
 Document number: N3585
 Date: 2013-03-17
 Project: Programming Language C++
 Reference: N3485
 Reply to: Alan Talbot
 cpp@alantalbot.com

Iterator-Related Improvements to Containers (Revision 2)

Abstract

This proposal recommends several small enhancements to the way containers interact with
iterators. While none of these introduces functionality that cannot be achieved by other means,
they make containers easier to use and teach, and make user code smaller and easier to read.

Last

I frequently find that I need an iterator to the last element of a container. Accessing the first
and last elements directly is fully supported by front and back, but complementary access
through an iterator is available only for the first element with begin. last provides the same
semantics as begin, but for the last element of the container. If the container is empty, last
returns end, otherwise it returns the last element. Note that last completes the symmetry of
the design:

Iterators Element Access

begin front
last back
end

I propose adding last and clast to all containers except forward_list and the unordered
containers, and to basic_string (mostly for symmetry and to avoid surprises). I do not find
reverse iterators useful in very many situations, so I have not found a use for rlast, but rlast and
crlast are included for consistency.

I also propose adding a last free function to range access for containers and native arrays.

I am not proposing adding last to initializer_list or to regex match_results. These could be
added if there is some consensus that they would be valuable.

Proposed Wording

The wording will add the following signatures to basic_string and to all containers except
forward_list and the unordered associative containers.

iterator last() noexcept;

const_iterator last() const noexcept;

reverse_iterator rlast() noexcept;

const_reverse_iterator rlast() const noexcept;

const_iterator clast() const noexcept;

const_reverse_iterator crlast() const noexcept;

N3585

2

The wording will also add the following free functions to [iterator.range].

template <class C> auto last(C& c) -> decltype(c.last());

template <class C> auto last(const C& c) -> decltype(c.last());

 Returns: c.last().

template <class T, size_t N> T* last(T (&array)[N]);

 Returns: array + N - 1.

Complete wording will be provided in a revision of this paper.

Null Iterators

I have found it quite awkward on several occasions that you cannot create a valid iterator with-
out a container instance. This is important because containers are usually accessed by means of
ranges, either implicitly in the form of pairs of iterators, or explicitly using some form of range
class. A range is self-consistent: it has no connection to the container instance into which it
refers. The clients of a range never see or care about the particular container instance. I should
therefore be able to create an empty range without an instance of the container. This can make
a significant difference to a design, particularly since a range containing iterators on an actual
instance of a container implies that instance must have a lifetime that encompasses the lifetime
of the range.

For example, suppose I have a class hierarchy that provides iterator access to a member vector,
along with other features. The base class does not actually have a vector, but some derived
classes do:

struct A {

 virtual vector<int>::const_iterator begin();

 virtual vector<int>::const_iterator end();

};

struct B : public A {

 virtual vector<int>::const_iterator begin();

 virtual vector<int>::const_iterator end();

 vector<int> v;

};

const A& ar = get_an_A(...);

for (int x : ar)

 do_something(x);

do_something_else(ar);

This is the case that actually came up in my code, but I can think of other use cases. I might
want a container of ranges on vectors, and some of the elements in my container are “null”,
meaning not only is the range empty, but there is no container to refer to. I suspect that there
are also many interesting use cases involving strings. But to implement any design that involves
a range that may not always be able to refer to an actual live container, I have to resort to what
feels like a kludge and is probably at least slightly less than optimally efficient.

The solution is to recognize the validity of null iterators by allowing iterators with singular
values to be compared, and specifically to state that all value-initialized iterators for a particular

N3585

3

container type will compare equal. The result of comparing a value-initialized iterator to an
iterator with a non-singular value is undefined.

vector<int> v = {1,2,3};

auto ni = vector<int>::iterator();

auto nd = vector<double>::iterator();

ni == ni; // True.

nd != nd; // False.

v.begin() == ni; // Undefined behavior (likely false in practice).

v.end() == ni; // Undefined behavior (likely true in practice).

ni == nd; // Undefined behavior (likely true in practice).

Proposed Wording

24.2.1 In general [iterator.requirements.general]

5 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the
last element of the array, so for any iterator type there is an iterator value that points past the
last element of a corresponding sequence. These values are called past-the-end values. Values
of an iterator i for which the expression *i is defined are called dereferenceable. The library
never assumes that past-the-end values are dereferenceable. Iterators can also have singular
values that are not associated with any sequence. [Example: After the declaration of an
uninitialized pointer x (as with int* x;), x must always be assumed to have a singular value of a
pointer. —end example] Iterators that hold a singular value may be compared for equality to
other singular valued iterators of the same type. Value-initialized iterators will compare equal to
each other. The Rresults of most other expressions are undefined for singular values; the only
exceptions are destroying an iterator that holds a singular value, the assignment of a non-
singular value to an iterator that holds a singular value, and, for iterators that satisfy the
DefaultConstructible requirements, using a value-initialized iterator as the source of a copy or
move operation. [Note: This guarantee is not offered for default initialization, although the
distinction only matters for types with trivial default constructors such as pointers or aggregates
holding pointers. —end note] In these cases the singular value is overwritten the same way as
any other value. Dereferenceable values are always non-singular.

