
N3372

Document : N3772
Date : 2013-09-05

Project : Programming Language C++
Addresses : Evolution Working Group

Reply To : dibeas@ieee.org

Changing the type of address-of-member expression

This proposal addresses the same issue as CWG closed issue 203 "Type of address-of-
member" [1] by providing a broader view of the issue and the implications that it has on other
parts of the C++ standard.

I will try to provide a rationale for the change, examples of code that the current standard allows
and should probably not compile and code that does not compile in the current standard and
should arguably compile.

Type of address-of-member

The N3376 draft of the standard (latest as of this writing) section 5.3.1 paragraph 3 states:

The result of the unary & operator is a pointer to its operand. The operand shall be an
lvalue or a qualified-id. If the operand is a qualified-id naming a non-static member m
of some class C with type T, the result has type “pointer to member of class C of type
T” and is a prvalue designating C::m. Otherwise[...] [Example:

struct A { int i; };
struct B : A { };
... &B::i ... // has type int A::*

— end example]

The standard clearly states that the type of the expression address-of-member is a pointer to a
member of the class that declares the member, and not a pointer to a member of the class in
the qualified-id.

Lisa Lippincott considers that behavior unintuitive, and I must agree with her. The notes after the
04/00 meeting offer a rationale for the decision:

The rationale for the current treatment is to permit the widest possible use to be made
of a given address-of-member expression.

According to that rationale, if the DR or this proposal was to be accepted it would unnecessarily
limit the uses of the address-of-member expression. My position, contrary to that opinion, is that
the current treatment is not strictly more generic, as it inhibits some code patterns that we might
want to allow. Furthermore, the extra generality allows for code that I don't believe we want to
support.

N3372

Generality of the current behavior

As pointed in the comment after the 04/00 meeting, the pointer-to-member referring to a mem-
ber of a base type can be implicitly converted to a pointer-to-member to the derived type under
most common circumstances. But this requires a conversion.

Consider the definitions of A and B from the example in 5.3.1 and the following code that does
not compile:

struct A { int i; };
struct B : A { };

template <typename T, int T::*PTR>
struct example1 { ... };

example1<B, &B::i> x; // error

The problem with the example is that for a non-type template argument the set of allowed im-
plicit conversions are limited, and does not include the conversion needed. This can be fixed in
code through explicit casting:

example1<B, static_cast<int B::*>(&B::i)> x;

In the example above the impact of the rule is just a bit of surprise and unnecessarily ugliness in
the code. But the rule has direct impact on the design of components, including some present in
current standard library implementations.

In the C++ language, and lacking a static-if [2][3] construct a common approach to specialize the
behavior of templates is the abuse of inheritance. The public interface of a template will take a
set of arguments, the parameters will be passed on to a base template together with the result
of the evaluation of some traits. The base template can then be specialized on the different val-
ues of the traits. This technique is used in Bloomberg's Basic Standard Library[4]: the
bsl::pair<> template inherits from bsl::Pair_Imp<> template to specialize the behavior
for types that use the allocators1.

For a different reason, the implementation of the standard library that ships with Microsoft’s Vis-
ual Studio compiler (VS2010 and over) also splits the implementation of the std::pair<>
template into a base and derived types, with the base holding the actual data members.

1 In BSL, the default allocator in containers is polymorphic in nature[6] and similar to
std::scoped_allocator<> in that it propagates (by lack of a better term) to the contained objects for
their memory allocation, so in a bsl::vector<bsl::string> the strings use the same allocator that
the container itself. At the same time, the allocators don’t propagate on copy, providing the invariant that
all objects stored in a container using the default allocator share the same allocator. The
bsl::Pair_Imp<> specializations help managing the transfer of allocators from containers while block-
ing the transfer of allocators on assignment and copy construction.

N3372

In both cases, the inheritance is an implementation detail. The types are not polymorphic and
Liskov's Substitution Principle does not apply. Inheritance is used to model implemented-in-
terms-of rather than is-a. The idiom in C++ would be is using non-public inheritance[5].

For most uses of std::pair<> and bsl::pair<> private inheritance together with a using-
declaration suffices:

template <typename T1, typename T2>
class pair : private Pair_Imp<T1,T2,
 BloombergLP::bslma::UsesBslmaAllocator<T1>::value,
 BloombergLP::bslma::UsesBslmaAllocator<T2>::value>
{
 typedef Pair_Imp<T1,T2,
 BloombergLP::bslma::UsesBslmaAllocator<T1>::value,
 BloombergLP::bslma::UsesBslmaAllocator<T2>::value>
 Base;
 ...
public:
 using Base::first;
 using Base::second;
 ...
};

The using declaration brings the members first and second from the base type and makes them
accessible in the public section of the derived type. This works in most situations, except when
pointers-to-member are used.

With the current definition of the address-of-member expression, the expression
&bsl::pair<int,int> yields a pointer-to-member of bsl::Pair_Imp that cannot be con-
verted to a pointer-to-member of bsl::pair, as the inheritance relationship is private:

int bsl::Pair_Imp<int,int,0,0>::*p1
 = &bsl::pair<int,int>::first; // OK
int bsl::pair<int,int>::*p2
 = &bsl::pair<int,int>::first // Error

This is clearly an example where the current behavior in the standard is not more generic than if
the expression yielded a pointer to member to the type on which the address-of-member was
applied.

