© ISO 2014 — All rights reserved

ISO/IEC JTC 1/SC 22/WG 21 N4100
Date: 2014-07-04

ISO/IEC DTS 18822

ISO/IEC JTC1 SC22

Secretariat: ANSI

Programming Languages — C++
— File System Technical Specification

Langages de programmation — C++
— Spécification technique de systéme de fichiers

Warning

This document is not an ISO Technical Specification. It is distributed for review and comment. It is
subject to change without notice and may not be referred to as a Technical Specification.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent
rights of which they are aware and to provide supporting documentation.

Document type: Draft Technical Specification
Document stage: (40) Enquiry
Document Language: E

© ISO/IEC N4100

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While
the reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this
document nor any extract from it may be reproduced, stored or transmitted in any form for any other
purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright officer

Case postale 56, CH-1211 Geneva 20
Tel. +41 22 749 01 11

Fax +41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

i

© ISO/IEC

Contents

Contents
1 Scope
2 Conformance
2.1 POSIX conformance
2.2 Operating system dependent behavior conformance
2.3 File system race behavior
3 Normative references
4 Terms and definitions
4.1 absolute path
4.2 canonical path
4.3 directory
4.4 file
4.5 file system
4.6 file system race
4.7 filename
4.8 hard link
4.9 link
4.10 native encoding
4.11 native pathname format
4.12 NTCTS
4.13 operating system dependent behavior
4.14 parent directory
4.15 path
4.16 pathname
4.17 pathname resolution
4.18 relative path
4.19 symbolic link
5 Requirements
5.1 Namespaces and headers
5.2 Feature test macros
6 Header <experimental/filesystem> Synopsis
7 Error reporting
8 Class path
8.1 path generic pathname format grammar
8.2 path conversions
8.2.1 path argument format conversions
8.2.2 path type and encoding conversions
8.3 path requirements
8.4 path members
8.4.1 path constructors
8.4.2 path assignments

N4100

il

© ISO/IEC N4100

8.4.3 path appends
8.4.4 path concatenation
8.4.5 path modifiers
8.4.6 path native format observers
8.4.7 path generic format observers
8.4.8 path compare
8.4.9 path decomposition
8.4.10 path query
8.5 path iterators
8.6 path non-member functions
8.6.1 path inserter and extractor
8.6.2 path factory functions
9 Class filesystem error
9.1 filesystem error members
10 Enumerations
10.1 Enum class file type
10.2 Enum class copy options
10.3 Enum class perms
10.4 Enum class directory options
11 Class file status
I1.1 file status constructors
11.2 file status observers
11.3 file status modifiers
12 Class directory entry
12.1 directory entry constructors
12.2 directory entry modifiers
12.3 directory entry observers
13 Class directory iterator
13.1 directory iterator members
13.2 directory iterator non-member functions
14 Class recursive directory iterator
14.1 recursive directory iterator members
14.2 recursive directory iterator non-member functions
15 Operational functions
15.1 Absolute
15.2 Canonical
15.3 Copy
15.4 Copy file
15.5 Copy symlink
15.6 Create directories
15.7 Create directory
15.8 Create directory symlink
15.9 Create hard link
15.10 Create symlink

v

© ISO/IEC N4100

15.11 Current path
15.12 Exists

15.13 Equivalent
15.14 File size

15.15 Hard link count
15.16 Is block file
15.17 Is character file
15.18 Is directory
15.19 Is empty

15.20 Is fifo

15.21 Is other

15.22 Is regular file
15.23 Is socket

15.24 Is symlink
15.25 Last write time
15.26 Permissions
15.27 Read symlink
15.28 Remove

15.29 Remove all
15.30 Rename

15.31 Resize file
15.32 Space

15.33 Status

15.34 Status known
15.35 Symlink status
15.36 System complete
15.37 Temporary directory path

© ISO/IEC N4100

1 Scope [fs.scope]

This Technical Specification specifies requirements for implementations of an interface that computer
programs written in the C++ programming language may use to perform operations on file systems and
their components, such as paths, regular files, and directories. This Technical Specification is applicable
to information technology systems that can access hierarchical file systems, such as those with operating
systems that conform to the POSIX (3) interface. This Technical Specification is applicable only to
vendors who wish to provide the interface it describes.

2 Conformance [fs.conformance]

Conformance is specified in terms of behavior. Ideal behavior is not always implementable, so the
conformance sub-clauses take that into account.

2.1 POSIX conformance [fs.conform.9945]

Some behavior is specified by reference to POSIX (3). How such behavior is actually implemented is
unspecified.

2 [Note: This constitutes an "as if" rule allowing implementations to call native operating system
or other API's. —end note]

Implementations are encouraged to provide such behavior as it is defined by POSIX. Implementations
shall document any behavior that differs from the behavior defined by POSIX. Implementations that do
not support exact POSIX behavior are encouraged to provide behavior as close to POSIX behavior as is
reasonable given the limitations of actual operating systems and file systems. If an implementation
cannot provide any reasonable behavior, the implementation shall report an error as specified in § 7.

4 [Note: This allows users to rely on an exception being thrown or an error code being set when
an implementation cannot provide any reasonable behavior. — end note]

Implementations are not required to provide behavior that is not supported by a particular file system.
¢ [Example: The FAT file system used by some memory cards, camera memory, and floppy discs
does not support hard links, symlinks, and many other features of more capable file systems, so

implementations are not required to support those features on the FAT file system. —end
example]

2.2 Operating system dependent behavior conformance [fs.conform.os]

Some behavior is specified as being operating system dependent (4.13). The operating system an
implementation is dependent upon is implementation defined.

http://en.wikipedia.org/wiki/FAT_filesystem

© ISO/IEC N4100

It is permissible for an implementation to be dependent upon an operating system emulator rather than
the actual underlying operating system.

2.3 File system race behavior [fs.race.behavior]

Behavior is undefined if calls to functions provided by this Technical Specification introduce a file
system race (4.6).

If the possibility of a file system race would make it unreliable for a program to test for a precondition
before calling a function described herein, Requires is not specified for the function.

3 [Note: As a design practice, preconditions are not specified when it is unreasonable for a
program to detect them prior to calling the function. —end note]

3 Normative references [fs.norm.ref]

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2 « ISO/IEC 14882, Programming Language C++
3« ISO/IEC 9945, Information Technology — Portable Operating System Interface (POSIX)

[Note: The programming language and library described in ISO/IEC 14882 is herein called the C++
Standard. References to clauses within the C++ Standard are written as "C++14 §3.2". Section
references are relative to N3936.

The operating system interface described in ISO/IEC 9945 is herein called POSIX. —end note]

This Technical Specification mentions commercially available operating systems for purposes of

exposition. [foonote]

Unless otherwise specified, the whole of the C++ Standard's Library introduction (C++14 §17) is
included into this Technical Specification by reference.

§ [footnote] pOSIX® is a registered trademark of The IEEE. MAC OS® is a registered trademark

of Apple Inc. Windows® is a registered trademark of Microsoft Corporation. This information
is given for the convenience of users of this document and does not constitute an endorsement
by ISO or IEC of these products.

http://www.open-std.org/jtc1/sc22/wg21/prot/14882fdis/n3936.pdf

© ISO/IEC N4100

4 Terms and definitions [fs.definitions]

For the purposes of this document, the terms and definitions given in the C++ Standard and the
following apply.

4.1 absolute path [fs.def.absolute-path]

A path that unambiguously identifies the location of a file without reference to an additional starting
location. The elements of a path that determine if it is absolute are operating system dependent.

4.2 canonical path [fs.def.canonical-path]
An absolute path that has no elements that are symbolic links, and no dot or dot-dot elements (8.1).
4.3 directory [fs.def.directory]

A file within a file system that acts as a container of directory entries that contain information about
other files, possibly including other directory files.

4.4 file [fs.def file]

An object within a file system that holds user or system data. Files can be written to, or read from, or
both. A file has certain attributes, including type. File types include regular files and directories. Other
types of files, such as symbolic links, may be supported by the implementation.

4.5 file system [fs.def.filesystem]

A collection of files and certain of their attributes.

4.6 file system race [fs.def.race]

The condition that occurs when multiple threads, processes, or computers interleave access and
modification of the same object within a file system.

4.7 filename [fs.def.filename]

The name of a file. Filenames dot and dot-dot have special meaning. The following characteristics of
filenames are operating system dependent:

2« The permitted characters. [Example: Some operating systems prohibit the ASCII control
characters (0x00-0x1F) in filenames. —end example].

3 « The maximum permitted length.

4 « Filenames that are not permitted.

© ISO/IEC N4100

>« Filenames that have special meaning.
6 « Case awareness and sensitivity during path resolution.
7« Special rules that may apply to file types other than regular files, such as directories.

4.8 hard link [fs.def.hardlink]

A link (4.9) to an existing file. Some file systems support multiple hard links to a file. If the last hard
link to a file is removed, the file itself is removed.

2 [Note: A hard link can be thought of as a shared-ownership smart pointer to a file. —end note]

4.9 link [fs.def.link]

A directory entry that associates a filename with a file. A link is either a hard link (4.8) or a symbolic
link (4.19).

4.10 native encoding [fs.def.native.encode]

For narrow character strings, the operating system dependent current encoding for path names. For wide
character strings, the implementation defined execution wide-character set encoding (C++14 §2.3).

4.11 native pathname format [fs.def.native]

The operating system dependent pathname format accepted by the host operating system.

4.12 NTCTS [fs.def.ntcts]

Acronym for "null-terminated character-type sequence". Describes a sequence of values of a given

encoded character type terminated by that type's null character. If the encoded character type is EcharT,
the null character can be constructed by EcharT ().

4.13 operating system dependent behavior [fs.def.osdep]

Behavior that is dependent upon the behavior and characteristics of an operating system. See
[fs.conform.os].

4.14 parent directory [fs.def.parent]

When discussing a given directory, the directory that both contains a directory entry for the given
directory and is represented by the filename dot-dot in the given directory.

When discussing other types of files, a directory containing a directory entry for the file under
discussion.

© ISO/IEC N4100

This concept does not apply to dot and dot-dot.
4.15 path [fs.def.path]

A sequence of elements that identify the location of a file within a filesystem. The elements are the root-
nameopt, root-directoryopr, and an optional sequence of filenames. The maximum number of elements in
the sequence is operating system dependent.

4.16 pathname [fs.def.pathname]

A character string that represents the name of a path. Pathnames are formatted according to the generic
pathname format grammar (8.1) or an operating system dependent native pathname format.

4.17 pathname resolution [fs.def.pathres]
Pathname resolution is the operating system dependent mechanism for resolving a pathname to a

particular file in a file hierarchy. There may be multiple pathnames that resolve to the same file.
[Example: POSIX specifies the mechanism in section 4.11, Pathname resolution. —end example]

4.18 relative path [fs.def.relative-path]

A path that is not absolute, and so only unambiguously identifies the location of a file when resolved
relative to an implied starting location. The elements of a path that determine if it is relative are
operating system dependent. [Nofe: Pathnames "." and ". . " are relative paths. —end note]

4.19 symbolic link [fs.def.symlink]

A type of file with the property that when the file is encountered during pathname resolution, a string
stored by the file is used to modify the pathname resolution.

2 [Note: Symbolic links are often called symlinks. A symbolic link can be thought of as a raw

pointer to a file. If the file pointed to does not exist, the symbolic link is said to be a "dangling"
symbolic link. —end note]

5 Requirements [fs.req]

Throughout this Technical Specification, char, wchar t, charl6 t,and char32 t are collectively
called encoded character types.

Template parameters named EcharT shall be one of the encoded character types.

Template parameters named InputIterator shall meet the C++ Standard's library input iterator
requirements (C++14 §24.2.3) and shall have a value type that is one of the encoded character types.

© ISO/IEC N4100

4 [Note: Use of an encoded character type implies an associated encoding. Since signed char
and unsigned char have no implied encoding, they are not included as permitted types. —end
note]

Template parameters named Allocator shall meet the C++ Standard's library Allocator requirements
(C++14 §17.6.3.5).

5.1 Namespaces and headers [fs.req.namespace]

The components described in this technical specification are experimental and not part of the C++
standard library. All components described in this technical specification are declared in namespace
std::experimental::filesystem::v1l or a sub-namespace thereof unless otherwise specified. The
header described in this technical specification shall import the contents of
std::experimental::filesystem::vlinu)std::experimental::filesystemasifby
2 namespace std {
namespace experimental ({
namespace filesystem {

inline namespace vl {}

}

Unless otherwise specified, references to other entities described in this technical specification are
assumed to be qualified with std: :experimental::filesystem::v1l::, and references to entities
described in the C++ standard are assumed to be qualified with std: :.

5.2 Feature test macros [fs.req.macros]

This macro allows users to determine which version of this Technical Specification is supported by
header <experimental/filesystem>.

