2009-09-22 Alisdair Meredith N2975=09-0165

Collected Issues for Tuples

Motivation

This paper collects together resolutions for a number of library issues related to tuples. As such it
addresses NB comments ... against the CD ballot, which call for outstanding library issues to be
resolved. However, it should be noted that a number of these issues were raised since the CD so
might be deemed beyond the strict reading of such comments.

By collecting all issues into a consolidation paper it is hoped that any wording collisions can be
identified and resolved without further burdening the project editor.

Issues

Constexpr constructors

A tuple should be a literal type (c.f. Core) if all its elements are in turn literal types. Among other
benefits, this allows such tuples to guarantee constant initialization prior to dynamic initialization at
program startup, making them suitable to burn into ROMs.

The first part of the solution is fairly simply, adding the constexpr qualifier to the default constructor.
So long as all elements support a constexpr default constructor the keyword is respected. If this
cannot be supported it is silently ignored, so there should be no penalty for non-literal classes.

In order for the copy constructor to be a literal constructor it must be specified with = default.
Again, constexpr is only respected when it can be.

The final constructor to support that makes this feature valuable is the per-element constructor
taking a parameter pack of values. At this point there is a problem as constexpr constructors must
pass their arguments by value, but this constructor passes by reference. Changing the signature
would risk a measurable performance change for the non-constexpr case that cannot be justified. It
is hoped that a Core issue can be opened to support pass-by-reference-to-const in constexpr
functions and constructors. Without such, the recommendation is that this issue be closed NAD.

The main drawback to making these requirements on the suggested constructors is that it limits the
potential of implementations to do something interesting in the constructor body. While clearly
there is no requirement to do any work here, we remove the freedom of implementations to
perform additional work there, for example tracking construction in a debugging implementation.

2009-09-22 Alisdair Meredith N2975=09-0165

rvalue get

There are times it might be useful to move a single element out of a tuple, especially when the tuple
is the result of a function return. As such, it would be useful to have a form of get that returns an
rvalue when bound to an rvalue reference.

Cget to avoid casting

Much like the addition of cbegin/cend to containers, it is not unreasonable to want a const-qualified
reference from a tuple to forward to another function. This can be achieved by creating suitable
intermediate values, or with judicious use of const_cast. However, a simpler solution (for library
users) would be the addition of an additional form of get that always returns a reference-to-const.
The suggested name is cget.

Note that overloads for non-const reference or rvalue reference are not necessary, as all bind to the
same signature.

complete tuple-like interface

A tuple-like class could be anything that supports the trio of tuple calls, tuple_size, tuple_element
and get. The standard library already supports three tuple-like classes in tuple, pair and array.

It is recommended that the tuple-like ‘concept’ is documented ahead of the tuple class itself, and
this ‘concept’ is then used to frame the APIs that accept generic tuples, such as converting
constructors and tuple_cat.

A SFINAEable check for tuple-like could be merely to test for the presence of a tuple_size
specialization. Clearly this would go further in a full concepts-enabled version of the language, but
seems an appropriate and minimal test for the current project.

The important missing piece to make use of this APl is the ability to deduce an appropriate tuple-
type or parameter pack from arbitrary tuple-like types.

// looks like we need to support a level of recursion obtaining the pack
template<typename T, size_t Limit, unsigned int ... N>
struct impl_tuple_type {
// Need to recurse with one additional element, unless sizeof...(N) == Limit
typedef tuple<tuple_element<N,T>...> type;
12

template<typename T, unsigned int ... N>
struct impl_tuple_type {

typedef tuple<tuple_element<N,T>...> type;
2

template<typename T>

2009-09-22 Alisdair Meredith N2975=09-0165

struct tuple_type {
typedef typename impl_type_type<T, ??? tuple_size<T>::value>::type type;
2

Construction from tuple-like

std::tuple should be constructible from any compatible tuple-like object. In addition to other tuples,
this would include std::pair and std::array. The current library achieves this by providing additional
converting constructors for generic pair and tuple while ignoring array. All those overloads could be
replaced by a single constructor accepting tuple-like objects of the same length.

concatenation of tuple-like

While the result of a tuple-cat operation should always be a std::tuple, there is no reason to restrict
it to accepting instances of std::tuple. Rather, any tuple-like type could be supported.

