Doc No: N2840=09-0030

Date: 2009-03-05

Author: Pablo Halpern
Cilk Arts, Inc.

phalpern@halpernwightsoftware.com

Defects and Proposed Resolutions for Allocator Concepts (Rev 2)

Contents
National Body Comments Addressed in this Paper..........ccccccccviiniiiniiniiniiiniciiciccece 1
10 001 0 1 OO OO OO 2
Changes from N2829 (ReV 1)cccuviiiiiiiiiiiiiiciiiie s 2
Changes from N28T0 ..o 2
Document CONVENIONSccoiiiiiiiiiiiictc e 2
Typographical and Editorial EXTOTSccccoiiiiiiiiiiiiicicccc s 3
Allocator concept does not match all C++03 allocators..........ccceeiieieieiiiiniiiiiiccce, 3
Allocator: :rebindis different from C++03 rebind.....ciiiiniiiiiciccceee 4
Construct Method is Limited t0 value LYDe . 4
construct element Function is UNNECESSATYcceiiiiiiiiiiiiiiiiiiicciccicc 5
Allocator Propagation Relies on Traits Instead of Concepts.........cccccvviiueviniiniiiniccininiicine, 6
is scoped allocator Traitis not Used........iiiicces 6
scoped allocator adaptor has eITOTS ... e 7
Two Types of scoped allocator adapPtorS .. 7
Proposed WOTding ... 8
Typographical and Editorial COrrections............ccccceueevieiiiiniiiniiiniiiiiniciiccieciecieeeeneesneneees 8
Revised Allocator CONCEPLccoiiiiiiiiiiiiieieic e 9
Legacy ALLOCAtOTS.c.coiiuiuiiiiiiiiciiciece ettt 10
Rename rebind to rebind tyPe . 14
Replace construct element with CONSTIUCT i 15
Allocator Propagation ... 16
Remove is scoped allocator trait...... 19
Modified scoped allocator adapPLoOr .o 19
REFEIOIICES ...t 26

National Body Comments Addressed in this Paper

The previous version of this paper (N2810) comprises the proposed resolution for CD
comment numbered US 75. The issues with pair have been split off into a separate paper:

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 1 of 26

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2810.pdf

N2834| This proposal provides formal wording for the resolutions to UK 223 and UK 224 and
addresses most of the concerns of US 65 and US 74.

Summary

The addition of concepts for allocators in the standard library is incomplete and has a number

of defects. Each defect is listed below with a proposed resolution. For easier reference, there is

no formal wording for individual proposed resolutions. Instead, formal wording for all of the

proposed resolutions is merged into one set of changes at the end of the document.

Changes from N2829 (Rev 1)

Updated references to refer to October 2009 CD instead of the WP.
Clarified some text and fixed numerous typos and small omissions.
Simplified AllocatableElement and removed the has custom construct trait.

More thorough cleaning of remnants of the pre-concept allocator stuff in response to NB
comments.

Changes from N2810

Added more specific proposed wording.

Moved discussion for reducing the number of pair constructors into a separate paper
N2834).

Removed issue about vector and string being under-constrained. Vector and
basic string will work fine with non-native pointer types.

Replaced the AdvancedAllocator concept with a custom construct associated
type in the Allocator concept.

This version of the proposal uses rebind type instead of related instance asthe
replacement for rebind in the Allocator concept.

Document Conventions

All section names and numbers are relative to the October 2008 CD, N2800.

Existing and proposed working paper text is indented and shown in dark blue. Small edits to the working
paper are shown with red-strikeeuts-for-deleted-text-and green underlining for inserted text within the indented

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 2 of 26

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2834.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2834.pdf

blue original text. Large proposed insertions into the working paper are shown in the same dark blue indented
format (no green underline).

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

Typographical and Editorial Errors

Correct the errors as described in the proposed wording section of this paper.

Allocator concept does not match all C++03 allocators

The reason that Allocator is declared auto is to support backwards compatibility with
C++03 allocators. Otherwise, the Allocator concept is not the kind of concept that would
normally be declared auto. However, declaring it auto does not fully succeed at providing
this backwards compatibility. C++03 allocators do not have a generic pointer type nor a
variadic construct function. Moreover, the non-variadic construct function in the C++03
allocator takes a pointer argument instead of a T* argument as in the concept. As a result,
there are some C++03 allocators for which there would be no automatically-generated concept
map.

Remove the auto modifier from the Allocator concept. This change will make Allocator
cleaner (by avoiding gratuitous use of auto) and will allow additional evolution without the
constraint of automatic compatibility with C++03 allocators. To address the compatibility
problem, add a LegacyAllocator auto concept and concept map for Allocator to
automatically adapt any class meeting the requirements of a C++03.

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 3 of 26

Allocator: :rebind is different from C++03 rebind

The rebind template in the Al1locator concept serves the same purpose as the rebind
template in the C++03 allocator requirements, but uses a different syntax for both definition
and declaration. In the case of a C++03 allocator, rebinding is done by referencing
Alloc::rebind<U>::other, whereas in C++0x, rebinding is done by referencing:
Allocator<Alloc>::rebind<U> (no other nested type). Moreover, the declaration of
rebind in a C++0x concept map is simpler than in a C++03 allocator: template <class T>
rebind = MyAlloc<T>; instead of template <class T> struct rebind {
typedef MyAlloc<T> other; };. These differences are confusing and could cause
strange compilation errors when adding constraints to an unconstrained container template.

Rename the rebind template in the Allocator concept to something else. Some ideas are
rebind type, retype, related type, sibling, or sibling allocator. Iused
rebind type in the proposed wording because it will be familiar to C++03 programmers, yet
different enough for the compiler to tell you when you’ve used the wrong one. The definition
of rebind type in the concept map for legacy allocators can still be implemented in terms of
rebind.

