
Object Lifetime, Low-level Programming, and
memcpy

Gabriel Dos Reis
Texas A&M University

http://www.axiomatics.org/~gdr/

Document number: N3751
Date: 2013-09-03

Working groups: SG12, EWG, CWG
Reply to: gdr@cs.tamu.edu

Abstract

This document proposes to recognize a category of uses of memcpy —
currently left undefined — as another form of object construction, thereby
putting a class of existing practice in low-level system programming on firmer
ground.

1 The Problem

The C++ standards currently recognizes the interaction between memcpy and object
value interpretation only a limited number of cases as listed in paragraphs §3.9/2
and §3.9/3. It leaves undefined the semantics of the following program fragment:

const uint32_t bits = 0x9A99993F;
float x;
std::memcpy(&x, &bits, sizeof x); // #1
float y = x * x; // #2

Here, we assume that float implements IEEE-754 32-bit single precision floating
point arithmetic data type. There are at least two questions here:

1. The line numbered #1 is a memcpy between two different objects, and as such
is not currently covered by the standards text. So, this line is potentially a
source of undefined behavior.

2. The line numbered #2 reads the float object x, which appears to be initialized
nowhere. So, a strict interpretation of the standards suggests that this is
another source of undefined behavior.

1



This fragment is just illustration of a pattern widely used in several low-level C++
system programming communities. The main suggestion of this paper to formally
recognize it. Note that while the example uses declared object, the core issue
remains the same (or possibly worse) with objects with dynamically allocated stor-
age.

2 Suggestions of resolution

The C++ standards is currently silent on whether the use of memcpy to copy object
representation bytes is conceptually an assignment or an object construction. The
difference does matter for semantics-based program analysis and transformation
tools, as well as optimizers, tracking object lifetime.

This paper suggests that

1. uses of memcpy to copy the bytes of two distinct objects of two different trivial
copyable tables (but otherwise of the same size) be allowed

2. such uses are recognized as initialization, or more generally as (conceptu-
ally) object construction.

Recognition as object construction will support binary IO, while still permitting
lifetime-based analyses and optimizers.

3 Acknowledgment

This write-up is distilled from a larger discussion within the SG-12 Study Group
on Undefined Behavior.

2