Header <experimental/filesystem> shall supply the following macro definition:

3 #define cpp lib experimental filesystem 201406

[Note: The value of macro cpp lib experimental filesystem is yyyymm where yyyy is the year
and mm the month when the version of the Technical Specification was completed. — end note]

6 Header <experimental/filesystem> Synopsis
[fs.filesystem.synopsis]

namespace std { namespace experimental { namespace filesystem { inline namespace vl {

class path;

© ISO/IEC N4100

void swap (pathé& lhs, path& rhs) noexcept;
size t hash value(const path& p) noexcept;

bool operator==(const pathé& lhs, const path& rhs) noexcept;
bool operator!=(const pathé& lhs, const path& rhs) noexcept;
bool operator< (const pathé& lhs, const path& rhs) noexcept;
bool operator<=(const pathé& lhs, const path& rhs) noexcept;
bool operator> (const pathé& lhs, const path& rhs) noexcept;
bool operator>=(const pathé& lhs, const path& rhs) noexcept;

path operator/ (const path& lhs, const path& rhs);

template <class charT, class traits>
basic ostream<charT, traits>&
operator<<(basic ostream<charT, traits>& os, const path& p);

template <class charT, class traits>
basic istream<charT, traits>&
operator>>(basic istream<charT, traits>& is, path& p);

template <class Source>
path u8path (const Sourceé& source);
template <class InputlIterator>
path u8path (InputlIterator first, Inputlterator last);

class filesystem error;
class directory entry;

class directory iterator;

// enable directory iterator range-based for statements
directory iterator begin(directory iterator iter) noexcept;
directory iterator end(const directory iterator&) noexcept;

class recursive directory iterator;

// enable recursive directory iterator range-based for statements
recursive directory iterator begin(recursive directory iterator iter) noexcept;
recursive directory iterator end(const recursive directory iterator&) noexcept;

class file status;

struct space info

{
uintmax t capacity;
uintmax t free;
uintmax t available;

}i

enum class file type;

enum class perms;

enum class copy options;

enum class directory options;

typedef chrono::time point<trivial-clock> file time type;

© ISO/IEC N4100

// operational functions

path absolute (const pathé& p, const pathé& base=current path());

path canonical (const pathé& p, const pathé& base = current path());
path canonical (const path& p, error code& ec);

path canonical (const pathé& p, const path& base, error codeé& ec);

void copy (const pathé& from, const pathé& to);

void copy (const pathé& from, const pathé& to, error code& ec) noexcept;
void copy (const path& from, const pathé& to, copy options options);
void copy (const path& from, const pathé& to, copy options options,

error code& ec) noexcept;

bool copy file(const path& from, const pathé& to);

bool copy file(const pathé& from, const path& to, error code& ec) noexcept;

bool copy file(const path& from, const pathé& to, copy options option);

bool copy file(const pathé& from, const path& to, copy options option,
error codeé& ec) noexcept;

void copy symlink (const pathé& existing symlink, const pathé& new symlink);
void copy symlink (const pathé& existing symlink, const path& new symlink,
error codeé& ec) noexcept;

bool create directories(const pathé& p);

bool create directories(const path& p, error code& ec) noexcept;
bool create directory(const pathé& p);

bool create directory(const pathé& p, error code& ec) noexcept;
bool create directory(const pathé& p, const pathé& attributes);
bool create directory(const pathé& p, const pathé& attributes,

error codeé& ec) noexcept;

void create directory symlink(const path& to, const path& new symlink);
void create directory symlink(const pathé& to, const path& new symlink,
error codeé& ec) noexcept;

void create hard link(const path& to, const path& new hard 1link);
void create hard link(const path& to, const path& new hard link,
error codeé& ec) noexcept;

void create symlink (const path& to, const path& new symlink);
void create symlink(const path& to, const path& new symlink,
error codeé& ec) noexcept;

path current path();

path current path (error codeé& ec);

void current path (const pathé& p);

void current path(const pathé& p, error code& ec) noexcept;
bool exists(file status s) noexcept;

bool exists (const path& p);

bool exists(const path& p, error code& ec) noexcept;

bool equivalent (const path& pl, const pathé& p2);

© ISO/IEC

bool

uintmax t
uintmax t

uintmax t
uintmax t

bool
bool
bool

bool
bool
bool

bool
bool
bool

bool
bool

bool
bool
bool

bool
bool
bool

bool
bool
bool

bool
bool
bool

bool
bool
bool

N4100

equivalent (const pathé& pl, const path& p2, error code& ec) noexcept;

file size(const path& p);
file size(const path& p, error code& ec) noexcept;

hard link count (const pathé& p);
hard link count (const path& p, error code& ec) noexcept;

is block file(file status s) noexcept;
is block file(const pathé& p);
is block file(const pathé& p, error codeé& ec) noexcept;

is character file(file status s) noexcept;
is character file(const path& p);
is character file(const path& p, error code& ec) noexcept;

is directory(file status s) noexcept;
is directory(const path& p);
is directory(const path& p, error code& ec) noexcept;

is empty (const pathé& p);
is empty (const pathé& p, error codeé& ec) noexcept;

is fifo(file status s) noexcept;
is fifo(const path& p);
is fifo(const path& p, error code& ec) noexcept;

is other(file status s) noexcept;
is other (const pathé& p);
is other (const pathé& p, error codeé& ec) noexcept;

is regular file(file status s) noexcept;
is regular file(const path& p);
is regular file(const path& p, error code& ec) noexcept;

is socket (file status s) noexcept;
is socket (const pathé& p);
is socket (const path& p, error code& ec) noexcept;

is symlink(file status s) noexcept;
is _symlink (const path& p);
is symlink (const path& p, error code& ec) noexcept;

file time type last write time (const pathé& p);
file time type last write time (const pathé& p, error codeé& ec) noexcept;

void
void

void
void

path
path

bool

last write time(const path& p, file time type new time);
last write time(const path& p, file time type new time,
error codeé& ec) noexcept;

permissions (const pathé& p, perms prms);
permissions (const pathé& p, perms prms, error code& ec) noexcept;

read symlink (const path& p);
read symlink (const path& p, error code& ec);

remove (const pathé& p);

© ISO/IEC N4100

bool remove (const pathé& p, error codeé& ec) noexcept;

uintmax t remove all (const pathé& p);

uintmax t remove all (const pathé& p, error code& ec) noexcept;

void rename (const path& from, const pathé& to);

void rename (const pathé& from, const pathé& to, error code& ec) noexcept;
void resize file(const path& p, uintmax t size);

void resize file(const path& p, uintmax t size, error code& ec) noexcept;
space_info space (const pathé& p);

space_info space (const pathé& p, error code& ec) noexcept;

file status status(const path& p);
file status status(const path& p, error code& ec) noexcept;

bool status known (file status s) noexcept;

file status symlink status(const path& p);
file status symlink status(const pathé& p, error code& ec) noexcept;

path system complete (const pathé& p);

path system complete (const pathé& p, error code& ec);
path temp directory path();

path temp directory path(error code& ec);

} } } } // namespaces std::experimental::filesystem::vl

trivial-clock is an implementation-defined type that satisfies the TrivialClock requirements
(C++14 §20.12.3) and that is capable of representing and measuring file time values. Implementations
should ensure that the resolution and range of file time type reflect the operating system
dependent resolution and range of file time values.

7 Error reporting [fs.err.report]

Filesystem library functions often provide two overloads, one that throws an exception to report file
system errors, and another that sets an error code.

2 [Note: This supports two common use cases:

3« Uses where file system errors are truly exceptional and indicate a serious failure.
Throwing an exception is the most appropriate response. This is the preferred default
for most everyday programming.

4« Uses where file system errors are routine and do not necessarily represent failure.

Returning an error code is the most appropriate response. This allows application
specific error handling, including simply ignoring the error.

10

10

2

© ISO/IEC N4100

> —end note]

Functions not having an argument of type error codes report errors as follows, unless otherwise
specified:

7'« When a call by the implementation to an operating system or other underlying API results in an
error that prevents the function from meeting its specifications, an exception of type
filesystem error shall be thrown. For functions with a single path argument, that argument
shall be passed to the filesystem error constructor with a single path argument. For
functions with two path arguments, the first of these arguments shall be passed to the
filesystem error constructor as the pathl argument, and the second shall be passed as the
path2 argument. The filesystem error constructor's error code argument is set as
appropriate for the specific operating system dependent error.

8 « Failure to allocate storage is reported by throwing an exception as described in C++14
§17.6.5.12.

9 « Destructors throw nothing.
Functions having an argument of type error codes report errors as follows, unless otherwise specified:

1"« Tfa call by the implementation to an operating system or other underlying API results in an
error that prevents the function from meeting its specifications, the error codes argument is
set as appropriate for the specific operating system dependent error. Otherwise, clear () is
called on the error codes argument.

8 Class path [class.path]

An object of class path represents a path (4.15) and contains a pathname (4.16). Such an object is
concerned only with the lexical and syntactic aspects of a path. The path does not necessarily exist in
external storage, and the pathname is not necessarily valid for the current operating system or for a
particular file system.

namespace std { namespace experimental { namespace filesystem { inline namespace vl {

class path
{
public:
typedef see below value type;
typedef basic_ string<value type> string type;
static constexpr value type preferred separator = see below;

// constructors and destructor
path () noexcept;

path (const paths& p);

path (pathé&& p) noexcept;
template <class Source>

11

© ISO/IEC N4100

path (const Source& source) ;
template <class InputIterator>
path (InputIterator first, Inputlterator last);
template <class Source>
path (const Sourceé& source, const locale& loc);
template <class InputlIterator>
path (InputIterator first, InputlIterator last, const locale& loc);
~path () ;

// assignments
path& operator=(const pathé& p);
path& operator=(path&& p) noexcept;
template <class Source>
path& operator=(const Sourceé& source) ;
template <class Source>
path& assign(const Sourceé& source)
template <class InputlIterator>
path& assign (InputlIterator first, Inputlterator last);

// appends
pathé& operator/=(const pathé& p);
template <class Source>
pathé& operator/=(const Sourceé& source);
template <class Source>
path& append(const Sourceé& source);
template <class InputIterator>
path& append (InputlIterator first, Inputlterator last);

// concatenation
path& operator+=(const pathé& x);
pathé& operator+=(const string type& x);
pathé& operator+=(const value type* x);
pathé& operator+=(value type x);
template <class Source>

path& operator+=(const Sourceé& x);
template <class EcharT>

path& operator+=(EcharT x);
template <class Source>

path& concat (const Sourceé& x);
template <class InputlIterator>

path& concat (InputlIterator first, Inputlterator last);

// modifiers

void clear () noexcept;

pathé& make preferred();

path& remove filename () ;

path& replace filename (const pathé& replacement);

path& replace extension (const pathé& replacement = path());
void swap (pathé& rhs) noexcept;

// native format observers
const string type& native() const noexcept;
const value type* c str () const noexcept;

operator string type () const;

template <class EcharT, class traits = char traits<EcharT>,

12

© ISO/IEC

class Allocator = allocator<EcharT> >
basic string<EcharT, traits, Allocator>
string (const Allocator& a = Allocator()) const;
std::string string () const;
std::wstring wstring () const;
std::string u8string () const;

std::ul6string ul6string() const;
std::u32string u32string() const;

// generic format observers

template <class EcharT, class traits = char traits<EcharT>,
class Allocator = allocator<EcharT> >
basic string<EcharT, traits, Allocator>
generic string(const Allocator& a = Allocator()) const;
std::string generic string() const;
std::wstring generic wstring() const;
std::string generic u8string() const;

std::ul6string generic ulé6string() const;
std::u32string generic u32string() const;

// compare

int compare (const path& p) const noexcept;
int compare (const string type& s) const;
int compare (const value type* s) const;

// decomposition

path root name () const;

path root directory() const;
path root path() const;

path relative path() const;
path parent path() const;
path filename () const;

path stem() const;

path extension () const;

// query

bool empty () const noexcept;
bool has root name () const;
bool has root directory() const;
bool has root path() const;
bool has relative path() const;
bool has parent path() const;
bool has filename () const;

bool has stem() const;

bool has extension () const;
bool is absolute() const;

bool is relative() const;

// iterators
class iterator;

typedef iterator const iterator;

iterator begin () const;
iterator end() const;

private:

N4100

13

© ISO/IEC N4100

string type pathname; // exposition only
}i

} } } } // namespaces std::experimental::filesystem::vl

value type is a typedef for the operating system dependent encoded character type used to represent
pathnames.

The value of preferred separator is the operating system dependent preferred-separator character
(8.1).

> [Example: For POSIX based operating systems, value type is char and
preferred separator is the slash character (/). For Windows based operating systems,
value typeiswchar t and preferred separator is the backslash character (\). —end
example]

8.1 path generic pathname format grammar [path.generic]

pathname:
root-name root-directoryopy relative-pathop;
root-directory relative-pathopt
relative-path

root-name:
An operating system dependent name that identifies the starting location for absolute paths.