Construct Method is Limited to value type

The construct method in the A11locator concept only constructs objects of type

value type. This constraint can lead to inconvenient and sometimes inefficient uses of
rebind type in order to construct objects of different types. For example, a container type
might allocate objects of type Node<T> from an allocator, alloc , of type allocator type
== Alloc<Node<T>>. However, some parts of the Node might be initialized independently
of the T object contained within it. Initializing an inner object of type U would require the use
of rebind type as follows:

Allocator<allocator type>::rebind type<U>(alloc) .construct(p, args);

The above construct is not only hard to read, but it constructs a temporary object of type
Alloc<T>just to call its construct method.

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 4 of 26

(Note: This resolution is refined by the resolution of the next issue.) We have already changed
construct to a template in order to support emplace. Itis a small matter, then, to
templatize the pointer argument as well as the constructor arguments:

template<typename T, typename... Args>
requires HasConstructor<T, Argsé&&...>
void X::construct (T* p, Argsé&&... args)
{

::new ((void*) p) T(forward<Args>(args)...);

}

construct_element Function is Unnecessary

The construct element function was originally introduced to centralize the moderately-
complex, traits-based dispatch of the construction of elements based a number of allocator and
element traits. The advent of concepts allows us to eliminate the construct element meta-
programming layer and express constraints directly in the declaration of the construct
member for each allocator.

Remove the global construct element template and remove the construct element
function from the AllocatableElement concept. Move the construct function from the
Allocator concept to the AllocatableElement concept, as shown in the proposed
wording section of this paper. This change will also lift the restriction on construct
described in the previous issue. Change other uses of construct element to use
construct directly. For consistency, move destroy from Allocator to
AllocatableElement, as well.

This change, however, will remove the default implementation of construct because such a
default implementation would potentially bypass constraints required by a specialized
allocator (such as a scoped allocator). However, the typical implementation of construct
can be inserted into an allocator with a simple cut-and-paste of a tiny amount of boilerplate
code (with no changes to the boilerplate), so losing the default implementation will not make
much difference to an allocator author.

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 5 of 26

Allocator Propagation Relies on Traits Instead of Concepts

The allocator propagation traits, allocator propagate never,

allocator propagate on copy construction,

allocator propagate on move assignment, and

allocator propagate on copy assignment are pre-concept ways to express what can
now be expressed more cleanly with concepts. These traits control the behavior of allocator
propagation for a set of static member functions in the allocator propagation map
structure. The system is unnecessarily complex now that we have an Allocator concept into
which we can directly insert the propagation functions with default implementations.

Add the following five functions and default implementations to the Al1locator concept.
(The fifth function is for move-construction, which is not separately accounted-for in the
current WP):

Alloc select on container copy construction(const Allocé& x) { return x; }
Alloc select on container move construction (Allocé&& x) { return move (x);}
void do on container copy assignment (Alloc& to, Alloc& from) { }
void do on container move assign(Allocé& to, Allocé&& from) { }
void do on container swap(Allocé& a, Alloc& b) { }

Refinements of Allocator for individual allocator types can override these defaults as

desired.

See the proposed wording section for an embodiment of this proposed resolution.

is_scoped allocator Trait is not Used

The is scoped allocator trait is still in the WP, but is not referenced since allocator
concepts were introduced. A concept-based approach needs to be introduced to replace the
purpose of the is scoped allocator trait —i.e., to dispatch the element-construction
functionality based on allocator type.

Remove the is scoped allocator trait. Constrain the construct member function of
any scoped allocator such that an element must be ConstructibleWithAllocator using
the inner allocator type. Combined with the proposed resolution for the previous issue

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 6 of 26

(moving the construct function into AllocatableElement), this resolution removes
scoped allocator notions from unrelated parts of the standard, reducing clutter and confusion.

scoped allocator adaptor has errors

The scoped _allocator adaptor templates have errors in them, some of which cause them
not to model the Allocator concept in every detail. Specifically:

e There are places where void is used instead of unspecified allocator type.

e The construct and destroy methods take pointer instead of value type*. (But
if the resolution to the construct issue is accepted, it should take a pointer to
template-argument type.)

e Some Allocator constraints are missing.

Correct the errors. See related issues in this paper for other changes that may apply.

Two Types of scoped allocator adaptors

The WP describes scoped allocator adaptor as a class template with two template
parameters, one for the outer allocator type and one for the inner allocator type. A
specialization of scoped allocator adaptor takes only one template parameter. In the
latter case, not only are both the outer and inner allocators the same type, they are also the
same object. Thus there is a difference between scoped allocator adaptor<Al, Al>,
which holds two distinct instances of type A1, and scoped allocator adaptor<Al>,
which holds a single instance of type A1. This use of a default parameter has already caused
significant confusion.

Use separate names, scoped _allocator adaptor and scoped allocator adaptor2
for the single-parameter and dual-parameter adaptor templates, respectively. Remove the
default argument of unspecified allocator type.

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 7 of 26

Proposed Wording

Typographical and Editorial Corrections

Section 20.7 [memory], Header <memory> synopsis, add missing close-angle-bracket and
remove unnecessary semicolon:

// 20.7.6, the default allocator:

template <class T> class allocator;

template <ObjectType T>
concept map Allocator<allocator<T> > { }+

Section 20.7 [memory], change all occurrences of pointer: :reference to
pointer::result type:

requires Convertible<pointer, const pointer>
&& Convertible<pointer, generic pointer>
&& SameType<pointer::refereneeresult type, value typeé&>
&& SameType<pointer::refereneceresult type, reference>;

(and a number of other occurrences).

