
Security impact of noexcept
Project: C++ Programming Language – Core Working Group

Document Number: N3103-10-0093

Date: 2010-08-23

Authors: David Kohlbrenner, David Svoboda, and Andrew Wesie

Abstract

In this paper, we demonstrate that if a function marked noexcept actually throws an exception, and

such behavior does not cause immediate termination, then the program can produce unexpected and

counter-intuitive behavior. Furthermore, the behavior of such a program can be exploited by a malicious

user to bypass security restrictions and cause denial-of-service attacks. Because noexcept has already

been admitted to the C++0x draft standard, removing it is not an option. We therefore support the

requirement that an exception thrown from a function marked 'noexcept' should immediately terminate

the program.

Background

To understand noexcept, we begin with a small code example, compliant with C++2003:

 void f(); // defined in some library (source not accessible)

 void g() throw() { f(); }

This example will call std::unexpected() when f() throws an exception.

The noexcept feature serves as a partial replacement to the throws() declaration when a function

claims not to throw any exceptions. ISO/IEC JTC1 SC22 WG21 N3092, C++ Final Committee Draft) Section

15.5.1, “The std::terminate() function” states that exception handling must be abandoned for

less subtle error handling techniques:

when the search for a handler (15.3) encounters the outermost block of a function with a noexcept-

specification that does not allow the exception (15.4)

The controversy arises if the throw() declaration is replaced with noexcept(true) , and f()

throws an exception. Before the WG21 meeting in Pittsburghiii, an exception thrown by f() would

result in undefined behavior. At the Pittsburgh meeting, it was decided that the program should call

std::terminate() instead. However, the issue is not considered resolved, and it is possible the

committee will decide that violation of noexcept should, once again, yield undefined behavior.

Ramifications

In this document, we present one code example to illustrate the potential dangers of noexcept, and

to defend the invocation of std::terminate() in the event of a violation. This example illustrates

how failure to terminate could be used to bypass a security check, and consequently grant privileged

functionality to an unauthorized user.

Because an implementation of noexcept is not publicly available, we simulate the proposed behavior

of noexcept using the Microsoft Visual Studio 2010 compiler. In the MSVC 2010 implementation,

when an exception is thrown from a method with an empty exception specification, the program does

not unwind the stack and does not call std::terminate(), but instead invokes the next available

exception handler on the stack.

On the Windows platform (the MSVC 2010 target), C++ exceptions are implemented using the native

structured exception handling (SEH) mechanism. SEH handlers are resident on the stack and form a

linked list with a pointer to the head stored in fs:[0]. Every C++ function block adds a handler to the head

of this list, unless the function has a throw() or noexcept declaration. When a C++ exception or a

native exception is thrown, the operating system traverses this list, from head to tail, and executes the

first handler that is willing to handle the exception. The handler is responsible for unwinding the stack if

necessary. If a function with a throw() declaration throws an exception, there is no handler for the

exception for that function block and unwinding does not occur. Because destructors are invoked during

stack unwinding, this causes objects to never be destroyed, violating RAII (Resource Acquisition Is

Initialization).

Example: Unauthorized Access

This example (see Appendix A) illustrates a situation where compiler hoisting of a noexcept function

out of a try block could cause a security violation. Any such case relies on the noexcept function being

nested inside two try blocks that catch the same classes of exceptions. This example has the nested try

block contained in a function that always results in termination of the program.

The overall model is a simple server that handles different types of requests. The server is designed to

interact with local and remote clients, and service requests in both cases. Local clients may submit a

password with their request, and may then access privileged data. To exploit the hoisted noexcept

function, a remote client connects and requests privileged data. This results in a call to

client_error(), which is intended to always result in program termination. If the request’s

password length field is too long, a bad_alloc exception is thrown by

write_to_security_log(), which has an empty throw() declaration. The design of

client_error() attempts to account for any allocation errors, but because of the throw()

declaration, the write_to_security_log() function was hoisted out of the try block. This

results in the exception handler for the parent function (server()) being invoked. In the toy case

presented, this results in the server servicing the request despite the server detecting that the client did

not have sufficient privileges.