3 [Note: Many operating systems define a name beginning with two directory-
separator characters as a root-name that identifies network or other resource
locations. Some operating systems define a single letter followed by a colon as a
drive specifier - a root-name identifying a specific device such as a disc drive. —end
note|

root-directory:
directory-separator

relative-path:
filename
relative-path directory-separator
relative-path directory-separator filename

filename:
name
dot
dot-dot

14

10

11

12

13

14

15

16

© ISO/IEC N4100

name:
A sequence of characters other than directory-separator characters.

8 [Note: Operating systems often place restrictions on the characters that may be used
in a filename. For wide portability, users may wish to limit filename characters to the
POSIX Portable Filename Character Set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwazxxysz
012345¢6 7829 -

—end note]
dot:
The filename consisting solely of a single period character (.).
dot-dot:

The filename consisting solely of two period characters (..).

directory-separator:
slash
slash directory-separator
preferred-separator
preferred-separator directory-separator

preferred-separator:
An operating system dependent directory separator character. May be a synonym for slash.

slash:
The slash character (/).

Multiple successive directory-separator characters are considered to be the same as one directory-
separator character.

The filename dot is treated as a reference to the current directory. The filename dot-dot is treated as a
reference to the parent directory. What the filename dot-dot refers to relative to root-directory is

implementation-defined. Specific filenames may have special meanings for a particular operating
system.

8.2 path conversions [path.cvt]
8.2.1 path argument format conversions [path.fmt.cvt]

I [Note: The format conversions described in this section are not applied on POSIX or Windows
based operating systems because on these systems:

15

© ISO/IEC N4100

2« The generic format is acceptable as a native path.
3« There is no need to distinguish between native format and generic format arguments.
4 « Paths for regular files and paths for directories share the same syntax.

> —end note]

Functions arguments that take character sequences representing paths may use the generic pathname
format grammar (8.1) or the native pathname format (4.11). If and only if such arguments are in the
generic format and the generic format is not acceptable to the operating system as a native path,
conversion to native format shall be performed during the processing of the argument.

7 [Note: Some operating systems may have no unambiguous way to distinguish between native
format and generic format arguments. This is by design as it simplifies use for operating
systems that do not require disambiguation. An implementation for an operating system where
disambiguation is required is permitted as an extension to distinguish between the formats.
—end note]

If the native format requires paths for regular files to be formatted differently from paths for directories,
the path shall be treated as a directory path if last element is directory-separator, otherwise it shall be
treated as a regular file path.

8.2.2 path type and encoding conversions [path.type.cvt]

For member function arguments that take character sequences representing paths and for member
functions returning strings, value type and encoding conversion is performed if the value type of the
argument or return differs from path::value type. Encoding and method of conversion for the
argument or return value to be converted to is determined by its value type:

2« char: Encoding is the native narrow encoding (4.10). Conversion, if any, is operating
system dependent.

3 [Note: For POSIX based operating systems path: :value type is char S0 no
conversion from char value type arguments or to char value type returns is
performed.

4 For Windows based operating systems, the native narrow encoding is determined by
calling a Windows API function. —end note]

> [Note: This results in behavior identical to other C and C++ standard library functions
that perform file operations using narrow character strings to identify paths. Changing
this behavior would be surprising and error prone. —end note]

6« wchar t: Encoding is the native wide encoding (4.10). Conversion method is
unspecified.

16

10

© ISO/IEC N4100

7 [Note: For Windows based operating systems path: :value type iS wchar t SO NO
conversion from wchar t value type arguments or to wchar t value type returns is
performed. —end note]

8 « charie6 t: Encoding is UTF-16. Conversion method is unspecified.

9« char32 t:Encoding is UTF-32. Conversion method is unspecified.

If the encoding being converted to has no representation for source characters, the resulting converted
characters, if any, are unspecified.

8.3 path requirements [path.req]

In addition to the requirements (5), function template parameters named source shall be one of:

2+ pasic_string<EcharT, traits, Allocator>. A function argument const Sources

3

source shall have an effective range [source.begin (), source.end()).

A type meeting the input iterator requirements that iterates over a NTCTS. The value type shall
be an encoded character type. A function argument const Sources source shall have an
effective range [source, end) where end is the first iterator value with an element value equal
to iterator traits<Source>::value type().

A character array that after array-to-pointer decay results in a pointer to the start of a NTCTS.
The value type shall be an encoded character type. A function argument const Sources
source shall have an effective range [source, end) where end is the first iterator value with an
ekﬂnentvahuiequaIU)iterator_traits<decay<Source>::type>::value_type().

[Note: See path conversions (8.2) for how these value types and their encodings convert to

path::value type and its encoding. —end note]

Arguments of type Source shall not be null pointers.

8.4 path members [path.member]

8.4.1 path constructors [path.construct]

path ()

noexcept;

2 Effects: Constructs an object of class path.

3 Postconditions: empty ().

path (const pathé& p);
path (path&& p) noexcept;

17

© ISO/IEC N4100

> Effects: Constructs an object of class path with pathname having the original value of

p.pathname. In the second form, p is left in a valid but unspecified state.

template <class Source>
path (const Source& source) ;
template <class InputlIterator>
path (InputIterator first, InputlIterator last);

7 Effects: Constructs an object of class path, storing the effective range of source (8.3) or the
range [first,last) in pathname, converting format and encoding if required (8.2.1).

template <class Source>
path (const Sourceé& source, const locale& loc);
template <class InputlIterator>
path (InputIterator first, InputlIterator last, const locale& loc);

Requires: The value type of source and InputIterator iS char.
10 Effects: Constructs an object of class path, storing the effective range of source or the range
[first,last) in pathname, after converting format if required and after converting the
encoding as follows:

I Ifvalue typeiswchar t,converts to the native wide encoding (4.10) using the
codecvt<wchar t, char, mbstate t> facet of 1oc. Otherwise a conversion is
performed using the codecvt<wchar t, char, mbstate t> facetof loc, and then
a second conversion to the current narrow encoding.

12 [Example:

13 A string is to be read from a database that is encoded in ISO/IEC 8859-1, and used to
create a directory:

14 namespace fs = std::experimental::filesystem;
std::string latinl string = read latinl data();
codecvt 8859 I1<wchar t> latinl facet;
std::locale latinl locale(std::locale(), latinl facet);
fs::create directory(fs::path(latinl string, latinl locale));

15 For POSIX based operating systems the path is constructed by first using
latinl facet to convert ISO/IEC 8859-1 encoded 1atinl string to a wide
character string in the native wide encoding (4.10). The resulting wide string is then
converted to a narrow character pathname string in the current native narrow
encoding. If the native wide encoding is UTF-16 or UTF-32, and the current native
narrow encoding is UTF-8, all of the characters in the ISO/IEC 8859-1 character set
will be converted to their Unicode representation, but for other native narrow
encodings some characters may have no representation.

18

© ISO/IEC N4100

16 For Windows based operating systems the path is constructed by using
latinl facet to convert ISO/IEC 8859-1 encoded 1atinl stringtoa UTF-16
encoded wide character pathname string. All of the characters in the ISO/IEC 8859-1
character set will be converted to their Unicode representation.

17 —end example]

8.4.2 path assignments [path.assign]
path& operator=(const pathé& p):;

2 Effects: If *tnis and p are the same object, has no effect. Otherwise, modifies pathname to
have the original value of p.pathname.

3 Returns: *this
path& operator=(path&& p) noexcept;

> Effects: If this and p are the same object, has no effect. Otherwise, modifies pathname to
have the original value of p.pathname. p is left in a valid but unspecified state. [Note: A valid
implementation is swap (p) . —end note]

6 Returns: *this

template <class Source>
path& operator=(const Sourceé& source) ;
template <class Source>
path& assign(const Sourceé& source);
template <class InputlIterator>
path& assign (InputlIterator first, Inputlterator last);

8 Effects: Stores the effective range of source (8.3) or the range [first,last) in pathname,
converting format and encoding if required (8.2.1).

9 Returns: *this
8.4.3 path appends [path.append]

The append operations use operator/= to denote their semantic effect of appending preferred-
separator when needed.

path& operator/=(const pathé& p);
3 Effects:

Appends path::preferred separator to pathname unless:

19

10

© ISO/IEC

8

4« an added separator would be redundant, or

3>« would change a relative path to an absolute path [Note: An empty path is
relative. — end note], or

p.empty (), Or

7 e xp.native () .cbegin () is a directory separator.

Then appends p.native () to pathname.

9 Returns: *this

template <class Source>
path& operator/=(const Sourceé& source);
template <class Source>
path& append(const Sourceé& source);
template <class InputlIterator>
pathé& append (Inputlterator first, Inputlterator last);

I Effects:

12

17

Appends path: :preferred separator to pathname, converting format and
encoding if required (8.2.1), unless:

13« an added separator would be redundant, or
14« would change an relative path to an absolute path, or
15 source.empty (), O

16 *source.native().cbegin()isasepaﬂuot

Appends the effective range of source (8.3) or the range [first,last) to pathname,
converting format and encoding if required (8.2.1).

I8 Returns: *this

8.4.4 path concatenation [path.concat]

pathé&
pathé&
pathé&
pathé&

operator+=(const pathé& x);
operator+=(const string type& x);
operator+=(const value type* x);
operator+=(value type x);

template <class Source>
path& operator+=(const Sourceé& x);
template <class EcharT>
path& operator+=(EcharT x);
template <class Source>
path& concat (const Sourceé& x);
template <class InputlIterator>
path& concat (InputlIterator first, Inputlterator last);

N4100

20

12

© ISO/IEC

Postcondition: native () == prior native + effective-argument, where
prior_nativeiSnative()pﬁortothecaﬂtooperator+=,mﬂieffective—argumenti$

3 ¢ x.native() if x is present and is const paths, otherwise

4 o the effective range source (8.3), if source is present, otherwise,
>« therange [first,last), if first and last are present, otherwise,
6

* x.

If the value type of effective-argument would not be path: :value type, the actual
argument or argument range is first converted (8.2.1) so that effective-argument has value
type path::value type.

Returns: *this

8.4.5 path modifiers [path.modifiers]

void clear () noexcept;

1

Postcondition: empty ()

pathé& make preferred();

11

Effects: Each directory-separator is converted to preferred-separator.
Returns: *this

[Example:
¢ path p("foo/bar");
std::cout << p << '"\n';

p.make preferred();
std::cout << p << '"\n';

On an operating system where preferred-separator is the same as directory-separator, the
output is:

8 "foo/bar"
"foo/bar"

On an operating system where preferred-separator is a backslash, the output is:

10 "foo/bar"
"foo\bar"

—end example]

path& remove filename();

N4100

21

18

25

31

© ISO/IEC N4100

13- Postcondition: 'has_filename ().
14 Returns: *this.

15 [Example:

16 std::cout << path("/foo").remove filename(); // outputs "/"
std::cout << path("/").remove filename () ; // outputs ""
17 —end example]

path& replace filename (const pathé& replacement);

19 Effects:

20 remove filename () ;

operator/=(replacement) ;

21 Returns: *this.

22 [Example:
23 std::cout << path("/foo").replace filename ("bar"); // outputs "/bar"
std::cout << path("/").replace filename ("bar"); // outputs "bar"
24

—end example]

pathé& replace extension(const pathé& replacement = path());

26 Effects:
27« Any existing extension () (8.4.9) is removed from the stored path, then
28 o If replacement is not empty and does not begin with a dot character, a dot character
is appended to the stored path, then
29 ¢ replacement is concatenated to the stored path.

30 Returns: *this

void swap (pathé& rhs) noexcept;
32 Effects: Swaps the contents of the two paths.

33 Complexity: constant time.
8.4.6 path native format observers [path.native.obs]

The string returned by all native format observers is in the native pathname format.

22

12

© ISO/IEC N4100

const string type& native() const noexcept;

Returns: pathname.

const value type* c str() const noexcept;

> Returns: pathname.c str().

operator string type() const;
Returns: pathname.

[Note: Conversion to string type is provided so that an object of class path can be given as
an argument to existing standard library file stream constructors and open functions. This
provides basic interoperability without the need to modify existing standard library classes or
headers. —end note]

template <class EcharT, class traits = char traits<EcharT>,
class Allocator = allocator<EcharT> >
basic string<EcharT, traits, Allocator>
string (const Allocator& a = Allocator()) const;

10 Returns: pathname.

1T Remarks: All memory allocation, including for the return value, shall be performed by a.
Conversion, if any, is specified by 8.2.

std::string string() const;
std::wstring wstring () const;
std::string u8string() const;
std::ul6string ul6string() const;
std::u32string u32string () const;

13 Returns: pathname.

14 Remarks: Conversion, if any, is performed as specified by 8.2. The encoding of the string

returned by u8string () is always UTF-8.
8.4.7 path generic format observers [path.generic.obs]

Generic format observer functions return strings formatted according to the generic pathname format
(8.1). The forward slash (' /') character is used as the directory-separator character.

2 [Example: On an operating system that uses backslash as its preferred-separator,

path ("foo\\bar") .generic_string() returns "foo/bar". —end example]
template <class EcharT, class traits = char traits<EcharT>,
class Allocator = allocator<EcharT> >

23

© ISO/IEC N4100

basic string<EcharT, traits, Allocator>
generic_ string(const Allocator& a = Allocator()) const;

Returns: pathname, reformatted according to the generic pathname format (8.1).