+ o I\ =
T

il
T

H-

o
=} T

He dr
He
b H-

al o

7 oLt
ISEEES)
[T

4
T T

T >

T =
T Tk
il w1+
T t
o~ i~
= =

H q-
- Hh

i q
Q

_
A &8
m it ESEP + <7y (1.
7 AL CTOoy X 1 L= t/ T T 7

Section 23.1, Table 82, remove rows dealing with traits that have been obsolete by concepts:

i s orivod & . . TP
or-false—type copeerillate -t
construetible—with—allecator—sutfin=2C> | derpved-from-true—type Compile-time

Section 30.5.1 [futures.overview], synopsis, correct use of obsolete traits:

template <class R, class Alloc>

ISR S E DT SN T = o= 11 PN NSt SNE N o R 11 PN
o CLuoCctTC oo & g o TCOTSPTOmTES T 7 i OoOC>

concept mapiUsesAllocator<promise<R>, Alloc> {
typedef Alloc allocator type;

+ o
C

:
1=
- PR o
E= C IO 1T A=

o 3
=} oCT ™S

Remove section 30.5.7 [futures.allocators] entirely:

S0 AtesatorTompatos-Hutuosatosators)
e T

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 8 of 26

Revised Allocator Concept

In section 20.7 [memory], remove the auto keyword from the Allocator concept, correct the
spelling of HasDereference and rebind type:

/7 20.7.2.2 Allocator concepts

awke concept Allocator<ftypename AlleeX> $66 belows

auto concept LegacyAllocator<typename X> 86€ below
template <LegacyAllocator X> concept map Allocator<X> $§6¢ below

In section 20.7.2.2 [allocator.concepts], modify the Allocator concept and add a concept map
as follows:
avte concept Allocator<typename X>
CopyConstructible<X>, EqualityComparable<X> ({

ObjectType value type = typename X::value type;
requires FreeStoreAllocatable<value type>;

Dex
DCT

B

=
T Tr

©
T

H

leHasDereference pointer = $6¢ below;
teHasDereference const pointer = $ee below;
requires Regular<pointer>

&& RandomAccessIterator<pointer>

&& Regular<const pointer>

&& RandomAccessIterator<const pointer>;
SignedIntegrallike difference type =

RandomAccessIterator<pointer>::difference type;

typename generic pointer = void*;
typename const generic pointer = const void*;
typename reference = value typeé&;
typename const reference = const value typeé&;
UnsignedIntegrallike size type = $6¢ below;
template<ObjectType T> class rebind type——=—8§88-b8low;

2N
Lo
K
Lo

Hh Hh

D

+~
DT

)

r =1
T ™

requires Destructible<value type>;
requires Convertible<pointer, const pointer>
&& Convertible<pointer, generic pointer>
&& SameType<pointer::result type, value typeé&>
&& SameType<pointer::result type, reference>;
requires Convertible<const pointer, const generic pointer>
&& SameType<const pointer::result type, const value typeé&>
&& SameType<const pointer::result type, const reference>;
requires SameType<rebind type<value type>, X>;
requires SameType<generic pointer
, rebind type<unspecified unique type>: : generic pointer>;
/I see description of generic pointer, below
requires SameType<const generic pointer
, rebind type< unspecified unique type>: : const generic pointer>;
/I see description of generic pointer, below

pointer X::allocate(size type n);

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 9 of 26

pointer X::allocate(size type n, const generic pointer p);
void X::deallocate (pointer p, size type n);
size type X::max size() const {

return numeric limits<size type>::max(); }

template<ObjectType T> X::X(const rebind type<T>& vy);

teomarnl o+ sz A A NSV
k__/lllt./J_Lzl.k. L__Yr/ 1T e o o .L_lJ_k_js_)
reormrt raa ITaoO Aot e~ vzl g =R B 22N Nrvexon ¢ C
e reS—TTaSToRStEeCetEoE et ypPe7 Tt g St
sz 3 We o Aot gt (7 00 EeRTIEENG SN rea ¢ C ENECY I
EnS . o St Cc Tt tvVatt =Y P P77 EgStTw G5
AETYNEIA A) I 14 + 7 [(Foriga AN v (S rvera) ANTY
HewW—— = EaS S S 0 otk Yy P T o EWa o<t G5t ES ST ~77
T E| o o At ~cg [| Frmeak) [
EnS CECASASISRCF S da wac = e =Y P 7 T
A o f (ko) | PR A
G ECSSOTET TP ot Yt~

pointer X::address (reference r) const {
return addressof (r); //see below

const pointer X::address(const reference r) const ({
return addressof (r); //See below
}

X select on container copy construction(const X& x) { return x; }
X select on container move construction (X&& x) { return move (x); }
void do on container copy assignment (X& to, const X& from) { }
void do on container move assignment (X& to, X&& from) { }

void do on container swap (X& a, X& b) { }

}

Remove the definition of construct at paragraph 15:

Legacy Allocators

At the start of 20.7.2.2 [allocator.concepts], after the definition of the Allocator concept, add
a new sub-section:

20.7.2.2.1 Support for legacy allocators [allocator.concepts.legacy]

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 10 of 26

Classes that meet the allocator requirements described in table 32 off are known as
legacy Allocators. The LegacyAllocator auto concept abstract =0 egacy allocators. A
concept map adapts LegacyAllocator tothe Allocator concept. [Nofe: not all legacy allocator
requirements can be precisely described using concepts. In particular, rebind is under-constrained and the
second argument of allocate (p, u) is discarded in the default implementation to make up for the fact that
it is over-constrained. Legacy allocators that are not a precise fit for the LegacyAllocator concept can
be used as allocators by supplying a concept map adapting them to the A11ocator concept. — €1d noté]

auto concept LegacyAllocator<typename X>
DefaultConstructible<X>, CopyConstructible<X>, EqualityComparable<X> {

HasDereference pointer = X::pointer;

