
Document No: WG21 N4307
Date: 2014-11-12
References: ISO/IEC PDTS 19568
Reply To: Barry Hedquist <beh@peren.com>
 INCITS/PL22.16 IR

National Body Comments

ISO/IEC PDTS 19568

 Technical Specification: C++ Extensions for Library Fundamentals
Attached is WG21 N4307, National Body Comments for ISO/IEC PDTS 19568, Technical Specification
– C++ Extensions for Library Fundamentals.

Document numbers referenced in the ballot comments are WG21 documents unless otherwise stated.

NB Comments PDTS 19568, Library Fundamentals Date:2014-11-11 Document: SC22 / WG21 N4307 Project: 19568

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

JP 1 3.2.1 te Current design of apply cannot be used with standard

algorithms. This is not consistent with orthogonality
policy of C++. We propose make_apply function to
make a function object applicable to apply function.
For reference, there is a similar design in Boost Fusion
Library, fused and make_fused(). This experimental
study should be taken into account .

Introduce make_apply as below:

#include <tuple>
#include <utility>

template<typename F, typename Tuple, size_t... I>
auto apply_impl(F&& f, Tuple&& args,
std::index_sequence<I...>)
{
 return
std::forward<F>(f)(std::get<I>(std::forward<Tuple>(
args))...);
}

template<typename F, typename Tuple,
 typename Indices =
std::make_index_sequence<std::tuple_size<Tuple>
::value>>
auto apply(F&& f, Tuple&& args)
{
 return apply_impl(std::forward<F>(f),
std::forward<Tuple>(args), Indices());
}

template<typename F, typename Tuple, size_t... I>
auto apply_impl(F&& f, const Tuple& args,
std::index_sequence<I...>)
{
 return std::forward<F>(f)(std::get<I>(args)...);
}

template<typename F, typename Tuple,
 typename Indices =
std::make_index_sequence<std::tuple_size<Tuple>

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 4

NB Comments PDTS 19568, Library Fundamentals Date:2014-11-11 Document: SC22 / WG21 N4307 Project: 19568

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

::value>>
auto apply(F&& f, const Tuple& args)
{
 return apply_impl(std::forward<F>(f), args,
Indices());
}

template <typename F>
class apply_functor {
 F f_;
public:
 explicit apply_functor(F&& f)
 : f_(std::forward<F>(f)) {}

 template <typename Tuple>
 auto operator()(Tuple&& args)
 {
 return apply(std::forward<F>(f_),
std::forward<Tuple>(args));
 }

 template <typename Tuple>
 auto operator()(const Tuple& args)
 {
 return apply(std::forward<F>(f_), args);
 }
};

template <typename F>
apply_functor<F> make_apply(F&& f)
{
 return apply_functor<F>(std::forward<F>(f));

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 4

NB Comments PDTS 19568, Library Fundamentals Date:2014-11-11 Document: SC22 / WG21 N4307 Project: 19568

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

}

Usage example:

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

int main()
{
 std::vector<std::tuple<int, char, std::string>> v = {
 {1, 'a', "Alice"},
 {2, 'b', "Bob"},
 {3, 'c', "Carol"}
 };

 std::for_each(v.begin(), v.end(),
 make_apply([](int a, char b, const std::string& c)
{
 std::cout << a << ' ' << b << ' ' << c <<
std::endl;
 }
));
}

GB 1 6.3.1 p15 Te The allocator-extended copy constructor for
std::experimental::any cannot be implemented as
specified, so should be removed. Without this
constructor, the value of allocator support in
std::experimental::any is questionable.

Suggest removing all constructors taking
allocator_arg_t from std::experimental::any.

GB 2 11.2 Te Conversion should be provided from/to any specific
endianness

Addition of further conversion functions to support
conversion to and from big-endian and little-endian
representations (as a minimum)

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 4

NB Comments PDTS 19568, Library Fundamentals Date:2014-11-11 Document: SC22 / WG21 N4307 Project: 19568

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

FI 2 [any.cons] 15 te Implementation vendors report that the signatures that

take an any&& or const any& are unimplementable as
currently specified.

Either remove allocator support from any or make it
use a polymorphic memory resource.

FI 5 [header.net.s
ynop]

 te As explained in N4249, using the same names for the
network byte order conversion functions as the existing
posix facilities that may be macros is highly
problematic.

Rename the functions so that they do not clash with
the existing practice.

FI 1 [optional.obje
ct.observe]

11, 20 te As per https://issues.isocpp.org/show_bug.cgi?id=45,
the rvalue-reference-qualified observers of optional
should not return a value, but an rvalue reference
instead, in order to ease perfect forwarding and to not
cause double-move on emplace to containers. Such a
double-move may end up being a double-copy on
optionals of legacy types.

Change the signatures to return T&& instead of T
and const T&& instead of T

FI 4 [string.view.a
ccess]

19 ed The note is confusing. basic_string::data() returns a
pointer to a null-terminated buffer regardless of how
and from what the basic_string was constructed.
How/when is the buffer returned by string_view::data()
not null-terminated when a string_view has been
constructed from a literal, and how is it typical that
passing data() to a function expecting a null-terminated
char* a mistake?

Clarify or strike the note.

FI 3 [string.view.c
ons]

6 ed “Constructs a basic_string_view referring to the same
string as str,”, str doesn’t refer to a string, and the
wording is inconsistent with similar constructors for
basic_string in the standard proper, where such charT*
are said to “point to an array”. See [string.cons] for
reference.

Use the same terminology as the standard
basic_string specification uses.

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 4

https://issues.isocpp.org/show_bug.cgi?id=45