Remarks: All memory allocation, including for the return value, shall be performed by a.
Conversion, if any, is specified by 8.2.

std::string generic string() const;
std::wstring generic wstring() const;
std::string generic u8string() const;
std::ul6string generic ulé6string() const;
std::u32string generic u32string() const;

7 Returns: pathname, reformatted according to the generic pathname format (8.1).

8 Remarks: Conversion, if any, is specified by 8.2. The encoding of the string returned by

generic u8string () is always UTF-8.

8.4.8 path compare [path.compare]
int compare (const path& p) const noexcept;

Returns: A value less than 0 if native () for the elements of *this are lexicographically less
than native () for the elements of p, otherwise a value greater than 0 if native () for the
elements of *this are lexicographically greater than native () for the elements of p,
otherwise 0.

Remark: The elements are determined as if by iteration over the half-open range [begin (),
end()) for *this and p-

int compare (const string typeé& s) const

> Returns: compare (path(s)).

int compare (const value type* s) const

7 Returns: compare (path (s)).

8.4.9 path decomposition [path.decompose]
path root name () const;

2 Returns: root-name, if pathname includes root-name, otherwise path ().

path root directory() const;

24

10

12

17

© ISO/IEC N4100

4 Returns: root-directory, if pathname includes root-directory, otherwise path ().

> If root-directory is composed of slash name, slash is excluded from the returned string.
path root path() const;

7 Returns: root name() / root directory()

path relative path() const;

9 Returns: A path composed from pathname, if !empty (), beginning with the first filename

after root-path. Otherwise, path ().

path parent path() const;

I Returns: (empty() || begin() == --end()) ? path() : pp, Where pp is constructed as
if by starting with an empty path and successively applying operator/= for each element in
the range [begin (), -—end ()).

path filename () const;

13 Returns: empty () 2 path() : *--end()

14 [Example:

15 std::cout << path("/foo/bar.txt").filename(); // outputs "bar.txt"
std::cout << path("/").filename () ; // outputs "/"
std::cout << path(".").filename () ; // outputs "."
std::cout << path("..").filename () ; // outputs ".."

16 —end example]

path stem() const;

18 Returns: if filename () contains a period but does not consist solely of one or two periods,
returns the substring of filename () starting at its beginning and ending with the character
before the last period. Otherwise, returns filename ().

19 [Example:

20 std::cout << path("/foo/bar.txt").stem(); // outputs "bar"
path p = "foo.bar.baz.tar";
for (; !p.extension().empty(); p = p.stem())

std::cout << p.extension() << '\n';
// outputs: .tar

// .baz
// .bar
2l —end example]

25

22

11

© ISO/IEC N4100

path extension () const;

23

24

25

27

28

Returns: if filename () contains a period but does not consist solely of one or two periods,
returns the substring of filename () starting at the rightmost period and for the remainder of
the path. Otherwise, returns an empty path object.

Remarks: Implementations are permitted to define additional behavior for file systems which
append additional elements to extensions, such as alternate data streams or partitioned dataset
names.

[Example:

26 std::cout << path("/foo/bar.txt").extension(); // outputs ".txt"
—end example]

[Note: The period is included in the return value so that it is possible to distinguish between no
extension and an empty extension. Also note that for a path p,
p.stem () +p.extension() == p.filename ().—end note]

8.4.10 path query [path.query]

bool empty () const noexcept;

Returns: pathname.empty ().

bool has root path() const;

4

Returns: ' root path () .empty ()

bool has root name() const;

6

Returns: ' root name () .empty ()

bool has root directory() const;

8

Returns: 'root directory () .empty ()

bool has relative path() const;

10

Returns: 'relative path () .empty ()

bool has parent path() const;

12

Returns: 'parent path () .empty ()

bool has filename () const;

26

15

17

19

22

10

12

© ISO/IEC N4100

14 Returns: | filename () .empty ()

bool has stem() const;

16 Returns: !stem() .empty ()

bool has extension () const;

18 Returns: 'extension () .empty ()

bool is absolute() const;

20 Returns: true if pathname contains an absolute path (4.1), else false.

2l [Example: path("/") .is_absolute () is true for POSIX based operating systems, and
false for Windows based operating systems. —end example]

bool is relative() const;

23 Returns: 'is_absolute ().

8.5 path iterators [path.itr]
Path iterators iterate over the elements of the stored pathname.

A path::iterator is a constant iterator satisfying all the requirements of a bidirectional iterator
(C++14 §24.1.4 Bidirectional iterators). Its value type is path.

Calling any non-const member function of a path object invalidates all iterators referring to elements of
that object.

The forward traversal order is as follows:

>« The root-name element, if present.

6 « The root-directory element, if present, in the generic format. /note: the generic format is
required to ensure lexicographical comparison works correctly. —end note]

7« Each successive filename element, if present.

8 « Dot, if one or more trailing non-root slash characters are present.

The backward traversal order is the reverse of forward traversal.
iterator begin() const;

I Returns: An iterator for the first present element in the traversal list above. If no elements are
present, the end iterator.

iterator end() const;

27

11

13

19

© ISO/IEC

13 Returns: The end iterator.

8.6 path non-member functions [path.non-member]

void swap (path& lhs, pathé& rhs) noexcept;

2 Effects: 1hs.swap (rhs).

size t hash value (const pathé& p)

noexcept;

hash value(pl) == hash value (p2).

bool operator< (const pathé& lhs,

bool operator<=(const pathé& lhs,

Returns: ! (rhs < 1lhs).
bool operator> (const pathé& lhs,

10 Returns: rhs < 1lhs.

bool operator>=(const pathé& lhs,

12 Returns: ! (lhs < rhs).

bool operator==(const pathé& lhs,

14

15 [Note: Path equality and path equivalence have different semantics.

16

const pathé&

Returns: return lhs.compare (rhs) < 0.

const pathé&

const pathé&

const pathé&

const pathé&

Returns: ! (1hs < rhs) && ! (rhs < lhs).

true when both paths resolve to the same file.

18

appropriate function accordingly. —end note]

bool operator!=(const path& lhs,

rhs)

rhs)

rhs)

rhs)

rhs)

const path& rhs)

Returns: A hash value for the path p. If for two paths, p1 == p2 then

noexcept;

noexcept;

noexcept;

noexcept;

noexcept;

Equality is determined by the path non-member operator==, which considers the two path's
lexical representations only. Thus path ("foo") == "bar" is never true.

Equivalence is determined by the equivalent () non-member function, which determines if
two paths resolve to the same file system entity. Thus equivalent ("foo", "bar") will be

Programmers wishing to determine if two paths are "the same" must decide if "the same"
means "the same representation” or "resolve to the same actual file", and choose the

noexcept;

N4100

28

© ISO/IEC N4100

20 Returns: ! (lhs == rhs).

21 path operator/ (const path& lhs, const pathé& rhs);

22 Returns: path(lhs) /= rhs.

8.6.1 path inserter and extractor [path.io]

1 template <class charT, class traits>
basic ostream<charT, traits>é&
operator<<(basic ostream<charT, traits>& os, const path& p);

2 Effects: os << quoted (p.string<charT, traits>()).
3 [Note: The quoted function is described in C++14 §27.7.6. — end note]

4 Returns: os

5 template <class charT, class traits>
basic istream<charT, traits>&
operator>>(basic istream<charT, traits>& is, path& p);

6 Effects:

7 basic_string<charT, traits> tmp;
is >> quoted(tmp) ;
p = tmp;

8 Returns: is

8.6.2 path factory functions [path.factory]

1 template <class Source>
path u8path (const Sourceé& source);
template <class InputlIterator>
path u8path (InputIterator first, InputlIterator last);

2 Requires: The source and [first,last) sequences are UTF-8 encoded. The value type of
SourceandInputIteratoriSchaL

3 Returns:

4 e Ifvalue type is char and the current native narrow encoding (4.11) is
UTF-8, path (source) or path (first, last), else

>« ifvalue typeiswchar t and the native wide encoding is UTF-16, or if
value type S charl6 t or char32 t, convert source Or [first,last)to
a temporary, tmp, of type string type and return path (tmp), else

29

© ISO/IEC N4100

6« convert source or [first,last) to a temporary, tmp, of type u32string and
return path (tmp).

7 Remarks: Argument format conversion (8.2.1) applies to the arguments for these functions.
How Unicode encoding conversions are performed is unspecified.

[Example:

A string is to be read from a database that is encoded in UTF-8, and used to create a
directory using the native encoding for filenames:

10 namespace fs = std::experimental::filesystem;
std::string utf8 string = read utf8 data();
fs::create directory(fs::u8path (utf8 string));

I For POSIX based operating systems with the native narrow encoding set to UTF-8,
no encoding or type conversion occurs.

12 For POSIX based operating systems with the native narrow encoding not set to
UTF-8, a conversion to UTF-32 occurs, followed by a conversion to the current
native narrow encoding. Some Unicode characters may have no native character set
representation.

13 For Windows based operating systems a conversion from UTF-8 to UTF-16 occurs.

14 —end example]

9 Class filesystem error [class.filesystem_error]

namespace std { namespace experimental { namespace filesystem { inline namespace vl {

class filesystem error : public system error
{
public:
filesystem error(const string& what arg, error code ec);
filesystem error(const string& what arg,
const path& pl, error code ec);
filesystem error(const string& what arg,
const pathé& pl, const pathé& p2, error code ec);

const pathé& pathl () const noexcept;
const pathé& path2 () const noexcept;
const char* what () const noexcept;

}i

} } } } // namespaces std::experimental::filesystem::vl

The class filesystem error defines the type of objects thrown as exceptions to report file system
errors from functions described in this Technical Specification.

30

© ISO/IEC

9.1 filesystem error members [filesystem_error.members]

2

3 Postcondition:

filesystem error(const string& what arg, error code ec);

Expression

Value

runtime error::what ()

what arg.c_str()

code () ec
pathl () .empty () true
path2 () .empty () true

4

5 Postcondition:

filesystem error(const string& what arg,

const pathé& pl,

Expression

Value

runtime error::what ()

what arg.c str()

code () ec

pathl () Reference to stored
copy of p1

path2 () .empty () true

6

7 Postcondition:

Expression

Value

runtime error::what ()

what arg.c str()

code () ec

Reference to stored
pathl ()

copy of p1

Reference to stored
path?2 ()

copy of p2

Constructors are provided that store zero, one, or two paths associated with an error.

error code ec);

N4100

filesystem error (const string& what arg, const pathé& pl, const path& p2, error code ec);

31

10

12

1

© ISO/IEC

const pathé& pathl ()

N4100

const noexcept;

9 Returns: Reference to copy of p1 stored by the constructor, or, if none, an empty path.

const pathé& path2 ()

const noexcept;

I Returns: Reference to copy of p2 stored by the constructor, or, if none, an empty path.

const char* what ()

const noexcept;

13 Returns: A string containing runtime error::what (). The exact format is unspecified.
Implementations are encouraged but not required to include pathl.native string()if not
empty, path2.native string()if notempty, and system error::what () strings in the
returned string.

10 Enumerations [fs.enum]

10.1 Enum class file type [enum.file type]

This enum class specifies constants used to identify file types.

Constant Value | Meaning
Name
0 The type of the file has not been determined or an error occurred while trying to

nene determine the type.

Pseudo-type indicating the file was not found. [Note: The file not being found is
not found -1

- not considered an error while determining the type of a file. —end note]

regular 1 | Regular file
directory| 2 |Directory file
symlink 3 | Symbolic link file
block 4 | Block special file
character| 5 |Character special file
fifo 6 | FIFO or pipe file
socket 7 Socket file

The file does exist, but is of an operating system dependent type not covered by
unknown 8 | any of the other cases or the process does not have permission to query the file

type

32

© ISO/IEC

N4100

10.2 Enum class copy options [enum.copy_options]

The enum class type copy options is a bitmask type (C++14 §17.5.2.1.3) that specifies bitmask
constants used to control the semantics of copy operations. The constants are specified in option groups.
Constant none is shown in each option group for purposes of exposition; implementations shall provide

only a single definition. Calling a Filesystem library function with more than a single constant for an
option group results in undefined behavior.

Option group controlling copy_file function effects for existing target files

Constant Value | Meaning
none 0 | (Default) Error; file already exists.
skip existing 1 | Do not overwrite existing file, do not report an error.

overwrite existing| 2 |Overwrite the existing file.
update existing 4 | Overwrite the existing file if it is older than the replacement file.
Option group controlling copy function effects for sub-directories
Constant Value | Meaning
none 0 | (Default) Do not copy sub-directories.
recursive 8 | Recursively copy sub-directories and their contents.
Option group controlling copy function effects for symbolic links
Constant Value | Meaning
none 0 | (Default) Follow symbolic links.
copy symlinks e gl(;fifhsey;rrll)l;?rllitctgnks as symbolic links rather than copying the files
skip symlinks 32 |Ignore symbolic links.