template<typename A, typename B>
typename flatten_tuple<A,B>::type tuple cat(A const & a, B const & b);

concatenation an arbitrary number of tuples

The existing tuple_cat APl is limited to 2 tuples, although it can be called multiple times to build
larger tuples. Even this simple support is specified using 4 overloads. However, this combinatorial
explosion of overloads if we look to extend to 3 or more tuples should remind us of std::function and
the motivation for perfect forwarding. All 4 overloads could be replaced with a single variadic
signature that accepts an arbitrary number of tuple-like objects. This is considerably more versatile
in use, and actually simpler to specify!

template< typename ... TupleLikes >
computed_type tuple_cat(TupleLikes && ... tpls);

Tuple-like API to support cv/ref qualified types

The tuple APIs tuple_size and tuple_element do not support cv-qualified tuples, nor references to
tuples. Users can construct these for themselves with additional metaprogramming using the type
traits, but it should not be necessary.

Precise wording for swap

Check this has not already been applied.

Abstract the type producer in make_tuple and make_pair

The decay/ref _wrapper support is common with make_pair and should be abstracted into a
common API. Repeating an algorithm in words is a recipe for trouble in the future, and users may
want to use the same component when creating their own tuple-like abstractions.

2009-09-22 Alisdair Meredith N2975=09-0165

Value initialization vs. triviality

Is this already applied? Agreed resolution is that tuple should value initialize each member in its
default constructor, just like pair.

Redundant move-assign operator

Waiting for revised WP to see if issue remains

Scoped allocator interaction

Check with Pablo

Visitor API

Consistent polymorphic functor requirements as for visitor, NAD Future for TR2 along-side the visitor
proposal. Handy for streaming.

template< typename Visitor, typename ... TuplelLikeTypes >
void visit tuple(Visitor && v, TupleLikeTypesé&&... t);

Short-circuited predicate support

There are a small number of algorithms that could use a vistor-based approach with a predicate
object to return a result, but returning as soon as a result is determined rather than strictly
evaluating for each set of elements for each of the tuples. Forinstance, this is the basis for
implementing operator==and operator<.

template< typename Visitor, typename ... TuplelLikeTypes >
bool tuple if all pass(Visitor && v, TupleLikeTypesé&é&... tpls);
template< typename Visitor, typename ... TuplelLikeTypes >
bool tuple if any pass(Visitor && v, TupleLikeTypesé&é&... tpls);
template< typename Visitor, typename ... TupleLikeTypes >
bool tuple if none pass(Visitor && v, TupleLikeTypesé&&... tpls);

template< typename Predicate, typename T, typename U >

int tuple test predicate 3way(Predicate && v, T && t, U && u);

Typelist support

Suggestion that tuple serves as basis of portable typelist facility, as type passed around rather than
values in metaprograms. What facilities are missing to make this truly a first-class
metaprogramming primitive as well as value primitive?

Probably NAD future for TR2, where can be evaluated against a true typelist facility

2009-09-22 Alisdair Meredith N2975=09-0165

Zip facility

We have tuple-cat, zipping tuples (and tuple-like types) is next missing API

Pack/unpack function arguments

TR2 or beyond. Library support for storing function arguments in a tuple, and unpacking them in a
perfectly forwarded function call.

template< typename Callable, typename Tuplelike >
see below invoke(Callable && fn, TuplelLike && t);

Implementation Experience

All the features that are supported by currently available compilers have been tested, which is
essentially everything but constexpr. A sample implementation will be available on the committee
wiki.

Proposed Wording

[Need a recent version of working paper to annotate — post N2914]

20.4 Tuples [tuple]

1 This subclause describes the tuple library that provides a tuple type as the class template tuple that
can be instantiated with any number of arguments. Each template argument specifies the type of an
element in the tuple. Consequently, tuples are heterogeneous, fixed-size collections of values.