HasDereference const pointer = X::const pointer;
typename generic pointer = void*;

typename const generic pointer = const void*;

typename reference = X::reference;

typename const reference = X::const reference;
ObjectType value type = typename X::value type;
UnsignedIntegrallike size type = X::size type;
SignedIntegrallike difference type = X::difference type;
template<ObjectType T> struct rebind = $6€¢ below;

requires Destructible<value type>;
requires Regular<pointer>
&& RandomAccessIterator<pointer>
&& Regular<const pointer>
&& RandomAccessIterator<const pointer>;
requires Convertible<pointer, const pointer>
&& Convertible<pointer, generic pointer>
&& SameType<pointer::result type, value typeé&>
&& SameType<pointer::result type, reference>;
requires Convertible<const pointer, const generic pointer>
&& SameType<const pointer::result type, const value type&>
&& SameType<const pointer::result type, const reference>;
requires IntegralType<size type> && IntegralType<difference type>;

pointer X::address(reference r) const;
const pointer X::address(const reference r) const;

pointer X::allocate(size type n);

pointer X::allocate(size type n, generic pointer p)
{ return X::allocate(n); }

void X::deallocate (pointer p, size type n);

size type X::max size() const;

template<ObjectType T>

requires S$ee below
X::X (const typename rebind<T>::otheré& y);

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 11 of 26

http://www.open-std.org/JTC1/SC22/WG21/docs/standards#14882

// Not used, but part of Table 32
requires CopyConstructible<value type>
void X::construct (pointer type p, const value type&);

void X::destroy (pointer p);
}
template <LegacyAllocator X>
concept map Allocator<X> ({

typedef X::value type value type;

typedef X::pointer pointer;

typedef X::const pointer const pointer;

typedef X::generic pointer generic pointer;
typedef X::const generic pointer const generic pointer;
typedef X::difference type difference type;
typedef X::size type size type;

typedef X::reference reference;

typedef X::const reference const reference;

template<ObjectType T> using rebind type = Ssee below;
}

The rebind<> requirements and the requirements on the rebind-conversion constructor can be
implemented using a __ HasOther and an __ AllocRebindTypeOf concept:
auto concept = HasOther<typename T> {
typename other = typename T::other;

}
concept = AllocRebindTypeOf<typename Y, typename X> { }
auto concept LegacyAllocator<typename X> : ... {

template<ObjectType T> struct rebind;

requires @ Ho = HasOther<rebind<value type>>;
requires SameType< Ho::other, X>;

requires AllocRebindTypeOf< Ho::other, X>;

template<typename Y>
requires AllocRebindTypeOf<Y, X>
X::X(const Y& y);

}

template <LegacyAllocator X, ObjectType T>
requires Ho = HasOther<X::rebind<T>>
concept map AllocRebindTypeOf< Ho::other, X> {}

Note that the construct () function in the legacy allocator is ignored in the concept-map
mapping. |[[SO/IEC 14882:2003|did not require that construct be called by containers and
many implementations handled it inconsistently. The addition of the variadic construct
function makes a direct mapping from C++03 allocators to C++0x allocators impossible. An

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 12 of 26

http://www.open-std.org/JTC1/SC22/WG21/docs/standards#14882

adaptor function could construct a temporary object of type value type, then call the C++03
construct function, but that would add a new CopyConstructible requirement and a
quiet inefficiency (caused by an extra copy) for all C++03 allocators even though very few
require a custom construct function. It seems safer to simply ignore the legacy construct
function and let the user create their own concept map if necessary.

There is no way to derive a generic pointer type from pointer. The default of void*
will work for most, but not all, legacy allocators. Legacy allocators that use non-raw pointer
types, will need an explicit concept map for either Allocator or LegacyAllocator.

Also, insert a new header immediately following the concept map for
Allocator<LegacyAllocator> and immediately before the description of Allocator
members:

20.7.2.2.2 Allocator and LegacyAllocator members [allocator.concepts.members]

Modify the description of generic pointer as follows:

typename generic pointer;
typename const generic pointer;

A type that can store value of a pointer (const_pointer) from any allocator in the same family as X and
which will produce the same value when explicitly converted back to that pointer type. For any two
allocators X, and Y of the same family, the implementation of a library facility using Allocator<X> and
Allocator<Y>, is permitted to add additional requirements, SameType<Allocator<X>::generic pointer,
Allocator<Y>::generic_pointer> and SameType<Allocator<X>::const_generic_pointer,
Allocator<Y>::const_generic_pointer> [Example:

template<ObjectType T, Allocator Alloc = allocator<T> >
requires Destructible<T> &&
SameType<Alloc::generic pointer,
Alloc::Rebind<list node<T>>::generic pointer> &&
SameType<Alloc::const generic pointer,
Alloc::Rebind<list node<T>>::const generic pointer>
class list;

end example)

Default types. X:.generic_pointer and X::const_generic_pointer if such types exists and void* and const
void* otherwise.

And modify the definition of rebind as follows:
template<ObjectType T> class rebind type;
Class Template: The associated template rebind type is a template that produces allocators in the

same family as X: if the name X is bound to SomeAllocator<value type>,then rebind type
<U> is the same type as SomeAllocator<U>. The resulting type SameAllocator<U> shall meet

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 13 of 26

the requirements of the A11ocator concept.-The-defavltvalueforrebind-isatemplate Rfor-which

template<ObjectType T> class rebind;

Class Template. The associated template rebind (for LegacyAllocator only) is a template containing
a member type, other, that produces allocators in the same family as X: if the name X is bound to
SomeAllocator<value type>,then rebind<U>: :other is the same type as
SomeAllocator<U>. The resulting type SameAllocator<U>: :other shall meet the
requirements of the A1locator concept. The concept map for Allocator<LegacyAllocator> maps
rebind type<U>to rebind<U>: :other.

Rename rebind to rebind_type
Modity paragraph 4 to rename rebind:

typename generic pointer;
typename const generic pointer;

A type that can store value of a pointer (const pointer) from any allocator in the same family (see
member template rebind_type in 20.7.2.1) as X and which will produce the same value when explicitly
converted back to that pointer type. For any two allocators X, and Y of the same family, the
implementation of a library facility using Allocator<X> and Allocator<Y>, is permitted to add additional
requirements, SameType<Allocator<X>::generic_pointer, Allocator<Y>::generic_pointer> and
SameType<Allocator<X>::const_generic_pointer, Allocator<Y>::const_generic_pointer> [Example.

template<ObjectType T, Allocator Alloc = allocator<T> >
requires Destructible<T> &&
SameType<Alloc::generic_ pointer,
Alloc::Rrebind type<list node<T>>::generic pointer> &&
SameType<Alloc::const generic pointer,
Alloc::Rrebind type<list node<T>>::const generic pointer>
class list;

And the same thing for paragraph 7:
template<ObjectType T> class rebind type;

Class Template: The associated template rebind_type is a template that produces allocators in the same
family as X: if the name X is bound to SomeAllocator<value type>,then rebind type<U>is
the same type as SomeAllocator<U>. The resulting type SameAllocator<U> shall meet the
requirements of the A11ocator concept. The default value for rebind type is a template R for
which R<U>is X: : template rebind<U>::other.

