
N. Josuttis:  N4014: Uniform Copy Initialization (May 25, 2014) 
 

  1 

Doc No:  WG21 N4014 
Date:   2014-05-25 
Reply to:  Nicolai Josuttis (nico@josuttis.de) 
Subgroup:  EWG 
Prev. Version: none 

Uniform	Copy	Initialization	
C++ distinguishes between copy initialization and direct initialization (see 8.5 §17). 
This has the effect that an explicit in a constructor disables copy initialization, while 
direct initialization is still supported. 
This proposal suggests to deal with copy initializations as with direct initializations. 

Note that this proposal has nothing to do with the solution of the following issue (LWG issue 
2051): 

tuple<string,int,double> f()  
{  
   ...  
   return {s,i,d};    // error: explicit constructor  
} 

Motivation	

Consider: 

class C 
{ 
  public: 
    explicit C (const std::string&, const std::string&) { 
    } 
}; 
 
C c1 { "Steve", "Brown" };    // OK 
C c2 = { "Steve", "Brown" };  // Error 

Because copy initialization is disabled by explicit, the initialization of c2 fails. This 
impact of explicit for copy initialization for years again and again raises a couple of 
confusions: 

 Programmers using an equal sign for copy initialization assume that it works and 
waste a lot of time looking the reason of the error. 

 Programmers are surprised that the former is possible but the latter is not. Note that 
the statement the only difference is an equal sign. You can’t argue that the second 
initialization is in any sense more dangerous than the first one. 

 Programmers are used from C that whenever { and } are used to initialize values, a = 
has to be placed between the object and the {. 
In that sense, current uniform initialization is not as uniform as it could be. 



N. Josuttis:  N4014: Uniform Copy Initialization (May 25, 2014) 
 

  2 

 This difference also leads to the wrong impression that this is not a direct 
initialization and that an assignment operator is used after the expression on the 
right side of the = is created. 

This problem also applies for use cases when using the C++ standard library. 

For example: 

tuple<int> t1(1);     // OK 
tuple<int> t2{1};     // OK 
tuple<int> t3 = 1;    // Error ! 
tuple<int> t4 = {1};  // Error ! 
tuple<int> t5 = {};   // OK !! (default constructor has higher priority) 

 

In principle, this problem is nothing new and was an issue even before initializer lists were 
introduced. Thus, before C++11, copy initialization with one argument also is influenced by 
explicit constructors. 

For example: 
std::shared_ptr<int> sp1(new int(42));   // OK 
std::shared_ptr<int> sp2 = new int(42);  // Error 

and: 
std::vector<int> v1(2);     // OK, init with size 
std::vector<int> v2 = 2;    // ERROR 
std::vector<int> v3{2};     // OK, init with value 2 
std::vector<int> v4 = {2};  // OK, init with value 2 

 

However, when discussing this paper, it turned out that the experience is that copy 
assignments of plain integral values to vectors is a possible error, we still suggest to be able to 
detect. That is, this proposal does not suggest to change the behavior of initialization without 
braces.  
 

That is: 

This paper proposes to change C++ so that copy initialization using brace-init-
lists shall follows the same rules as direct initialization (that is, that in practice 
the = in initializations with braces has no effect). 

 

Of course, explicit still shall play its important role when converting values on argument 
passing: 

class Collection 
{ 
  public: 
    explicit Collection (int); // initial size 
    ... 
}; 

 
void foo (const Collection&); 
 



N. Josuttis:  N4014: Uniform Copy Initialization (May 25, 2014) 
 

  3 

fp(42);              // still error 
 

And even in initializations, explicit shall still play the role it currently pays in direct 
initialization. For example: 

class C 
{ 
  public: 
    explicit C (const std::string&, const std::string&) { 
    } 
}; 
 
std::vector<C> v1 { {"Joe","Smi"}, {"Jim","Last"} };    // still error 
std::vector<C> v2 = { {"Joe","Smi"}, {"Jim","Last"} };  // still error 

Resulting	Effects	of	the	Proposed	Change	

The proposal would mean for vector no change: 
std::vector<int> v1(2);     // OK, init with size 
std::vector<int> v2 = 2;    // still ERROR 
std::vector<int> v3{2};     // OK, init with value 2 
std::vector<int> v4 = {2};  // OK, init with value 2 
 

But the proposal would mean for shared_ptr: 
std::shared_ptr<int> sp1(new int(42));     // OK 
std::shared_ptr<int> sp2 = new int(42);    // still ERROR 
std::shared_ptr<int> sp3{new int(42)};     // OK 
std::shared_ptr<int> sp4 = {new int(42)};  // now OK (formerly Error) 
 

And the proposal would mean for tuple: 
tuple<int> t1(1);     // OK 
tuple<int> t2{1};     // OK 
tuple<int> t3 = 1;    // still ERROR 
tuple<int> t4 = {1};  // now OK (formerly Error) 
tuple<int> t5 = {};   // OK  (default constructor has higher priority) 
 

And as my motivating common case: 
class C 
{ 
  public: 
    explicit C (const std::string&, const std::string&) { 
    } 
}; 
C c1 { "Steve", "Brown" };   // OK 
C c2 = { "Steve", "Brown" }; // OK now (formerly Error) 
std::vector<C> v1 { {"Joe","Smi"}, {"Jim","Last"} };    // still error 
std::vector<C> v2 = { {"Joe","Smi"}, {"Jim","Last"} };  // still error 
 



N. Josuttis:  N4014: Uniform Copy Initialization (May 25, 2014) 
 

  4 

 

Backward	Compatibility	

In principle, this proposal allows something that hasn’t been supported before. Thus, all 
existing code should still be valid and behave the same. 

The only exception could be that due to overload resolution now other functions might be 
considered than before. I don’t suggest that. Instead, I suggest to use the same overload 
resolution, but to ignore the explicit in a constructor if the result of the overload resolution 
selects an explicit constructor. 

Is	it	worth	it?	

Of course you can argue that this proposal solves a small issue and that people have to learn 
not to use the = when initializing with one argument or using a braced init list.  

However, this proposal helps to make C++ more convenient in a place where programmers 
even 17 years after C++98 struggle.  

The current proposed solution thus avoids a common small problem that exists without any 
known reason. It would therefore count as one of the multiple small steps (as auto, range-
based for loop, and initializer lists) to make C++ a more convenient programming language 
for the ordinary application programmer. 

Proposed	Changed	Wording	

open 

Acknowledgements	

Thanks to all people in the C++ community I discussed this topic with. Special thanks to 
Bjarne Stroustrup, and Jonathan Wakely, for some feedback. 

 