2 Header <tuple> synopsis
namespace std {

/1 20.4.1, class template tuple:
template <class... Types> class tuple;

/1 20.4.1.3, tuple creation functions:
const unspecified ignore;

template <class... Types>

tuple<VTypes...> make_tuple(Types&&...);
template<class... Types>

tuple<Types&...> tie(Types&...);

N
()
S
©
)
P
N
N

~
=
N
o
D
[y
I
—
c

=5
(¢
>
o8

ke]
@
=
Q
QD
n
n
@
(%]

template <class T> class tuple_size; // undefined

=
N
©
B
=
o
@
©
3
I}
=
—
®
o
(@]
®
[}
1%

H
@
3

=3
2
@
A
(2]
N
®
—-
o
D
2]
(%]
—

<

S
@D
n
Y

)

typename tuple_element<l, tuple<Types...> >::itype& get(tuple<Types...>&);
template <size_t I, class ... types>
typename tuple_element<I, tuple<Types...> >::type const& get(const tuple<Types...>&);

/1 20.4.1.6, relational operators:
template<class... TTypes, class... UTypes>

bool operator==(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator<(const tuple<TTypes...>&, const tuple<UTypes...>&);

Alisdair Meredith N2975=09-0165

2009-09-22 Alisdair Meredith N2975=09-0165

template<class... TTypes, class... UTypes>

bool operator!=(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator>(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator<=(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, class... UTypes>

bool operator>=(const tuple<TTypes...>&, const tuple<UTypes...>&);

20.4.1 Class template tuple [tuple.tuple]
namespace std {

template <class... Types>

class tuple {

public:

constexpr tuple();

2009-09-22 Alisdair Meredith N2975=09-0165

onstexpi tuple(const tuples.) Eidefauilt;

tuple(tuple&&);

template <class... UTypes>
explicit tuple(UTypes&&...);

/I allocator-extended constructors
template <class Alloc>
tuple(allocator_arg_t, const Alloc& a);
template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, const tuple&);
template <class Alloc>

tuileiallocator_ari_t, const Alloc& a, tuple&&);

template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a,

UTypes&&...);

b

/I allocator-related traits
template <class... Types, class Alloc>
struct uses_allocator<tuple<Types...>, Alloc>;
template <class... Types>
struct constructible_with_allocator_prefix<tuple<Types...> >;

}

20.4.1.1 Tuple traits [tuple.traits]

template <class... Types, class Alloc>

struct uses_allocator<tuple<Types...>, Alloc> : true_type { };

Requires: Alloc shall be an Allocator (20.1.2).

1 [Note: Specialization of this trait informs other library components that tuple can be constructed with
an allocator, even though it does not have a nested allocator_type. —end note]

2009-09-22 Alisdair Meredith N2975=09-0165

template <class... Types>

struct constructible_with_allocator_prefix<tuple<Types...> >

Dtrue_type {};

[Note: Specialization of this trait informs other library components that tuple can be constructed with

2 Requires: Each type in Types shall be default constructible.

3 Effects: [l Vall€ initializes each element.

template <class... UTypes>
explicit tuple(UTypes&&... u);

6 Requires: Each type in Types shall satisfy the requirements of MoveConstructible (Table 33) from
the corresponding type in UTypes. sizeof...(Types) == sizeof...(UTypes).

7 Effects: Initializes the elements in the tuple with the corresponding value in
std::forward<UTypes>(u).

tuple(tuple&& u);
10 Requires: Each type in Types shall shall satisfy the requirements of MoveConstructible (Table 33).

11 Effects: Move-constructs each element of *this with the corresponding element of u.

]

(]

2009-09-22 Alisdair Meredith N2975=09-0165

JIm

N
)
S
©
)
P
I\
N

Alisdair Meredith N2975=09-0165

I

template <class Alloc>

tuple(allocator_arg_t, const Alloc& a);

template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a, ESEEl UTypes&&...);
template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, const tuple&);
template <class Alloc>

tuple(allocator_arg_t, const Alloc& a, tuple&&);

40 Requires: Alloc shall be an Allocator (20.1.2).

template<class... Types>
tuple<VTypes...> make_tuple(Types&&... t);

42 Let Ui be decay<Ti>::type for each Tiin Types. Then each Vi in VTypes is X& if Ui equals
reference_wrapper<X>, otherwise Vi is Ui.