Note that the last use of rebind is deliberate and should not be changed to rebind type.

And also section 14.9.2.2 [concept.map.assoc], paragraph 3:

concept Allocator<typename Alloc> {
template<class T> class rebind;

}

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 14 of 26

template<typename T>
class my allocator {

template<typename U> class rebind type;
bi

template<typename T>
concept map Allocator<my allocator<T>> {
template<class U>

using rebind type = my allocator<T>::rebind type;

Replace construct_element with construct

In section 20.7 [memory], in the synopsis for <memory>, remove construct element:
H-20-710—constructelement

7
+ o+
< T

Iy
o)
0]

1
7 En e

man
134

~
T

S0

o
[B

r T r

T T T

N
T

g

(ORI

= C
=} o™
n r
T

= o)

Iz

H

=
COTT

< 1 o) .
S8 T 7

< 2y ox
T s+ Targo/ 7

«
g -
¢ o]

=
o7 7

In section 20.7.3 [allocator.element.concepts] paragraph 8, modify the definition of the
AllocatableElement concept and eliminate the related concept map:

auto concept AllocatableElement<class Alloc, etassObjectType T, class...
Args>
{

requires Allocator<Alloc>;

requires FreeStoreAllocatable<T>;

void Alloc::construct—edement (Attees—ay T* t, Argsé&&... args);

void X::destroy(value type* p) {
addressof (*p)->~value type();

Remove section 20.7.10 entirely:

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 15 of 26

Modify Section 23.1.1 [container.requirements.general], paragraph 3 as follows:

For the components defined in this clause that declare an allocator_ type, objects stored in these
components shall be constructed using eenstruet—element(20-71+0)-the construct member function, and
destroyed using the destroy member function of the container’s allocator (20.7.2.2) unless otherwise
spec1ﬁed (construct and destroy are specified in the AllocatableElement concept (20.7.3)). A

: [Note. If the
component is 1nstant1ated w1th a scoped allocator of type A (i.e. aﬂ—aﬂoeatoﬁlﬂt—meets—th%feq&wements—ef
the-SeepedAHocatoreoneept one of scoped allocator adaptoror

scoped allocator adaptor?),then construct—element may pass an inner allocator argument to
T’s constructor. — &/1d note)

Rename construct element to construct in section 23.2.7 [vector.bool], paragraph 2:

Unless described below, all operations have the same requirements and semantics as the primary vector
template, except that operations dealing with the bool value type map to bit values in the container storage
and AllocatableElement: : construct—element(23-1 (20.7.3) is not used to construct these values.

Allocator Propagation
At the end of section 20.7.2.2 [allocator.concepts], add descriptions of the propagation
functions:
X select on container copy construction(const X& x);
Returns: x for allocators that should propagate from the existing container to the new container on copy-
construction, X () otherwise.

Default: returns x

Remarks: Used to select the allocator for a new container during copy-construction. The choice as to
whether the allocator should propagate from the existing container to the new one varies by allocator
type. See 23.1.1 [container.requirements.general].

[Notg: in situations where the copy constructor for a container is elided, this function is not called. The
behavior in these cases is as if select on container copy construction returned x — énd
note

X select on container move construction (X&& x)

Returns: move (x) for allocators that should propagate from the existing container to the new container
on move-construction, X () otherwise.

Default behavior: returns move (x)
Remarks. Used to select the allocator for a new container during move-construction. The choice as to

whether the allocator should propagate from the existing container to the new one varies by allocator
type. See 23.1.1 [container.requirements.general].

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 16 of 26

[Note. in situations where the move constructor for a container is elided, this function is not called. The
behavior in these cases is as if select on container move construction returned x — énd
note|

void do_on container copy assignment (X& to, const X& from);
Effects: assign to = from for allocators that should propagate from the right-hand container to the left-
hand container on container copy-assignment; otherwise no effect.

Default behavior: does nothing

Remarks. The choice as to whether the allocator should propagate from the right-hand container to the
left-hand container during assignment one varies by allocator type. See 23.1.1
[container.requirements.general].

void do_on container move assignment (X& to, X&& from) { }

Effects. assign to = move (from) for allocators that should propagate from the right-hand container
to the left-hand container on container move-assignment; otherwise no effect.

Default behavior: does nothing

Remarks. The choice as to whether the allocator should propagate from the right-hand container to the
left-hand container during assignment one varies by allocator type. See 23.1.1
[container.requirements.general].

void do_on container swap (X& a, X& b);

Effects. assign swap(to, from) for allocators that should propagate on container swap; otherwise no
effect.

Default behavior: does nothing

Remarks. The choice as to whether the allocator should be swapped when containers are swapped varies
by allocator type. See 23.1.1 [container.requirements.general].

