ready () behave as
atomic operations.
explicit latch(ptrdiff t count);
Requires: count >= 0.
Synchronization: None
Postconditions: counter == count.
~latch{();
Requires: No threads are blocked at the synchronization point.

Remarks: May be called even if some threads have not yet returned from wait () or
count down and wait () provided that counter 1is 0. [Nofe: The destructor might
not return until all threads have exited wait () or count down and wait (). — end
note]

[Note: It is the caller's responsibility to ensure that no other thread enters wait () after
one thread has called the destructor. This may require additional co-ordination. — end
note]

void count down and wait();

Requires: counter > 0.

Effects: Decrements counter by 1. Blocks at the synchronization point until counter
reaches 0.

Synchronization: Synchronizes with all calls that block on this latch and with all
is_ready calls on this latch that return true.

Throws: Nothing.

void count down (ptrdiff t n);

Requires: counter >= n and n >= 0.
Effects: Decrements counter by n. Does not block.

Synchronization: Synchronizes with all calls that block on this latch and with all
is ready calls on this latch that return true.

Throws: Nothing.
void wait () const;

[Editor's note: SG1 seems to have a convention that blocking functions are never marked
noexcept (e.g. future: :wait) even if they never throw. LWG requests that SG1
check whether this pattern is intended, and update the noexcept clauses here
accordingly — end editor's note]

Effects: If counter is 0, returns immediately. Otherwise, blocks the calling thread at
the synchronization point until counter reaches 0.

Throws: Nothing.
is ready () const noexcept;

Returns: counter == 0. Does not block.

N.3 Barrier types [thread.coordination.barrier]

Barriers are a thread coordination mechanism that allow a set of participating threads to block
until an operation is completed. Unlike a latch, a barrier is re-usable: once the participating
threads are released from a barrier's synchronization point, they can re-use the same barrier. It
is thus useful for managing repeated tasks, or phases of a larger task, that are handled by
multiple threads.

The barrier types are the standard library types barrier and flex barrier. They shall
meet the requirements set out in this sub-clause. In this description, b denotes an object of a
barrier type.

Each barrier type defines a completion phase as a (possibly empty) set of effects. When the
member functions defined in this sub-clause arrive at the barrier's synchronization point, they
have the following effects:

1. The function blocks.

2. When all threads in the barrier's set of participating threads are blocked at its
synchronization point, one participating thread is unblocked and executes the barrier
type's completion phase.

3. When the completion phase is completed, all other participating threads are unblocked.
The end of the completion phase synchronizes with the returns from all calls unblocked
by its completion.

The expression b.arrive and wait () shall be well-formed and have the following
semantics:

Requires: The current thread is a member of the set of participating threads.
Effects: Arrives at the barrier's synchronization point.

[Note: It 1s safe for a thread to call arrive and wait () or arrive and drop ()
again immediately. It is not necessary to ensure that all blocked threads have exited
arrive and wait () before one thread calls it again. — end note]

Synchronization: The call to arrive and wait () synchronizes with the start of the
completion phase.

Throws: Nothing.

The expression b.arrive and drop () shall be well-formed and have the following
semantics:

Requires: The current thread is a member of the set of participating threads.

Effects: Either arrives at the barrier's synchronization point and then removes the current
thread from the set of participating threads, or just removes the current thread from the
set of participating threads. [Nofe: Removing the current thread from the set of
participating threads can cause the completion phase to start. — end note]

Synchronization: The call to arrive and drop () synchronizes with the start of the
completion phase.

Throws: Nothing

Notes: If all participating threads call arrive and drop (), any further operations on the
barrier are undefined, apart from calling the destructor. If a thread that has called
arrive and drop () calls another method on the same barrier, other than the destructor,
the results are undefined.

Callsto arrive and wait()and arrive and drop () never introduce data races with
themselves or each other.

Header <experimental/barrier> synopsis

namespace std {

namespace experimental

inline namespace concurrency vl {
class barrier;
class flex barrier;

} // namespace concurrency vl

} // namespace experimental

} // namespace std

N.3.1 Class barrier [thread.coordination.barrier.class]

barrier is a barrier type whose completion phase has no effects. Its constructor takes a
parameter representing the initial size of its set of participating threads.

class barrier {

public:

explicit barrier (ptrdiff t num threads);
barrier (const barrier&) = delete;

barrier (barrieré&é&) = delete;

~barrier () ;

barrieré& operator=(const barrieré&) = delete;
barrier& operator=(barrier&&) = delete;

void arrive and wait();
void arrive and drop();

}s

explicit barrier (ptrdiff t num threads);

Requires: num_threads >= 0.[Note: If num threads is zero, the barrier may only be
destroyed. — end note]

Effects: Initializes the barrier for num threads participating threads. [Note: The set of
participating threads is the first num threads threads to arrive at the synchronization
point. —end note]

~barrier () ;
Requires: No threads are blocked at the synchronization point.

Effects: Destroys the barrier

N.3.2 Class flex barrier [thread.coordination.flexbarrier.class]

flex barrier is a barrier type whose completion phase can be controlled by a constructor
parameter.

class flex barrier ({
public:
template <class F>
flex barrier (ptrdiff t num threads, F completion);
explicit flex barrier (ptrdiff t num threads);
flex barrier (const flex barrier&) = delete;
flex barrier(flex barrier&&) = delete;

~flex barrier();

flex barrieré& operator=(const flex barrier&) = delete;
flex barrier& operator=(flex barrier&&) = delete;

void arrive and wait();
void arrive and drop();

private:
function<ptrdiff t()> completion ; // exposition only
i
The completion phase calls completion (). If this returns -1, then the set of participating

threads is unchanged. Otherwise, the set of participating threads becomes a new set with a size
equal to the returned value. [Note: If completion () returns 0 then the set of participating
threads becomes empty, and this object may only be destroyed. —end note]

template <class F>
flex barrier (ptrdiff t num threads, F completion);

Requires:
® num threads >=0.
e [shall meet the requirements of CopyConstructible.
® completion shall be Callable (C++14 §[func.wrap.func]) with no arguments and
return type convertible to ptrdiff t.
e [nvoking completion shall return a value greater than or equal to —1 and shall
not exit via an exception.

Effects: Initializes the f1ex barrier with the set of participating threads, of size
num_ threads, and initializes completion with std: :move (completion). [Note: The

set of participating threads consists of the first num threads threads that will arrive at
the synchronization point. — end note]

Notes: If num threads is zero the set of participating threads is empty, and this object
may only be destroyed.

explicit flex barrier (ptrdiff t num threads);
Requires: num_threads >= 0.

Effects: Has the same effect as creating a flex barrier with num threads and with a
callable object whose invocation returns -1 and has no side effects.

~flex barrier();

Requires: No threads are blocked at the synchronization point.

Effects: Destroys the barrier.