The solution taken in both libraries is making the inheritance public, and expecting users to ex-
plicitly cast the pointer to member if they need a pointer-to-member to the pair as a non-type
template argument. The implementation detail is leaked to users and we end up with what is
arguably a worse design.

N3372

When the extra generality is undesired

While the previous examples show where the current definition limits or complicates code that
we want to support, the following code shows how the current definition enables code that we
don't want to support and was raised as Defect Report 1007 [7]:

struct base {
 protected: int x;
};
struct derived : base {
 void foo(base* b) {
 b->x = 123; // not ok
 (b->*(&derived::x)) = 123; // ok?!
 }
};

The defect report was closed as not a defect with the following rationale:

Access applies to use of names, so the check must be done at the point at which the
pointer-to-member is formed. It is not possible to tell from the pointer to member at
runtime what the access was.

I contend that the core issue in the code above is that the address-of-member yields a pointer-
to-member to base, even though the access specifier is checked at the derived level. This dis-
sociation is what allows the code above to compile. If the expression was modified to yield a
pointer-to-member to the type on which the expression is applied, the code in the defect report
would not compile, as you cannot apply the pointer-to-member to derived on a base object.

That is, by changing the semantics of the address-of-member to yield a pointer-to-member to
derived the expression fails to compile. This does not really solve the issue of access specifiers,
as user code can explicitly cast the pointer-to-member to derived to a pointer to a pointer-to-
member to base, which at least makes more explicit that something funny is going on.

(b->*(static_cast<int base::*>(&derived::x))) = 123;

Impact on existing code

I expect the change to the type of the pointer-to-member expression to have little overall impact
at the source code level. In the few cases where the old behavior might be desired, the code will
fail to compile with a hard error and the programmer will be able to fix it by changing the type in
the address-of-member expression to refer to the type that declares the member. For the few
cases where modifying the address-of-member expression is not feasible due to the access
specifiers, the programmer can still perform a conversion with a static_cast<> as shown
above, even if in my opinion the design is wrong and should be corrected.

Another source code incompatibility will arise when trying to obtain a pointer to a member de-
fined in an ambiguous base. While this was ill-formed in the previous standard, it is accepted in
C++11 due to the fixes for Defect Report 1121[7], the solution in this case is still the same:
change the type of the address-of-member expression to refer to the base type. In this particular

N3372

case, if that member is not accessible where the expression is used, or if the conversion from
pointer to member of derived to pointer to member to base is not available there would be no
simple workaround.

Besides issues at the source code level, this change can break binary compatibility across
translation units that are compiled with the old and the new behavior in those cases where the
type of the pointer to member is deduced by the compiler:

template <typename T, typename U, typename V>
void reset_member(T & t, V& U::*ptr) {
 (t.*ptr) = V();
}
...
reset_member(obj,&Type::member);

This case is more problematic as it causes an ODR violation, and can cause undefined behav-
ior. This can be fixed by recompiling the whole program with a compiler implementing the new
behavior. While this case is far more dangerous than the source code compatibility as it will si-
lently fail. I am unaware of how often this type of code is used in production systems, and how
often the systems that use this code would not recompile the whole program when moving from
a standard version to another.

Proposal

Change 5.3.1 [expr.unary] paragraph 3

The result of the unary & operator is a pointer to its operand. The operand shall
be either an lvalue of type other than “array of runtime bound” or a qualified-
id. If the operand is a qualified-id in the form D::m, naming a non-static member
m of some class C with type T, the result has type “pointer to member of class C
D of type T” and is a prvalue designating C D::m; the program is ill formed if C is
an ambiguous base (10.2) of the class designated by the nested-name-specifier of the
qualified-id. Otherwise, if the type of the expression is T, the result has type
“pointer to T” and is a prvalue that is the address of the designated object (1.7)
or a pointer to the designated function. [Note: In particular, the address of an
object of type “cv T” is “pointer to cv T”, with the same cv-qualification. — end
note] [Example:

struct A { int i; };
struct B : A { };
... &B::i ... // has type int A B::*

— end example] [Note: a pointer to member formed from a mutable non-static data
member (7.1.1) does not reflect the mutable specifier associated with the non-static
data member. — end note]

Change 10.2 [class.member.lookup] paragraph 13 as follows:

[Note: Even if the result of name lookup is unambiguous, use of a name found in mul-
tiple subobjects might still be ambiguous (4.11 [conv.mem], 5.2.5 [expr.ref], 5.3.1
[expr.unary.op], 11.2 [class.access.base]). —end note]...

N3372

References

[1] “Type of address-of-member expression”, Lisa Lippincott
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_closed#203

[2] N3322 “A preliminary proposal for a static if”, Walter Brown
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3322.pdf

[3] N3329 “Proposal: static if declaration”, Walter Bright, Herb Sutter, Andrei
Alexandrescu
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3329.pdf

[4] Bloomberg Basic Standard Library (BSL)
https://github.com/bloomberg/bsl

[5] “Uses and abuses of inheritance, part 1”, Herb Sutter
http://www.gotw.ca/publications/mill06.htm

[6] N3525 “Polymorphic Allocators”, Pablo Halpern
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3525.pdf

[7] “Protected access and pointers to members”, Johannes Schaub,
 http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_closed.html#1007

[8] “Unnecessary ambiguity error in formation of pointer to member”,
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1121