In section 20.7 [memory], remove mention of the allocator propagate traits from the
<memory> Synopsis:

)]
B

HO)
T

)

D
-

D~
|__|
at
’_.I.
03]

] + 2 Baer NN S +

g Tt SaoEn PagattTron—traTt
o] o4 alaa A1l e 4 g~ 1 leomat o smam o o o 4 NPT
cempTrat TS S—Fyr = Strget—a=r= O F—PFropagat Fr ¥
o] o4 alaa A1l e 4 g~ 1 leomat o o oo PN P NN SN S DS
cempTrat TS S—Fyr = Strget—a=T= O F—Ppropagat Fr By rStEFraeteErohy
o] o4 alaa A1l e 4 g~ 1 leomat o g o oo PN o s 4
cempTrat TS S—Fyr = StErget—ar=- O F—Ppropagat A—H S SHgRmeRts
o] o4 alaa A1l e 4 g~ 1 leomat o o oo PN N A S
cempTrat TS S—Fyr = Strget—a=r= O F—Ppropagat Fr Py —a SSTEogRments
o] o4 alaa A1l e 4y~ T N N NV S (N PN O
cempTrat TS S—Fyr = Strget—a=x=x o —Ppropasatron—Taps
o] o4 clace AT T amab A A s ol o 1leamater T Ao
cempTrat TS S—Fyr = FEOF e ¥;—CraSS—Frr = FEOF¥F—HRRCE ¥
O onaa 4 1leeat o oo oo 4 AeTrA L oA~ A 1leamat o N N S T a TR T S, T
StErget—<ar= EOFrF—Ppropagat P r<Secopea—ar= FEOF—CAPEOE RS Y AEE 2733 F e

+ g + sz [1 .
T T

Y& 18 Jr

Remove section 20.7.4 [allocator.propagation] in its entirety:

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 17 of 26

teomanl o+ alaaca N1 1 A~~~ at ot Sl At A A e 0 A o
cCpPTat TS S Y& ST oC Tt arrOCatoTrT PTFoPaSa oo Thapr——
a2~ N7 o o 1 ot v oz Ao o N o Nloanat+s N1 ac) .
StatxrC——7rr = (S~ e—10=Et oY FI 3 i o S N o 5 8 S W 8 T S e e mA A S w2
IS SN S S 2 a mas aat o~ (AT T o~ 17 ~CC o) .
o Cot L =Gttt [SISESE=C Fr e X CO7 Zrr T S e s 3 3 2
IS SN S P S 18 oo aat o~ (AT T o~ 17 ~C L) .
o Cot L T COoOP Y SS9 {Tr= LS SE A e g v e LT L Ot
IS SN S P S 2 otz (AT T o C A1 PN o N W
o Cot L TO—SWapPtZrT = YTty Tt o7

Modity the end of Section 23.1.1 [container.requirements.general], paragraph 4:

Notes: the algorithms swap (), equal () and lexicographical compare () are defined in Clause
25. Those entries marked “(Note A)” should have constant complexity. Those entries marked “(Note B)” have
constant complexity unless alecator—propagate—never<X:allocator—type=valueistrue
Allocator<allocator type>::select for move constructionreturns an allocator
different from rv.get allocator (), in which case they have linear complexity.

Modify Section 23.1.1 [container.requirements.general], paragraph 8:

Unless otherwise specified, all containers defined in this clause obtain memory using an allocator (See
20.7.2). Copy and move constructors for al these container types defined-in-this-Clause-obtain an allocator

by calling sHeentor—rpeopnmbion—mnpimelecttorcopeonrnetonl

Allocator<allocator type>::select on container copy constructionor

Allocator<allocator type>::select on container move construction on their

respective first parameters. All other constructors for these container types take an Al locator argument
(20.1.2), an allocator whose value type is the same as the container’s value type. A copy of this argument is
used for any memory allocation performed, by these constructors and by all member functions, during the
lifetime of each container object or until the allocator is replaced. The allocator may be replaced only via
assignment or swap () . Allocator replacement 1S performed by calling

a{er—type>—swap6 Allocator<allocator type> :do on container copy assignment,
Allocator<allocator type>::do on container move assignment, or
Allocator<allocator type>::do on container swap within the implementation of the
corresponding container operation. Calling the preceding A11ocator functions may or may not modify the
allocator, depending on the implementation of those functions for the specific allocator type. In all container

types defined in this Clause, the member get allocator () returns a copy of the allocator object used to
construct the container, or most recently used to replace the allocator.

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 18 of 26

Remove is_scoped_allocator trait

In section 20.7 [memory], remove is_scoped allocator from the <memory> synopsis:

Remove the last sentence of paragraph 2 from Section 23.1.4 [associative.reqmnts]:

Each associative container is parameterized on Key and an ordering relation Compare that induces a strict
weak ordering (25.3) on elements of Key. In addition, map and multimap associate an arbitrary type T with
the Key. The object of type Compare is called the comparison object of a container. This comparison object
may bea pomter to functlon or an Obj ectofa type with an approprlate functlon call operator —H‘—th%@empafe

Remove the last sentence of paragraph 3 in Section 23.1.5 [unord.req]:

Each unordered associative container is parameterized by Key, by a function object Hash that acts as a hash
function for values of type Key, and by a binary predicate Pred that induces an equivalence relation on values
of type Key. Addltlonally, unordered map and unordered multimap associate an arbltrary mapped type T
with the Key 3 -tk s

Modified scoped_allocator_adaptor
Modify the introduction of section 20.7.7 [allocator.adaptor] as follows:

20.7.7 Scoped Allocator Adaptor [allocator.adaptor]

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 19 of 26

The scoped allocator adaptorand scoped allocator adaptor?2 classtemplates is-anare
allocator templates that specifiesy the memory resource (the outer allocator) to be used by a container (as any
other allocator does) and also specifies an /nner allocator resource to be used by every element in the

container. Fhis-adaptoris-instantiated-with-outerand-inneraloeatortypes—H The scoped_allocator adaptor

template is instantiated with only one allocator type (i-e-the-second-type-is-veid); — the same allocator type is
used for both the outer and inner allocator types and the same allocator instance is used for both the outer and

inner allocator instances. The scoped allocator_adaptor2 template is instantiated with two allocator types,

one for the i inner allocator and one for the outer allocator. -The-interface is spectalized for the single-allocator

scoped allocator adaptor and scoped allocator adaptor?2 areis derlved from the outer
allocator type, so i they can be substituted for the outer allocator type in most expressions. — €714 note]. To
minimize the chance that an allocator will be constructed in an inappropriate scope, these adaptors are not
propagated on copy and move construction unless instantiated with allocators that are not default-
constructible.