Option group controlling copy function effects for choosing the form of copying
Constant Value | Meaning
none 0 | (Default) Copy content.
directories only 64 | Copy directory structure only, do not copy non-directory files.
Make symbolic links instead of copies of files. The source path shall
create symlinks 128 | be an absolute path unless the destination path is in the current
directory.
create hard links | 256 |Make hard links instead of copies of files.

33

© ISO/IEC

10.3 Enum class perms [enum.perms]

N4100

The enum class type perms is a bitmask type (C++14 §17.5.2.1.3) that specifies bitmask constants

used to identify file permissions.

Value | POSIX co
Name Definition or notes
(octal) | macro
none 0 There are no permissions set for the file.
owner read 0400 S_IRUSR | Read permission, owner
owner write 0200 S_IWUSR | Write permission, owner
owner exec 0100 S_IXUSR | Execute/search permission, owner
Read, write, execute/search by owner;
owner all 0700 S IRWXU
- - owner read | owner write | owner exec
group_ read 040 S_IRGRP | Read permission, group
group write 020 S IWGRP | Write permission, group
group exec 010 S_IXGRP | Execute/search permission, group
Read, write, execute/search by group;
group all 070 S IRWXG
- - group_read | group write | group exec
others read 04 S_IROTH | Read permission, others
others write 02 S_IWOTH | Write permission, others
others exec 01 S_1xOTH | Execute/search permission, others
Read, write, execute/search by others;
others all 07 S IRWXO
- - others read | others write | others exec
all 0777 owner all | group all | others all
set uid 04000 s_1sUID | Set-user-ID on execution
set gid 02000 | S _1SGID | Set-group-ID on execution
sticky bit 01000 S_1svTx | Operating system dependent.
mask 07777 all | set uid | set gid | sticky bit
The permissions are not known, such as when a
unknown OXFFFF file status object is created without specifying the

permissions

34

© ISO/IEC N4100

permissions () shall bitwise or the perm argument's
add perms 0x10000 . . , .. .
- permission bits to the file's current permission bits.
permissions () shall bitwise and the complement of perm
remove perms 0x20000 argument's permission bits to the file's current permission
bits.
resolve symlinks | 0x40000 permissions()ShaHreﬁﬂvesyHﬂhﬂﬁ

10.4 Enum class directory options [enum.directory_options]

The enum class type directory options is a bitmask type (C++14 §17.5.2.1.3) that specifies
bitmask constants used to identify directory traversal options.

Name Value | Meaning

(Default) Skip directory symlinks, permission denied is an
error.

none 0

follow directory symlink| 1 |Follow rather than skip directory symlinks.

Skip directories that would otherwise result in permission

skip permission denied 2 -
- - denied errors.

11 Class file status [class.file_status]

namespace std { namespace experimental { namespace filesystem { inline namespace vl {

class file status

{
public:

// constructors
explicit file status(file type ft = file type::none,
perms prms = perms::unknown) noexcept;
file status(const file status&) noexcept = default;
file status(file status&&) noexcept = default;
~file status();

file status& operator=(const file status&) noexcept = default;
file status& operator=(file status&&) noexcept = default;

// observers
file type type() const noexcept;
perms permissions () const noexcept;

// modifiers

void type (file type ft) noexcept;
void permissions (perms prms) noexcept;

35

© ISO/IEC N4100

’

} } } } // namespaces std::experimental::filesystem::vl

An object of type file status stores information about the type and permissions of a file.

11.1 file status constructors [file_status.cons]

explicit file status() noexcept;

2 Postconditions: type () == file type::none,permissions() == perms::unknown.
explicit file status(file type ft, perms prms = perms::unknown) noexcept;

4 Postconditions: type () == ft,permissions() == prms.

11.2 file status observers [file_status.obs]

file type type() const noexcept;

2 Returns: The value of type () specified by the postconditions of the most recent call to a
constructor, operator=, Or type (file type) function.

perms permissions () const noexcept;

4 Returns: The value of permissions () specified by the postconditions of the most recent call
to a constructor, operator=, Or permissions (perms) function.

11.3 file status modifiers [file status.mods]
void type (file type ft) noexcept;

2 Postconditions: type () == ft.
void permissions (perms prms) noexcept;

4 Postconditions: permissions () == prms.

12 Class directory entry [class.directory_entry]

namespace std { namespace experimental { namespace filesystem { inline namespace vl {
class directory entry
{
public:

// constructors and destructor
directory entry() noexcept = default;

36

© ISO/IEC
directory entry(const directory entry&) = default;
directory entry(directory entryé&&) noexcept = default;

explicit directory entry(const pathé& p);
~directory entry();

// modifiers

directory entryé& operator=(const directory entryé&) = default;
directory entryé& operator=(directory entry&é&) noexcept = default;
void assign (const pathé& p);

void replace filename (const pathé& p);

// observers

const path& path() const noexcept;

operator const pathé& () const noexcept;

file status status() const;

file status status(error code& ec) const noexcept;
file status symlink status() const;

file status symlink status(error code& ec) const noexcept;

const noexcept;
const noexcept;
const noexcept;
const noexcept;
const noexcept;
const noexcept;

bool operator<
bool operator==
bool operator!=
bool operator<=
bool operator>
bool operator>=
private:
path m path; // for exposition only
bi

const directory entryé& rhs
const directory entryé& rhs
const directory entryé& rhs
const directory entryé& rhs
const directory entryé& rhs
const directory entryé& rhs

} } } } // namespaces std::experimental::filesystem::vl

A directory entry object stores a path object.

12.1 directory entry constructors [directory_entry.cons]
explicit directory entry(const pathé& p);

2 Effects: Constructs an object of type directory entry.

3 Postcondition: path () == p.

12.2 directory entry modifiers [directory_entry.mods]
void assign (const pathé& p);

2 Postcondition: path () == p.

void replace filename (const pathé& p);

4 Postcondition: path () == x.parent path() / p where x is the value of path () before the

function is called.

N4100

37

11

13

15

17

19

© ISO/IEC

12.3 directory_ entry observers [directory_entry.obs]

const pathé& path() const noexcept;
operator const pathé& () const noexcept;

2 Returns: m_path

file status status() const;
file status status(error code& ec) const noexcept;

4 Returns: status (path() [, ec]).

> Throws: As specified in Error reporting (7).

file status symlink status() const;
file status symlink status(error codeé& ec) const noexcept;

7 Returns: symlink status (path() [, ec]).

8 Throws: As specified in Error reporting (7).

bool operator==(const directory entry& rhs) const noexcept;
10 Returns: m_path == rhs.m path.
bool operator!=(const directory entry& rhs) const noexcept;
12 Returns: m_path !'= rhs.m path.

bool operator< (const directory entryé& rhs) const noexcept;

14 Returns: m_path < rhs.m path.

bool operator<=(const directory entry& rhs) const noexcept;
16 Returns: m_path <= rhs.m path.

bool operator> (const directory entryé& rhs) const noexcept;
18 Returns: m_path > rhs.m path.

bool operator>=(const directory entryé& rhs) const noexcept;

20 Returns: m_path >= rhs.m path.

N4100

38

© ISO/IEC N4100

13 Class directory iterator [class.directory_iterator]

An object of type directory iterator provides an iterator for a sequence of directory entry
elements representing the files in a directory. [Note: For iteration into sub-directories, see class
recursive directory iterator (14). —end note]

namespace std { namespace experimental { namespace filesystem { inline namespace vl {

class directory iterator

{

public:
typedef directory entry value type;
typedef ptrdiff t difference type;

typedef const directory entry* pointer;
typedef const directory entryé& reference;
typedef input iterator tag iterator category;

// member functions
directory iterator () noexcept;
explicit directory iterator (const pathé& p);
directory iterator(const path& p, directory options options);
directory iterator(const pathé& p, error code& ec) noexcept;
directory iterator(const pathé& p,

directory options options, error code& ec) noexcept;
directory iterator (const directory iteratoré& rhs);
directory iterator(directory iterator&& rhs) noexcept;
~directory iterator();

directory iteratoré& operator=(const directory iterator& rhs);
directory iteratoré& operator=(directory iteratoré&& rhs) noexcept;

const directory entryé& operator* () const;

const directory entry* operator->() const;

directory iteratoré& operator++ () ;

directory iterators increment (error code& ec) noexcept;

// other members as required by C++14 §24.1.1 Input iterators
}i

} } } } // namespaces std::experimental::filesystem::vl
directory iterator satisfies the requirements of an input iterator C++14 §24.2.3).

If an iterator of type directory iterator is advanced past the last directory element, that iterator shall
become equal to the end iterator value. The directory iterator default constructor shall create an
iterator equal to the end iterator value, and this shall be the only valid iterator for the end condition.

The result of operator* on an end iterator is undefined behavior. For any other iterator value a
const directory entrys is returned. The result of operator-> on an end iterator is undefined
behavior. For any other iterator value a const directory entry* is returned.

39

© ISO/IEC

Two end iterators are always equal. An end iterator shall not be equal to a non-end iterator.

N4100

The result of calling the path () member of the directory entry object obtained by dereferencing a
directory iterator is areference to a path object composed of the directory argument from which

the iterator was constructed with filename of the directory entry appended as if by operator/=.

Directory iteration shall not yield directory entries for the current (dot) and parent (dot-dot) directories.

The order of directory entries obtained by dereferencing successive increments of a
directory iterator is unspecified.

10 [Note: Programs performing directory iteration may wish to test if the path obtained by

dereferencing a directory iterator actually exists. It could be a symbolic link to a non-existent

file. Programs recursively walking directory trees for purposes of removing and renaming
entries may wish to avoid following symbolic links.

If a file is removed from or added to a directory after the construction of a
directory iterator for the directory, it is unspecified whether or not subsequently
incrementing the iterator will ever result in an iterator referencing the removed or added
directory entry. See POSIX readdir r().—end note]

13.1 directory iterator members [directory_iterator.members]

directory iterator() noexcept;

2 Effects: Constructs the end iterator.

explicit directory iterator (const path& p);
directory iterator (const pathé& p, directory options options);
directory iterator (const pathé& p, error code& ec) noexcept;
directory iterator (const path& p,

directory options options, error code& ec) noexcept;

Effects: For the directory that p resolves to, constructs an iterator for the first element in a
sequence of directory entry elements representing the files in the directory, if any;
otherwise the end iterator. However, if

(options & directory options::skip permissions denied) != directory options:

and construction encounters an error indicating that permission to access p is denied,
constructs the end iterator and does not report an error.

> Throws: As specified in Error reporting (7).

[Note: To iterate over the current directory, use directory iterator (".") rather than
directory iterator ("").—end note]

:none

40

http://www.opengroup.org/onlinepubs/000095399/functions/readdir_r.html

10

14

© ISO/IEC N4100

directory iterator(const directory iteratoré& rhs);
directory iterator(directory iterator&& rhs) noexcept;

8 Effects: Constructs an object of class directory iterator.

9 Postconditions: *this has the original value of rhs.

directory iteratoré& operator=(const directory iteratoré& rhs);
directory iteratoré& operator=(directory iteratoré&& rhs) noexcept;

I Effects: If *this and rhs are the same object, the member has no effect.
12 Postconditions: *this has the original value of rhs.

13 Returns: *this.

directory iterator& operator++();
directory iteratoré& increment (error code& ec) noexcept;

15 Effects: As specified by C++14 §24.1.1 Input iterators.

16 Returns: *this.

17 Throws: As specified in Error reporting (7).

13.2 directory iterator non-member functions [directory_iterator.nonmembers]
These functions enable use of directory iterator with range-based for statements.

directory iterator begin(directory iterator iter) noexcept;

3 Returns: iter.

directory iterator end(const directory iterator&) noexcept;

> Returns: directory iterator ().

14 Class recursive directory iterator [class.rec.dir.itr]

An object of type recursive directory iterator provides an iterator for a sequence of
directory entry elements representing the files in a directory and its sub-directories.

namespace std { namespace experimental { namespace filesystem { inline namespace vl {
class recursive directory iterator

{
public:

41

© ISO/IEC N4100

typedef directory entry value type;
typedef ptrdiff t difference type;
typedef const directory entry* pointer;

typedef const directory entryé& reference;

typedef input iterator tag iterator category;

// constructors and destructor
recursive directory iterator() noexcept;
explicit recursive directory iterator (const pathé& p);
recursive directory iterator (const path& p, directory options options);
recursive directory iterator (const path& p,
directory options options, error code& ec) noexcept;
recursive directory iterator(const path& p, error code& ec) noexcept;
recursive directory iterator(const recursive directory iteratoré& rhs);
recursive directory iterator (recursive directory iterator&& rhs) noexcept;
~recursive directory iterator();

// observers
directory options options () const;

int depth () const;

bool recursion pending() const;
const directory entryé& operator* () const;
const directory entry* operator->() const;

// modifiers
recursive directory iteratoré&
operator=(const recursive directory iteratoré& rhs);
recursive directory iteratoré&
operator=(recursive directory iterator&& rhs) noexcept;

recursive directory iterator& operator++();
recursive directory iteratoré& increment (error code& ec) noexcept;

void pop () ;
void disable recursion pending();

// other members as required by C++14 §24.1.1 Input iterators
}i

} } } } // namespaces std::experimental::filesystem::vl

The behavior of a recursive directory iterator isthe same asa directory iterator unless
otherwise specified.