[Editorial note: It might be more readable to break this paragraph at “Iterators can also
have…”.]

Mapped Type Iterators

I use maps a lot, for a lot of different things, but my most common use case is to implement a
database-like table, with the primary key (ID) as the key type of the map and a record class as
the mapped type. For this use, almost all of my iterator operations involve only the mapped
type of the value pair—the key is used only to look up a record, or occasionally to access the ID
(but my records almost always have to know their own ID). Because of the nature of the map
interface, this means my code usually looks like this (or will, once I have a compiler with range-
based for loops):

for (auto& i : m)

{

 i.second.foo();

 i.second.bar();

}

N3585

4

This is a notational nuisance, but the problem becomes much worse in generic contexts:

template<typename C>

void print(const C& c)

{

 for (const auto& i : c)

 cout << i << endl;

}

I would like to call this with whatever container I happen to be using, but operator<< isn’t
overloaded on pair so it won’t compile for maps. And if I implement operator<< for pairs, I still
want to be able choose whether to print the key/mapped pair or only the mapped type.

The solution I’m proposing is to create a selector_t wrapper for types that have iterators. This
wrapper will replace the native iterators with ones that dereference a selected member of the
value to which the native iterator refers. It takes an integer template argument and uses it to
access the member with get<>(). There will also be a convenience function selector which
provides automatic creation of the wrapper type. (I’m not attached to these names if there are
other suggestions.)

These tools solve the problem without making any changes to map, and offer other possibili-
ties. Now my code can look like this:

for (auto& i : selector<1>(m))

{

 i.foo();

 i.bar();

}

And I can also use my generic print function:

print(selector<0>(m)); // Print only the key type.

print(selector<1>(m)); // Print only the mapped type.

print(m); // Print the pair (given an operator<<).

Selection can also be composed:

map<int, tuple<int, float, string>> m = ...

print(selector<2>(selector<1>(m))); // Print each string in the map.

Proposed Wording

Complete wording will be provided in a revision of this paper.

Conversion between iterators and indices

I sometimes find that I have an iterator to a random access sequence (perhaps the result of
find), but I need an index to that position. At other times I have an index and need an iterator.
The Standard containers do not provide an obvious way to convert between iterator and index.
It is fairly easy to do, but I find that people (including myself) are not quite sure how to do it
correctly, and the code doesn’t clearly express the intent. (At least, I would tend to comment
it.) Here is one way to write it:

N3585

5

vector<int> v = ...;

vector<int>::size_type index1 = 3;

auto iter1 = find_if(v.begin(), v.end(), ...);

auto iter2 = next(v.begin(), index1); // Convert index to iter.

auto index2 = distance(v.begin(), iter1); // Convert iter to index.

But is this actually correct? distance returns a distance_type, but I need a size_type for an
index. It takes a pretty careful reading of the Standard to determine that it’s valid to assume
that a container will never be larger than a number representable by a positive distance_type
(which I find rather surprising and which could be a problem in a certain environments, but
that’s another discussion). I’m also going to have some trouble with this code because I’m going
to end up mixing signed and unsigned if (for example) I compare index1 and index2.

To solve this I propose adding two member functions to random access containers that do the
conversion for me: to_iterator and to_index. With these member functions, the return types
will be consistent with indices, the underlying code will be optimal without my having to think
about it, and my code will be more obvious and expressive of its intent:

auto iter2 = v.to_iterator(index1);

auto index2 = v.to_index(iter1);

I am not overly attached to these names if there are other suggestions (in fact, I originally had
the “c” and “r” names fully spelled out).

Proposed Wording

The original proposal adds the following signatures to basic_string, array, deque, and vector.

size_type to_index(const_iterator) noexcept;

size_type to_index(const_reverse_iterator) noexcept;

iterator to_iterator(size_type) noexcept;

const_iterator to_iterator(size_type) const noexcept;

const_iterator to_citerator(size_type) const noexcept;

reverse_iterator to_riterator(size_type) noexcept;

const_reverse_iterator to_riterator(size_type) const noexcept;

const_reverse_iterator to_criterator(size_type) const noexcept;

It was also suggested that these should be free functions. Complete wording will be provided in
a revision of this paper once I receive some additional guidance on which form to use.

Acknowledgements

Alisdair Meredith suggested using value-initialized iterators and made other helpful sugges-
tions, especially concerning last. Stephan Lavavej suggested making the mapped type iterator
more general.