43 Returns: tuple<VTypes...>(std::forward<Types>(t)...).

44 [Example:

11

2009-09-22 Alisdair Meredith N2975=09-0165

int i; float j;

make_tu ple(1, ref(i), cref(j))
creates a tuple of type

tuple<int, int&, const float&>
—end example]
template<class... Types}
tuple<Types&...> tie(Types&... t);

45 Returns: tuple<Types&>(t...). When an argument in t is ignore, assigning any value to the
corresponding tuple element has no effect.

46 [Example: tie functions allow one to create tuples that unpack tuples into variables. ignore can be
used for elements that are not needed:

int i; std::string s;

tie(i, ignore, s) = make_tuple(42, 3.14, "C++");

Ili==42, s =="C++"

Ll H||
i

12

2009-09-22 Alisdair Meredith N2975=09-0165

2009-09-22 Alisdair Meredith

N2975=09-0165

typedef Tl type;

55 Requires: | < sizeof...(Types). The program is ill-formed if | is out of bounds.

56 Type: Tl is the type of the Ith element of Types, where indexing is zero-based.
20.4.1.5 Element access [tuple.elem]

template <size_t |, class... Types>

typename tuple_element<I, tuple<Types...> >::itype& get(tuple<Types...>& t);

57 Requires: | < sizeof...(Types). The program is ill-formed if | is out of bounds.

58 Returns: ARIVAIUE reference to the Ith element of t, where indexing is zero-based.

59 Throws: nothing.

<
°

,_,
@
3
2
@
N
@
N
o
—-
Q
b
12
_|
D
»
Y

°

’

typename tuple_element<l, tuple<Types...> >::type const& get(const tuple<Types...>& t);

60 Requires: | < sizeof...(Types). The program is ill-formed if | is out of bounds.

61 Returns: A const reference to the Ith element of t, where indexing is zero-based.

2009-09-22 Alisdair Meredith N2975=09-0165

62 Throws: nothing.

63 [Note: Constness is shallow. If a T in Types is some reference type X&, the return type is X&, not
const X&. However, if the element type is non-reference type T, the return type is const T&. This is
consistent with how constness is defined to work for member variables of reference type. —end note]

]

64 [Note: The reason get is a nonmember function is that if this functionality had been provided as a
member function, code where the type depended on a template parameter would have required using
the template keyword. —end note]

20.4.1.6 Relational operators [tuple.rel]
template<class... TTypes, class... UTypes>
bool operator==(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

65 Requires: For all i, where 0 <= i and i < sizeof...(Types), get<i>(t) == get<i>(u) is a valid expression
returning a type that is convertible to bool. sizeof...(TTypes) == sizeof...(UTypes).

66 Returns: true iff get<i>(t) == get<i>(u) for all i. For any two zero-length tuples e and f, e == f returns
true.

67 Effects: The elementary comparisons are performed in order from the zeroth index upwards. No
comparisons or element accesses are performed after the first equality comparison that evaluates to
false.

template<class... TTypes, class... UTypes>
bool operator<(const tuple<TTypes...>& t, const tuple<UTypes...>& u);

Requires: For all i, where 0 <=i and i < sizeof...(Types), get<i>(t) < get<i>(u) is a valid expression
returning a type that is convertible to bool. sizeof...(TTypes) == sizeof...(UTypes).

68 Returns: The result of a lexicographical comparison between t and u. The result is defined as:

(bool)(get<0>(t) < get<0>(u)) || ({(bool)(get<0>(u) < get<0>(t)) && ttail < Utail), where rtail for some tuple r
is a tuple containing all but the first element of r. For any two zero-length tuples e and f, e < f returns
false.

template<class... TTypes, class... UTypes>

bool operator!=(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
69 Returns: !(t == u).

template<class... TTypes, class... UTypes>

bool operator>(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
70 Returns: u <t.

template<class... TTypes, class... UTypes>

bool operator<=(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
71 Returns: 1(u < t)

template<class... TTypes, class... UTypes>

bool operator>=(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
72 Returns: !(t < u)

73 [Note: The above definitions for comparison operators do not require ttail (Or Utail) to be constructed.
It may not even be possible, as t and u are not required to be copy constructible. Also, all comparison
operators are short circuited; they do not perform element accesses beyond what is required to
determine the result of the comparison. —end note]

15