In section 20.7.7 [allocator.adaptor], completely replace the declarations scoped allocators with
the following:

// Base class for exposition only
template<Allocator Alloc>
class scoped allocator adaptor base : public Alloc
{
public:
typedef Alloc outer allocator type;

typedef Allocator<Alloc>::size type size type;
typedef Allocator<Alloc>::difference type difference type;
typedef Allocator<Alloc>::pointer pointer;

typedef Allocator<Alloc>::const pointer const pointer;
typedef Allocator<Alloc>::generic pointer generic pointer;
typedef Allocator<Alloc>::const generic pointer

const generic pointer;

typedef Allocator<Alloc>::reference reference;
typedef Allocator<Alloc>::const reference const reference;
typedef Allocator<Alloc>::value type value type;
pointer address (reference x) const;

const pointer address(const reference x) const;

pointer allocate(size type n);

pointer allocate(size type n, const generic pointer u);
void deallocate (pointer p, size type n);

size type max size () const;

void destroy(value type* p);
}i

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 20 of 26

template<Allocator Alloc>
class scoped allocator adaptor
public scoped allocator adaptor base<Alloc>

typedef Alloc outer allocator type;
typedef Alloc inner allocator type;

requires DefaultConstructible<Alloc> scoped allocator adaptor();
scoped allocator adaptor (scoped allocator adaptoré&&);

scoped allocator adaptor (const scoped allocator adaptoré&);
scoped allocator adaptor (Alloc&& outerAlloc);

scoped allocator adaptor(const Allocé& outerAlloc);

template <Allocator Alloc2>

requires Convertible<Alloc2&&, Alloc>

scoped allocator adaptor(scoped allocator adaptor<Alloc2>&é&);
template <Allocator Alloc2>

requires Convertible<const Alloc2&, Alloc>

scoped allocator adaptor (const scoped allocator adaptor<Alloc2>é&);

template <class T, class... Args>
requires ConstructibleWithAllocator<T,inner allocator type,Args&&...>
void construct(T* p, Argsé&&... args);

// stop recursion

template <class T, Allocator Alloc2, class... Args>

requires ConstructibleWithAllocator<T, Alloc2, Argsé&&...>
void construct (T* p, allocator arg t,

const Alloc2&, Argsé&&... args);
const Allocé& outer allocator () const;
const Allocé& inner allocator () const;

}s

template<Allocator OuterA, Allocator InnerA>
class scoped allocator adaptor2
public scoped allocator adaptor base<OuterA>
{
public:
typedef OuterA outer allocator type;
typedef InnerA inner allocator type;

requires DefaultConstructible<OuterA> && DefaultConstructible<InnerA>
scoped allocator adaptor2();
scoped allocator adaptor2(scoped allocator adaptor2&& other);
scoped allocator adaptorZ(const scoped allocator adaptor2& other);
scoped allocator adaptor2 (OuterA&& outerAlloc,
InnerA&& innerAlloc);
scoped allocator adaptor2(const OuterA& outerAlloc,
const InnerA& innerAlloc);

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 21 of 26

template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<OuterA2&&, OuterA>
&& Convertible<InnerA2&&, InnerA>
scoped allocator adaptor2 (
scoped allocator adaptor2<OuterAZ, InnerA2>&&);
template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<const OuterA2&, OuterA>
&& Convertible<const InnerA2&, InnerA>
scoped allocator adaptorZ (
const scoped allocator adaptor2<OuterAZ,InnerA2>&);

template <class T, class... Args>
requires ConstructibleWithAllocator<T, inner allocator type,Argsé&&...
void construct (T* p, Argsé&&... args);
// Recursion stop
template <class T, Allocator Alloc2, class... Args>

requires ConstructibleWithAllocator<T, Alloc2, Argsé&&...>
void construct (T* p, allocator arg t,

const Alloc2&, Argsé&&... args);
const OuterA& outer allocator () const;
const InnerA& inner allocator () const;

private:
inner allocator type inner alloc; //forexposition only
bi

template <Allocator Allocl, Allocator Alloc2>
bool operator==(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);
template <Allocator Allocl, Allocator Alloc2>
bool operator!=(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);

template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator==(const scoped allocator adaptor2<OuterAl, InnerAl>& a,
const scoped allocator adaptor2<OuterAl, InnerAl>& b);
template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator!=(const scoped allocator adaptor2<OuterAl,InnerAl>& a,
const scoped allocator adaptorZ2<OuterAl, InnerAl>& b);

template <Allocator A>
concept map Allocator<scoped allocator adaptor<A> > ({

typedef scoped allocator adaptor<A> X; //forexposition only
typedef X::value type value type;

typedef X::pointer pointer;

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 22 of 26

typedef X::const pointer const pointer;

typedef X::generic pointer generic pointer;
typedef X::const generic pointer const generic pointer;
typedef X::difference type difference type;
typedef X::size type size type;

typedef X::reference reference;

typedef X::const reference const reference;

template <class T> using rebind type =
scoped allocator adaptor<Allocator<A>::rebind type<T> >;

requires DefaultConstructible<X>

X select on container copy construction(const X&) { return X(); }
requires ! DefaultConstructible<X>

X select on container copy construction(const X& x) { return x; }
requires DefaultConstructible<X>

X select on container move construction (X&&) { return X(); }
requires ! DefaultConstructible<X>

X&& select on container move construction (X&& x) { return move (x);}

template <Allocator Al, Allocator A2>
concept map Allocator<scoped allocator adaptor2<Al, A2> > {
typedef scoped allocator adaptor2<Al, A2> X; //forexposition only

typedef X::value type value type;

typedef X::pointer pointer;

typedef X::const pointer const pointer;

typedef X::generic pointer generic pointer;
typedef X::const generic pointer const generic pointer;
typedef X::difference type difference type;
typedef X::size type size type;

typedef X::reference reference;

typedef X::const reference const reference;

template <class T> using rebind type =
scoped allocator adaptor2<Allocator<Al>::rebind type<T>, A2>;

requires DefaultConstructible<X>

X select on container copy construction(const X&) { return X(); }
requires ! DefaultConstructible<X>