This example illustrates that the use of noexcept by a programmer without full knowledge of how the

compiler will handle it can result in counterintuitive behavior in the resulting binary. This behavior can

cause security policy violations ranging from crashes to data leaking. As long as a program relies on the

default behavior of std::terminate() (to abort the program), there are no possible remote code

execution exploits enabled by noexcept. However, If a program uses a custom termination function,

noexcept use may contribute to remote code execution.

Conclusion

We expect that noexcept will be viewed as a low-risk mechanism for improving performance and that

it will be used exhaustively and improperly. To protect users and programmers, violations of noexcept

should not allow a security policy violation. The only option we see as valid is for a program to exit

immediately upon violation. The easiest way to implement this option is to call std::terminate()

as is already standard in the case of a throw() violation.

Appendix A
#include "stdafx.h"
#include <stdio.h>
#include <tchar.h>
#include <stdlib.h>
#include <new>
#include <winsock2.h>
#include <windows.h>
#pragma comment(lib,"ws2_32.lib")
using namespace std;
#define BLEN 100

bool is_local_client(unsigned int addr) {
 //Check that addr is within internal network
 if(addr == htonl(0x7f000001))
 return true;
 else
 return false;
}

void send_secure_data(SOCKET client) {
 char* secret = "SECRET DATA\n";
 send(client,secret,strlen(secret),0);
}

void write_to_security_log(char* bad_pass,unsigned int pass_len) throw() {
 char* err_string = new char[pass_len+20];
 //copy pass to string with error info
 //write to log
}

void write_to_log(char* pass) {
 //write info to log about transaction
}

bool check_pass(char* pass) {
 //Check the password somehow
 return false;
}

__declspec(noreturn) // Terminate always on client errors!
void client_error(char* pass) {
 unsigned int pass_len = ntohl(*(unsigned int*)pass);
 try {
 write_to_security_log(pass+sizeof(unsigned int),pass_len);
 //cleanup
 write_to_log("SERVER: Request terminated");
 }
 catch(bad_alloc) {
 fprintf(stderr,"SERVER: ALLOC ERROR IN CLIENT ERROR\n");
 }
 _exit(10);
}

int server() {

 WSADATA wsaData;
 WORD version;

 version = MAKEWORD(2, 0);
 WSAStartup(version, &wsaData);

 SOCKET server;

 server = socket(AF_INET, SOCK_STREAM, 0);

 struct sockaddr_in sin;

 memset(&sin, 0, sizeof sin);

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = INADDR_ANY;
 sin.sin_port = htons(4261);

 if (bind(server, (struct sockaddr*)&sin, sizeof sin) == SOCKET_ERROR) {
 /* could not start server */
 return FALSE;
 }

 while (listen(server, SOMAXCONN) == SOCKET_ERROR);

 SOCKET client;
 int length;

 length = sizeof sin;
 client = accept(server, (struct sockaddr*)&sin, &length);

 // Check client connection
 bool local_client = is_local_client(sin.sin_addr.S_un.S_addr);

 try {

 // Get command
 char* pass = new char[BLEN];
 recv(client,pass,BLEN,0);

 //Check if its OK to talk to with this client
 if(!local_client || !check_pass(pass))
 client_error(pass); // function does not return
 }
 catch(bad_alloc) {
 fprintf(stderr,"SERVER: ALLOC ERROR\n");
 }

 //Client has rights, do command
 send_secure_data(client);

 while(1);
 return 0;
}

int main(int argc, char * argv[]) {
 server();
 return 0;

}

i
 D. Abrahams, R. Sharoni, D. Gregor,

i
Allowing Move Constructors to Throw N3050, 2010-03-12, http://www.open-

std.org/JTC1/SC22/WG21/docs/papers/2010/n3050.html

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3050.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3050.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3050.html