[Note: If the directory structure being iterated over contains cycles then the end iterator may be
unreachable. —end note]

14.1 recursive _directory iterator members [rec.dir.itr.members]

recursive directory iterator() noexcept;

2 Effects: Constructs the end iterator.

42

9

12

15

© ISO/IEC

explicit recursive directory iterator (const pathé& p);
recursive directory iterator (const path& p, directory options options);
recursive directory iterator(const path& p,
directory options options, error code& ec) noexcept;
recursive directory iterator(const path& p, error code& ec) noexcept;

4 Effects: Constructs a iterator representing the first entry in the directory p resolves to, if any;
otherwise, the end iterator. However, if
(options & directory options::skip permissions denied) != directory options
and construction encounters an error indicating that permission to access p is denied,
constructs the end iterator and does not report an error.

> Postcondition: options () == options for the signatures with a directory options
argument, otherwise options () == directory options::none.

6 Throws: As specified in Error reporting (7).

7 [Note: To iterate over the current directory, use recursive directory iterator (".")
ﬁﬂherthan,recursive_directory_iterator("").——endlune]

8

[Note: By default, recursive directory iterator does not follow directory symlinks. To
follow directory symlinks, specify options as
directory_options::follow_directory_symlink—-endnokﬂ

recursive directory iterator(const recursive directory iteratoré& rhs);

10° Effects: Constructs an object of class recursive directory iterator.
I Postconditions:
this->options () == rhs.options () && this->depth() == rhs.depth()

&& this->recursion pending() == rhs.recursion pending().

recursive directory iterator(recursive directory iterator&& rhs) noexcept;

13 Effects: Constructs an object of class recursive directory iterator.

14 Postconditions: this->options (), this->depth (), and this->recursion pending ()
return the values that rhs.options (), rhs.depth (), and rhs.recursion pending(),

respectively, had before the function call.

recursive directory iterator& operator=(const recursive directory iteratoré& rhs);

16 Effects: If *this and rhs are the same object, the member has no effect.

17 Postconditions:
this->options () == rhs.options () && this->depth() == rhs.depth()
&& this->recursion pending() == rhs.recursion pending().

N4100

s none

43

19

23

27

31

35

© ISO/IEC N4100

18 Returns: *this.

recursive directory iterator& operator=(recursive directory iterator&& rhs) noexcept;

20 Effects: If *this and rhs are the same object, the member has no effect.

2l Postconditions: this->options (), this->depth (), and this->recursion pending ()

return the values that rhs.options (), rhs.depth (), and rhs.recursion pending(),
respectively, had before the function call.

22 Returns: *this.

directory options options () const;

24 Requires: *this != recursive directory iterator().

25 Returns: The value of the constructor options argument, if present, otherwise

directory options::none.

26 Throws: Nothing.
int depth() const;

28 Requires: *this != recursive directory iterator().

29 Returns: The current depth of the directory tree being traversed. [Note: The initial directory is
depth 0, its immediate subdirectories are depth 1, and so forth. —end note]

30 Throws: Nothing.

bool recursion pending() const;
32 Requires: *this != recursive directory iterator().
33

Returns: true if disable recursion_pending () has not been called subsequent to the prior
construction or increment operation, otherwise false.

34 Throws: Nothing.

recursive directory iteratoré& operator++();
recursive directory iteratoré& increment (error code& ec) noexcept;

36 Requhes:*this != recursive directory iterator().

37 Effects: As specified by C++14 §24.2.3 Input iterators, except that:

44

42

45

© ISO/IEC N4100

38 o If there are no more entries at this depth, then if depth () != 0 iteration over the parent
directory resumes; otherwise *this = recursive directory iterator ().
39 o Otherwise if recursion pending() && is directory(this->status())
&& (!is _symlink(this->symlink status())
|
directory options::none) then either directory (*this)->path () is recursively
iterated into or, if

(options () & directory options::follow directory symlink) !=

(options () & directory options::skip permissions_ denied)

!= directory options::none and an error occurs indicating that permission to
access directory (*this)->path () is denied, then directory (*this)->path() is
treated as an empty directory and no error is reported.

40 Returns: *this.

41 Throws: As specified in Error reporting (7).
void pop ()

43 Requﬂes:*this != recursive directory iterator().

44 Effects: If depth () == 0, set *this to recursive directory iterator (). Otherwise,
cease iteration of the directory currently being iterated over, and continue iteration over the
parent directory.

void disable recursion pending();

46 Requhes:*this != recursive directory iterator().
47 Postcondition: recursion pending() == false.
48

[Note: disable recursion pending () is used to prevent unwanted recursion into a
directory. —end note]

14.2 recursive directory iterator non-member functions
[rec.dir.itr.nonmembers]

These functions enable use of recursive directory iterator with range-based for statements.
recursive directory iterator begin(recursive directory iterator iter) noexcept;

Returns: iter.

recursive directory iterator end(const recursive directory iterator&) noexcept;

Returns: recursive directory iterator().

45

© ISO/IEC

15 Operational functions [fs.op.funcs]

Operational functions query or modify files, including directories, in external storage.

N4100

[Note: Because hardware failures, network failures, file system races, and many other kinds of errors
occur frequently in file system operations, users should be aware that any filesystem operational

function, no matter how apparently innocuous, may encounter an error. See Error reporting (7). —end
note|

15.1 Absolute [fs.op.absolute]

path absolute (const path& p, const pathé& base=current path());

2

3

4

Returns: An absolute path composed according to the following table

p.has_root_directory()

'p.has_root_directory()

p.has_root name()

return p

return p.root name ()

/ absolute (base) .root directory()

/ absolute (base) .relative path ()

/ p.relative path()

'p.has_root_name ()

return

absolute (base) .root name ()
/P

return

absolute (base) / p

[Note: For the returned path, rp, rp.is absolute () is true. —end note]

Throws: As specified in Error reporting (7).

15.2 Canonical [fs.op.canonical]

path canonical (const pathé& p, const path& base = current path());
path canonical (const pathé& p, error codeé& ec);
path canonical (const pathé& p, const pathé& base, error code& ec);

2

Overview: Converts p, which must exist, to an absolute path that has no symbolic link, ". ", or

v " elements.

Returns: A path that refers to the same file system object as absolute (p, base) . For the
overload without a base argument, base is current path (). Signatures with argument ec
return path () if an error occurs.

Throws: As specified in Error reporting (7).

46

© ISO/IEC N4100

Remarks: 'exists (p) 18 an error.
6 [Note: Canonical pathnames allow security checking of a path (e.g. does this path live in
/home/goodguy or /home/badguy?) —end note]

15.3 Copy [fs.op.copy]

void copy(const pathé& from, const path& to);
void copy(const pathé& from, const path& to, error code& ec) noexcept;

2 Eﬁ%cm:copy(from, to, copy options::none/[, ec]).

void copy(const path& from, const path& to, copy options options);
void copy(const path& from, const path& to, copy options options,
error code& ec) noexcept;

4 Precondition: At most one constant from each option group (10.2) is present in options.

> Effects:
6 Before the first use of f and t:

7 e If
(options & copy options::create symlinks) != copy options::none
|| (options & copy options::skip symlinks) != copy options::none,
then auto £ = symlink status(from) and if needed
auto t = symlink status(to).

8 o Otherwise, auto f = status (from) and if needed auto t = status (to).

9 Report an error as specified in Error reporting (7) if:

10 » lexists (f), Or

Il . equivalent (from, to),Or

12°¢ is other(f) || is_other(t),or

13 is _directory(f) && is_regular file(t).

14 Ifis_symlink(f),then:

15 ¢« If
(options & copy options::skip symlinks) != copy options::none,
then return.
16 o« QOtherwise if 'exists (t)
&& (options & copy options::copy symlinks) != copy options::none,

thencopy_symlink(from, to, options).
17"« Otherwise report an error as specified in Error reporting (7).

47

© ISO/IEC N4100

18 Otherwise if is_regular file(f), then:

19 o If (options & copy options::directories only)
!= copy options::none, then return.
20 « QOtherwise if (options & copy options::create symlinks)
!= copy options::none, then create a symbolic link to the source file.
Otherwise if (options & copy options::create hard links)
!= copy options::none, then create a hard link to the source file.
22 o CﬁheﬂNﬁeifis_directory(t),ﬂmn
copy file(from, to/from.filename(), options).
23 . (ﬁheﬁvﬂe,copy_file(from, to, options).

21 o

24 (ﬁheﬂNBeifis_directory(f) && ((options & copy options::recursive)

!= copy options::none || options == copy options::none) then:

25« If !exists(t),then<:reate_directory(to, from).

26 « Then, iterate over the files in from, as if by
for (directory entryé& x : directoryfiterator(from)),andfbr
each iteration

copy (x.path(), to/x.path().filename(), options | copy options::unspecified).

27 Qtherwise no effects.

28 Throws: As specified in Error reporting (7).

29 Remarks: For the signature with argument ec, any Filesystem library functions called by the

implementation shall have an error code argument if applicable.

30 [Example: Given this directory structure:

31 /dirl
filel
file2
dir2

file3

32 Calling copy ("/dir1l", "/dir3") would result in:

33 /dirl
filel
file2
dir2

file3
/dir3
filel
file2

48

© ISO/IEC N4100

34 Alternatively, calling copy ("/dir1", "/dir3", copy options::recursive) would result

mn:

35 /dirl
filel
file2
dir2

file3
/dir3
filel
file2
dir2
file3

36 —end example]

15.4 Copy file [fs.op.copy file]

bool copy file(const pathé& from, const path& to);
bool copy file(const path& from, const path& to, error code& ec) noexcept;

2 Returns: copy file (from, to, copy options::none/, ec])

Throws: As specified in Error reporting (7).

bool copy file(const path& from, const path& to, copy options options);
bool copy file(const pathé& from, const path& to, copy options options,
error code& ec) noexcept;

Precondition: At most one constant from each copy options option group (10.2) is present in
options.

6 Effects:

7 Report a file already exists error as specified in Error reporting (7) if:

8 ¢ exists(to) and equivalent (from, to), Or

9 e exists (to) and (options & (copy options::skip existing
| copy options::overwrite existing | copy options::update existing))
== copy_options::none.

10 Otherwise copy the contents and attributes of the file from resolves to to the file to

resolves to if:

Il . lexists (to), Or

12°e exists(to) and
(options & copy options::overwrite existing) != copy options::none,
or

49

© ISO/IEC N4100

3¢ exists(to) and

(options & copy options::update existing) != copy options::none
and from is more recent than to, determined as if by use of the
last write time function.

14 QOtherwise no effects.

15 Returns: true if the from file was copied, otherwise false. The signature with argument ec

return false if an error occurs.

16 Throws: As specified in Error reporting (7).

17 Complexity: At most one direct or indirect invocation of status (to).

15.5 Copy symlink [fs.op.copy_ symlink]

void copy symlink(const path& existing symlink, const path& new symlink);
void copy symlink(const path& existing symlink, const path& new symlink,
error_codeé& ec) noexcept;

2 Effects: function(read symlink (existing symlink/, ec]), new symlink/, ec]),

where functionis create symlink Of create directory symlink, as appropriate.

3 Throws: As specified in Error reporting (7).

15.6 Create directories [fs.op.create directories]

bool create directories (const path& p);
bool create directories (const path& p, error code& ec) noexcept;

2 Effects: Establishes the postcondition by calling create directory () for any element of p

that does not exist.
Postcondition: is _directory (p)

Returns: true if a new directory was created, otherwise false. The signature with argument
ec returns false if an error occurs.

Throws. As specified in Error reporting (7).
Complexity: O(n+1) where n is the number of elements of p that do not exist.

15.7 Create directory [fs.op.create_directory]

bool create directory(const pathé& p);
bool create directory(const path& p, error code& ec) noexcept;

50

© ISO/IEC N4100

Effects: Establishes the postcondition by attempting to create the directory p resolves to, as if
by POSIX mkdir () with a second argument of static cast<int>(perms::all). Creation
failure because p resolves to an existing directory shall not be treated as an error.

Postcondition: is_directory (p)

Returns: true if a new directory was created, otherwise false. The signature with argument
ec returns false if an error occurs.

Throws: As specified in Error reporting (7).

bool create directory(const pathé& p, const pathé& existing p);
bool create directory(const pathé& p, const path& existing p, error code& ec) noexcept;

7

10

Effects: Establishes the postcondition by attempting to create the directory p resolves to, with
attributes copied from directory existing p. The set of attributes copied is operating system

dependent. Creation failure because p resolves to an existing directory shall not be treated as an
error.

[Note: For POSIX based operating systems the attributes are those copied by native
API stat (existing p.c str(), sattributes stat) followed by

mkdir (p.c_str(), attributes stat.st mode). For Windows based operating
systems the attributes are those copied by native API

CreateDirectoryExW(existing p.c str(), p.c_str(), O).——endnokﬂ

Postcondition: is directory (p)

Returns: true if a new directory was created, otherwise false. The signature with argument
ec returns false if an error occurs.

Throws: As specified in Error reporting (7).

15.8 Create directory symlink [fs.op.create dir_symlk]

void create directory symlink(const pathé& to, const path& new symlink);
void create directory symlink(const path& to, const path& new symlink,

error code& ec) noexcept;
Effects: Establishes the postcondition, as if by POSIX symlink ().

Postcondition: new symlink resolves to a symbolic link file that contains an unspecified
representation of to.

Throws: As specified in Error reporting (7).

51

http://www.opengroup.org/onlinepubs/000095399/functions/mkdir.html
http://www.opengroup.org/onlinepubs/000095399/functions/symlink.html

© ISO/IEC N4100

> [Note: Some operating systems require symlink creation to identify that the link is to a
directory. Portable code should use create directory symlink() to create directory
symlinks rather than create symlink () —end note]

[Note: Some operating systems do not support symbolic links at all or support them only for
regular files. Some file systems do not support symbolic links regardless of the operating
system - the FAT file system used on memory cards and flash drives, for example. —end note]

15.9 Create hard link [fs.op.create_hard_lk]

void create hard link(const path& to, const path& new hard link);
void create hard link(const path& to, const path& new hard link,
error code& ec) noexcept;

2 Effects: Establishes the postcondition, as if by POSIX 1ink ().

3 Postcondition:

4. exists (to) && exists(new hard link) && equivalent (to,
new hard link)

>« The contents of the file or directory to resolves to are unchanged.
6 Throws: As specified in Error reporting (7).

7 [Note: Some operating systems do not support hard links at all or support them only for regular
files. Some file systems do not support hard links regardless of the operating system - the FAT
file system used on memory cards and flash drives, for example. Some file systems limit the
number of links per file. —end note]

15.10 Create symlink [fs.op.create_symlink]

void create symlink(const path& to, const path& new symlink);
void create symlink(const path& to, const path& new symlink,
error code& ec) noexcept;

2 Effects: Establishes the postcondition, as if by POSIX symlink ().

3 Postcondition: new symlink resolves to a symbolic link file that contains an unspecified
representation of to.

4 Throws: As specified in Error reporting (7).
> [Note: Some operating systems do not support symbolic links at all or support them only for

regular files. Some file systems do not support symbolic links regardless of the operating
system - the FAT system used on memory cards and flash drives, for example. —end note]

52

http://www.opengroup.org/onlinepubs/000095399/functions/link.html
http://www.opengroup.org/onlinepubs/000095399/functions/symlink.html

© ISO/IEC N4100

15.11 Current path [fs.op.current path]

path current path();
path current path (error code& ec);

2 Returns: The absolute path of the current working directory, obtained as if by POSIX

getcwd (). The signature with argument ec returns path () if an error occurs.
3 Throws: As specified in Error reporting (7).

Remarks: The current working directory is the directory, associated with the process, that is
used as the starting location in pathname resolution for relative paths.

[Note: The current path () name was chosen to emphasize that the return is a path, not just a
single directory name.

The current path as returned by many operating systems is a dangerous global variable. It may
be changed unexpectedly by a third-party or system library functions, or by another thread.
—end note]

void current path (const path& p);
void current path (const path& p, error code& ec) noexcept;

8 Effects: Establishes the postcondition, as if by POSIX chdir ().
Postcondition: equivalent (p, current path()).

10 Throws: As specified in Error reporting (7).

Il [Note: The current path for many operating systems is a dangerous global state. It may be

changed unexpectedly by a third-party or system library functions, or by another thread. —end
note]

15.12 Exists [fs.op.exists]

bool exists(file status s) noexcept;

2 Renﬂwsrstatus_known(s) && s.type() != file type::not found

bool exists(const pathé& p);
bool exists(const path& p, error code& ec) noexcept;

4 Returns: exists (status (p)) Or exists (status(p, ec)),respectively. The signature with

argument ec returns false if an error occurs.

> Throws: As specified in Error reporting (7).

53

http://www.opengroup.org/onlinepubs/000095399/functions/getcwd.html
http://www.opengroup.org/onlinepubs/000095399/functions/chdir.html

© ISO/IEC N4100

15.13 Equivalent [fs.op.equivalent]

bool equivalent (const path& pl, const path& p2);
bool equivalent (const path& pl, const pathé& p2, error code& ec) noexcept;

2 Effects: Determines file status sl and s2,asif by status(pl) and status (p2),
respectively.

3 Returns: true, if s1 == s2 and p1 and p2 resolve to the same file system entity, else false.
The signature with argument ec returns false if an error occurs.

4 Two paths are considered to resolve to the same file system entity if two candidate
entities reside on the same device at the same location. This is determined as if by the
values of the POSIX stat structure, obtained as if by stat () for the two paths,
having equal st dev values and equal st _ino values.

> Throws: filesystem error if
(lexists(sl) && l!exists(s2)) || (is_other(sl) && is_other(s2)h(ﬁheﬂvﬁeas
specified in Error reporting (7).

15.14 File size [fs.op.file size]

uintmax t file size (const pathé& p);
uintmax t file size (const path& p, error code& ec) noexcept;

2 Returns: If lexists(p) || !is regular file (p) an error is reported (7). Otherwise, the
size in bytes of the file p resolves to, determined as if by the value of the POSIX stat structure
member st_size obtained as if by POSIX stat (). The signature with argument ec returns
static cast<uintmax t>(-1) if an error occurs.

3 Throws: As specified in Error reporting (7).

15.15 Hard link count [fs.op.hard Ik ct]

uintmax t hard link count (const pathé& p);
uintmax t hard link count (const path& p, error code& ec) noexcept;

2 Returns: The number of hard links for p. The signature with argument ec returns

static cast<uintmax_ t>(-1) if an error occurs.

3 Throws: As specified in Error reporting (7).

15.16 Is block file [fs.op.is block file]

bool is_block file(file status s) noexcept;

54

http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/functions/stat.html

© ISO/IEC N4100

2 Returns: s.type() == file type::block

bool is block file(const path& p);
bool is block file(const path& p, error code& ec) noexcept;

4 Returns: is block file(status(p)) Or is block file(status(p, ec)), respectively.
The signature with argument ec returns false if an error occurs.

> Throws: As specified in Error reporting (7).
15.17 Is character file [fs.op.is_char_file]
bool is_character_file(file status s) noexcept;

2 Returns: s.type () == file type::character

bool is character file(const pathé& p);
bool is character file(const path& p, error code& ec) noexcept;

4 Returns: is character file(status(p)) Or is character file(status(p, ec)),
respectively. The signature with argument ec returns false if an error occurs.

> Throws: As specified in Error reporting (7).
15.18 Is directory [fs.op.is_directory]
bool is directory(file status s) noexcept;

2 Returns: s.type() == file type::directory

bool is directory(const path& p);
bool is directory(const path& p, error code& ec) noexcept;

4 Returns: is directory(status(p)) Or is directory(status(p, ec)),respectively. The
signature with argument ec returns false if an error occurs.

> Throws: As specified in Error reporting (7).

15.19 Is empty [fs.op.is_empty]

bool is empty (const path& p);
bool is empty (const path& p, error code& ec) noexcept;

2 Effects: Determines file status s, asifby status(p, ec).

55

© ISO/IEC

Returns: is directory (s)

? directory iterator(p) == directory iterator()

file size(p) == 0;

4 The signature with argument ec returns false if an error occurs.

> Throws: As specified in Error reporting (7).

15.20 Is fifo [fs.op.is_fifo]

bool is_fifo(file status s) noexcept;

2 Returns: s.type() == file type::fifo

bool is fifo(const path& p);
bool is fifo(const path& p, error code& ec) noexcept;

4 Returns: is_fifo(status(p)) Or is fifo(status(p, ec)), respectively. The signature

with argument ec returns false if an error occurs.
> Throws: As specified in Error reporting (7).
15.21 Is other [fs.op.is_other]
bool is_other(file status s) noexcept;

2 Returns:

return exists(s) && !is regular file(s) && !is directory(s)

bool is other (const path& p);

bool is other (const path& p, error code& ec) noexcept;

4 Returns: is other (status(p)) Or is other (status (p, ec)), respectively. The signature

with argument ec returns false if an error occurs.
> Throws: As specified in Error reporting (7).
15.22 Is regular file [fs.op.is_regular_file]
bool is_regular_file(file status s) noexcept;

2 Returns: s.type () == file type::regular.

bool is regular file(const pathé& p);

4 RenHWS:is_regular_file(status(p)).

!is symlink(s)

N4100

56

© ISO/IEC N4100

> Throws: filesystem error if status (p) would throw filesystem error.

bool is regular file(const path& p, error code& ec) noexcept;

7 Effects: Sets ec as if by status (p, ec).[Note: file type::none, file type::not found
and file type::unknown cases set ec to error values. To distinguish between cases, call the
status function directly. —end note]

8 Returns: is regular file(status(p, ec)).Returns false ifan error occurs.

15.23 Is socket [fs.op.is_socket]

bool is_socket (file status s) noexcept;

2 Returns: s.type() == file type::socket

bool is socket (const pathé& p);
bool is socket (const pathé& p, error codeé& ec) noexcept;

4 Returns: is_socket (status(p)) Or is_socket (status (p, ec)), respectively. The
signature with argument ec returns false if an error occurs.

> Throws: As specified in Error reporting (7).

15.24 Is symlink [fs.op.is_symlink]
bool is symlink(file status s) noexcept;
2 Returns: s.type() == file type::symlink

bool is symlink(const path& p);
bool is symlink(const path& p, error code& ec) noexcept;

4 <RennWS:isisymlink(symlinkistatus(p)) Or is symlink(symlink status(p, ec)),

respectively. The signature with argument ec returns false if an error occurs.
> Throws: As specified in Error reporting (7).

15.25 Last write time [fs.op.last_write_time]

file time type last write time(const path& p);
file time type last write time(const path& p, error codeé& ec) noexcept;

2 Returns: The time of last data modification of p, determined as if by the value of the POSIX
stat structure member st mtime obtained as if by POSIX stat (). The signature with
argument ec returns file time type::min () if an error occurs.

57

http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/functions/stat.html

© ISO/IEC N4100

3 Throws: As specified in Error reporting (7).

void last write time(const path& p, file time type new time);

void last write time(const pathé& p, file time type new time,
error codeé& ec) noexcept;

> Effects: Sets the time of last data modification of the file resolved to by p to new time, as if by
POSIX futimens ().

Throws: As specified in Error reporting (7).

[Note: A postcondition of last write time(p) == new time is not specified since it might
not hold for file systems with coarse time granularity. —end note]

15.26 Permissions [fs.op.permissions]

void permissions (const pathé& p, perms prms);
void permissions (const pathé& p, perms prms, error code& ec) noexcept;

Requires: ! ((prms & perms::add perms) != perms::none

&& (prms & perms::remove perms) != perms::none).

Effects: Applies the effective permissions bits from prms to the file p resolves to, as if by
POSIX fchmodat (). The effective permission bits are determined as specified by the
following table.

bits present in prms Effective bits applied

Neither add_perms nor

remove perms

prms & perms::mask

add perms status (p) .permissions () | (prms & perms::mask)

remove perms status (p) .permissions () & ~(prms & perms::mask)

> [Note: Conceptually permissions are viewed as bits, but the actual implementation may use
some other mechanism. —end note]

Throws. As specified in Error reporting (7).

15.27 Read symlink [fs.op.read_symlink]

path read symlink (const path& p);
path read symlink(const path& p, error code& ec);

58

http://pubs.opengroup.org/onlinepubs/9699919799/functions/fchmodat.html

© ISO/IEC N4100

2 Returns: If p resolves to a symbolic link, a path object containing the contents of that
symbolic link. The signature with argument ec returns path () if an error occurs.

3 Throws: As specified in Error reporting (7). [Note: 1t is an error if p does not resolve to a
symbolic link. —end note]

15.28 Remove [fs.op.remove]

bool remove (const pathé& p):;
bool remove (const pathé& p, error code& ec) noexcept;

2 Effects: If exists (symlink status (p,ec)), it is removed as if by POSIX remove ().

3 [Note: A symbolic link is itself removed, rather than the file it resolves to being
removed. —end note]

4 Postcondition: 'exists (symlink status(p)).

> Returns: false if p did not exist in the first place, otherwise true. The signature with
argument ec returns false if an error occurs.

6 Throws: As specified in Error reporting (7).

15.29 Remove all [fs.op.remove_all]

uintmax t remove all (const path& p);
uintmax t remove all (const pathé& p, error codeé& ec) noexcept;

2 Effects: Recursively deletes the contents of p if it exists, then deletes file p itself, as if by
POSIX remove ().

3 [Note: A symbolic link is itself removed, rather than the file it resolves to being
removed. —end note]

4 Postcondition: 'exists (p)

> Returns: The number of files removed. The signature with argument ec returns
static cast<uintmax t>(-1) if an error occurs.

6 Throws: As specified in Error reporting (7).

15.30 Rename [fs.op.rename]

void rename (const path& old p, const path& new p);
void rename (const path& old p, const path& new p, error code& ec) noexcept;

59

http://www.opengroup.org/onlinepubs/000095399/functions/remove.html
http://www.opengroup.org/onlinepubs/000095399/functions/remove.html

© ISO/IEC

2 Effects: Renames o1d p t0 new_p, as if by POSIX rename ().

3 [Note: If o1d_p and new_p resolve to the same existing file, no action is taken.

Otherwise, if new_p resolves to an existing non-directory file, it is removed, while if
new_p resolves to an existing directory, it is removed if empty on POSIX compliant
operating systems but is an error on some other operating systems. A symbolic link is
itself renamed, rather than the file it resolves to being renamed. —end note]

4 Throws: As specified in Error reporting (7).

15.31 Resize file [fs.op.resize file]

void resize file(const pathé& p, uintmax t new size);
void resize file(const pathé& p, uintmax t new size, error codeé& ec) noexcept;

2 Postcondition: file size() == new size.

Throws: As specified in Error reporting (7).

4 Remarks: Achieves its postconditions as if by POSIX truncate ().

15.32 Space |[fs.op.space]

space_info space (const pathé& p);
space_info space(const path& p, error code& ec) noexcept;

2 Returns: An object of type space info. The value of the space info object is determined as

if by using POSIX statvfs () to obtain a POSIX struct statvfs, and then multiplying its

f blocks, f bfree, and £ bavail members by its £ frsize member, and assigning the
results to the capacity, free, and available members respectively. Any members for which
the value cannot be determined shall be set to static cast<uintmax_ t>(-1). For the
signature with argument ec, all members are set to static cast<uintmax t>(-1) if an error
occurs.

Throws: As specified in Error reporting (7).

Remarks: The value of member space info::available is operating system dependent.
[Note: available may be less than free. — end note]

15.33 Status [fs.op.status]

file status status(const path& p);

2 Effects: As if:

N4100

60

http://www.opengroup.org/onlinepubs/000095399/functions/rename.html
http://www.opengroup.org/onlinepubs/000095399/functions/truncate.html
http://www.opengroup.org/onlinepubs/000095399/functions/statvfs.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/statvfs.h.html

© ISO/IEC N4100

error code ec;
file status result = status(p, ec);
if (result == file type::none)
throw filesystem error (implementation-supplied-message, p, ec);
return result;

Returns: See above.

Throws: filesystem error. [Note: result values of
file status(file type::not found) and file status(file type::unknown) are not
considered failures and do not cause an exception to be thrown. —end note]

file status status(const pathé& p, error codeé& ec) noexcept;

7 Effects:

8 If possible, determines the attributes of the file p resolves to, as if by POSIX stat ().

If, during attribute determination, the underlying file system API reports an error, sets
ec to indicate the specific error reported. Otherwise, ec.clear ().

9 [Note: This allows users to inspect the specifics of underlying API errors

even when the value returned by status () is not
file_status(file_type::none).——endnokﬂ

10 Returns:

I Ifec != error code():

12« If the specific error indicates that p cannot be resolved because some element
of the path does not exist, return file status(file type::not found).

13« Otherwise, if the specific error indicates that p can be resolved but the
attributes cannot be determined, return
file status(file type::unknown).

14 o Otherwise, return file status(file type::none).

[Note: These semantics distinguish between p being known not to exist, p
existing but not being able to determine its attributes, and there being an
error that prevents even knowing if p exists. These distinctions are important
to some use cases. —end note]

16 Otherwise,

17« If the attributes indicate a regular file, as if by POSIX S ISREG(), return

fileistatus(fileitype::regular).ane:fileitype::regular
implies appropriate <fstream> operations would succeed, assuming no

61

http://www.opengroup.org/onlinepubs/000095399/functions/stat.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html

© ISO/IEC

18

19

20

21

22

23

24 Remarks: If a symbolic link is encountered during pathname resolution, pathname resolution

hardware, permission, access, or file system race errors. Lack of

file type::regular does not necessarily imply <fstream> operations
would fail on a directory. —end note]

Otherwise, if the attributes indicate a directory, as if by POSIX S ISDIR(),
return file status(file type::directory).[Note:

file type::directory implies directory iterator (p)would succeed.

—end note]

Otherwise, if the attributes indicate a block special file, as if by POSIX

S ISBLK(), return file status(file type::block).

Otherwise, if the attributes indicate a character special file, as if by POSIX
S ISCHR(), return file status(file type::character).

Otherwise, if the attributes indicate a fifo or pipe file, as if by POSIX

S _ISFIFO(), return file status(file type::fifo).

Otherwise, if the attributes indicate a socket, as if by POSIX S ISSOCK(),
return file status(file type::socket).

Otherwise, return file status(file type::unknown).

continues using the contents of the symbolic link.

15.34 Status known [fs.op.status_known]|

bool status known (file status s) noexcept;

2

Returns: s.type() != file type::none

15.35 Symlink status [fs.op.symlink status]

file status symlink status(const pathé& p);
file status symlink status(const path& p, error codeé& ec) noexcept;

2 Effects: Same as status(), above, except that the attributes of p are determined as if by POSIX

lstat ().

Returns: Same as status(), above, except that if the attributes indicate a symbolic link, as if by

POSIX S ISLNK(), return file status(file type::symlink). The signature with
argument ec returns file status(file type::none) if an error occurs.

Remarks: Pathname resolution terminates if p names a symbolic link.

> Throws: As specified in Error reporting (7).

N4100

62

http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/functions/lstat.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html

© ISO/IEC N4100

15.36 System complete [fs.op.system_complete]

path system complete (const pathé& p);
path system complete (const path& p, error codeé& ec);

2

Effects: Composes an absolute path from p, using the same rules used by the operating system
to resolve a path passed as the filename argument to standard library open functions.

Returns: The composed path. The signature with argument ec returns path () if an error
occurs.

Postcondition: For the returned path, rp, rp.is absolute () is true.
Throws: As specified in Error reporting (7).

[Example: For POSIX based operating systems, system complete (p) has the same semantics
as absolute (p, current path()).

For Windows based operating systems, system complete (p) has the same semantics as
absolute (p, current_path())ifp.is_absolute() || !p.has_root_name()Org)and
base have the same root name (). Otherwise it acts like absolute (p, cwd) is the current
directory for the p.root name () drive. This will be the current directory for that drive the last
time it was set, and thus may be residue left over from a prior program run by the command
processor. Although these semantics are useful, they may be surprising. —end example]

15.37 Temporary directory path [fs.op.temp dir path]

path temp directory path();
path temp directory path(error codeé& ec);

2

Returns: An unspecifed directory path suitable for temporary files. An error shall be reported
if lexists(p) || !is directory (p), where p is the path to be returned. The signature
with argument ec returns path () if an error occurs.

Throws: As specified in Error reporting (7).
[Example: For POSIX based operating systems, an implementation might return the path
supplied by the first environment variable found in the list TMPDIR, TMP, TEMP, TEMPDIR,

or if none of these are found, " /tmp".

For Windows based operating systems, an implementation might return the path reported by
the Windows GetTempPath API function. —end example]

63

	Contents
	1 Scope [fs.scope]
	2 Conformance [fs.conformance]
	2.1 POSIX conformance [fs.conform.9945]
	2.2 Operating system dependent behavior conformance [fs.conform.os]
	2.3 File system race behavior [fs.race.behavior]

	3 Normative references [fs.norm.ref]
	4 Terms and definitions [fs.definitions]
	4.1 absolute path [fs.def.absolute-path]
	4.2 canonical path [fs.def.canonical-path]
	4.3 directory [fs.def.directory]
	4.4 file [fs.def.file]
	4.5 file system [fs.def.filesystem]
	4.6 file system race [fs.def.race]
	4.7 filename [fs.def.filename]
	4.8 hard link [fs.def.hardlink]
	4.9 link [fs.def.link]
	4.10 native encoding [fs.def.native.encode]
	4.11 native pathname format [fs.def.native]
	4.12 NTCTS [fs.def.ntcts]
	4.13 operating system dependent behavior [fs.def.osdep]
	4.14 parent directory [fs.def.parent]
	4.15 path [fs.def.path]
	4.16 pathname [fs.def.pathname]
	4.17 pathname resolution [fs.def.pathres]
	4.18 relative path [fs.def.relative-path]
	4.19 symbolic link [fs.def.symlink]

	5 Requirements [fs.req]
	5.1 Namespaces and headers [fs.req.namespace]
	5.2 Feature test macros [fs.req.macros]

	6 Header <experimental/filesystem> synopsis [fs.filesystem.synopsis]
	7 Error reporting [fs.err.report]
	8 Class path [class.path]
	8.1 path generic pathname format grammar [path.generic]
	8.2 path conversions [path.cvt]
	8.2.1 path argument format conversions [path.fmt.cvt]
	8.2.2 path type and encoding conversions [path.type.cvt]

	8.3 path requirements [path.req]
	8.4 path members [path.member]
	8.4.1 path constructors [path.construct]
	8.4.2 path assignments [path.assign]
	8.4.3 path appends [path.append]
	8.4.4 path concatenation [path.concat]
	8.4.5 path modifiers [path.modifiers]
	8.4.6 path native format observers [path.native.obs]
	8.4.7 path generic format observers [path.generic.obs]
	8.4.8 path compare [path.compare]
	8.4.9 path decomposition [path.decompose]
	8.4.10 path query [path.query]

	8.5 path iterators [path.itr]
	8.6 path non-member functions [path.non-member]
	8.6.1 path inserter and extractor [path.io]
	8.6.2 path factory functions [path.factory]

	9 Class filesystem_error [class.filesystem_error]
	9.1 filesystem_error members [filesystem_error.members]

	10 Enumerations [fs.enum]
	10.1 Enum class file_type [enum.file_type]
	10.2 Enum class copy_options [enum.copy_options]
	10.3 Enum class perms [enum.perms]
	10.4 Enum class directory_options [enum.directory_options]

	11 Class file_status [class.file_status]
	11.1 file_status constructors [file_status.cons]
	11.2 file_status observers [file_status.obs]
	11.3 file_status modifiers [file_status.mods]

	12 Class directory_entry [class.directory_entry]
	12.1 directory_entry constructors [directory_entry.cons]
	12.2 directory_entry modifiers [directory_entry.mods]
	12.3 directory_entry observers [directory_entry.obs]

	13 Class directory_iterator [class.directory_iterator]
	13.1 directory_iterator members [directory_iterator.members]
	13.2 directory_iterator non-member functions [directory_iterator.nonmembers]

	14 Class recursive_directory_iterator [class.rec.dir.itr]
	14.1 recursive_directory_iterator members [rec.dir.itr.members]
	14.2 recursive_directory_iterator non-member functions [rec.dir.itr.nonmembers]

	15 Operational functions [fs.op.funcs]
	15.1 Absolute [fs.op.absolute]
	15.2 Canonical [fs.op.canonical]
	15.3 Copy [fs.op.copy]
	15.4 Copy file [fs.op.copy_file]
	15.5 Copy symlink [fs.op.copy_symlink]
	15.6 Create directories [fs.op.create_directories]
	15.7 Create directory [fs.op.create_directory]
	15.8 Create directory symlink [fs.op.create_dir_symlk]
	15.9 Create hard link [fs.op.create_hard_lk]
	15.10 Create symlink [fs.op.create_symlink]
	15.11 Current path [fs.op.current_path]
	15.12 Exists [fs.op.exists]
	15.13 Equivalent [fs.op.equivalent]
	15.14 File size [fs.op.file_size]
	15.15 Hard link count [fs.op.hard_lk_ct]
	15.16 Is block file [fs.op.is_block_file]
	15.17 Is character file [fs.op.is_char_file]
	15.18 Is directory [fs.op.is_directory]
	15.19 Is empty [fs.op.is_empty]
	15.20 Is fifo [fs.op.is_fifo]
	15.21 Is other [fs.op.is_other]
	15.22 Is regular file [fs.op.is_regular_file]
	15.23 Is socket [fs.op.is_socket]
	15.24 Is symlink [fs.op.is_symlink]
	15.25 Last write time [fs.op.last_write_time]
	15.26 Permissions [fs.op.permissions]
	15.27 Read symlink [fs.op.read_symlink]
	15.28 Remove [fs.op.remove]
	15.29 Remove all [fs.op.remove_all]
	15.30 Rename [fs.op.rename]
	15.31 Resize file [fs.op.resize_file]
	15.32 Space [fs.op.space]
	15.33 Status [fs.op.status]
	15.34 Status known [fs.op.status_known]
	15.35 Symlink status [fs.op.symlink_status]
	15.36 System complete [fs.op.system_complete]
	15.37 Temporary directory path [fs.op.temp_dir_path]