X select on container copy construction (const X& x) { return x; }
requires DefaultConstructible<X>

X select on container move construction(X&&) { return X(); }
requires ! DefaultConstructible<X>

X&& select on container move construction (X&& x) { return move (x);}

}

Replace the function descriptions in sections 20.7.7.1 [allocator.adaptor.cntr], 20.7.7.2
[allocator.adaptor.members], and 20.7.7.3 [allocator.adaptor.globals] with the following:

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 23 of 26

20.7.7.1 scoped_allocator_adaptor_base members [allocator.adaptor.base]

pointer address (reference x) const;
const pointer address(const reference x) const;

returns. this->outer allocator type::address(x);
pointer allocate(size type n);
returns: this->outer allocator type::allocate(n);

template <typename HintP>
pointer allocate(size type n, HintP u);

returns. this->outer allocator type::allocate(n, u);
void deallocate (pointer p, size type n);
éffects: this->outer allocator type::deallocate(p, n);
size type max size () const;
returns. this->outer allocator type::max size();
void destroy (pointer p);
éffects: this->outer allocator type::destroy (p);
20.7.7.2 scoped_allocator_adaptor constructors [allocator.adaptor.cntr]
requires DefaultConstructible<Alloc> scoped allocator adaptor();
effects: Default-initializes the A11oc sub-object.

scoped allocator adaptor (scoped allocator adaptor&& other);
scoped allocator adaptor (const scoped allocator adaptoré& other);

effects. initializes the A1l1loc sub-object from other.outer allocator ().

scoped allocator adaptor (OuterA&& outerAlloc);
scoped allocator adaptor (const OuterA& outerAlloc);

effects: initializes the A11oc sub-object from outerAlloc.

template <Allocator Alloc2>

requires Convertible<Alloc2&&, Alloc>

scoped allocator adaptor(scoped allocator adaptor<Alloc2>&& Xx);
template <Allocator Alloc2>

requires Convertible<const Alloc2&, Alloc>

scoped allocator adaptor (const scoped allocator adaptor<Alloc2>& x);

effects: initializes the A11loc sub-object from x . outer allocator ().

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 24 of 26

20.7.7.3 scoped_allocator_adaptor2 constructors [allocator.adaptor2.cntr]

requires DefaultConstructible<OuterA> && DefaultConstructible<InnerA>
scoped allocator adaptor2();

effects: Default-initializes the OuterA sub-object and inner alloc member.

scoped allocator adaptor2(scoped allocator adaptor2&& other);
scoped allocator adaptor2(const scoped allocator adaptor2& other);

effects: initializes the OuterA sub-object from other.outer allocator () and the
inner alloc member from other.inner allocator ().

scoped allocator adaptor2 (OuterA&& outerAlloc,
InnerA&& innerAlloc);

scoped allocator adaptor2(const OuterA& outerAlloc,
const InnerA& innerAlloc);

effects. initializes the OuterA sub-object from outerAlloc and the inner alloc member from
innerAlloc.

template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<OuterA2&&, OuterA>
&& Convertible<InnerA2&&, InnerA>
scoped allocator adaptor?Z(
scoped allocator adaptor2<OuterA2&, InnerA2>&& X);
template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<const OuterA2&, OuterA>
&& Convertible<const InnerA2&, InnerA>
scoped allocator adaptor2(
const scoped allocator adaptor2<OuterA2&,InnerA2>&x);

éffects: initializes the OuterA sub-object from x . outer allocator () and the inner alloc
member from x.inner allocator ().

20.7.7.4 scoped_allocator_adaptor and scoped_allocator_adaptor2 members
[allocator.adaptor.members]

template <class T, class... Args>
requires ConstructibleWithAllocator<T, inner allocator type, Args&&...>
void construct(T* p, Argsé&&... args);

Effects: outer allocator () .construct(p, allocator arg t,
inner allocator (), forward<Args>(args)...)

template <class T, Allocator Alloc2, class... Args>
requires ConstructibleWithAllocator<T, Alloc2, Args&é&...>
void construct (T* p, allocator arg t,
const Alloc2& a2, Argsé&&... args);

Effects: outer allocator () .construct(p, allocator arg t, a2,
forward<Args>(args) ...);

[Note. this overloaded version of construct is to prevent recursion into ever-deeper inner allocators in
the case where the outer allocator is itself a scoped allocator adaptor. — énd note]

const outer allocator type& outer allocator () const;

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 25 of 26

returns. the outer allocator used to construct this object (i.e., the A11oc sub-object).
const inner allocator typeé& inner allocator() const;

returns. the inner allocator used to construct this object. For scoped allocator adaptor, returns
the same reference as outer allocator (). For scoped allocator adaptor, returns the
inner alloc member.

20.7.7.5 scoped_allocator_adaptor globals [allocator.adaptor.globals]

template <Allocator Allocl, Allocator Alloc2>
bool operator==(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);

meHm:a.outer_allocator() == b.outer allocator()

template <Allocator Allocl, Allocator Alloc2>
bool operator!=(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);

returns: ! (a == D).

template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator==(const scoped allocator adaptor2<OuterAl, InnerAl>& a,
const scoped allocator adaptor2<OuterAl, InnerAl>g& b);

Iﬂwﬁwfa.outer_allocator() == b.outer allocator() &&
a.inner allocator() == b.inner allocator().

template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator!=(const scoped allocator adaptor2<OuterAl, InnerAl>& a,
const scoped allocator adaptor2<OuterAl, InnerAl>& b);

returns: ' (a == b).
References

All documents referenced here can be found at
http://www.open-std.org/[TC1/SC22/WG21/docs/papers/2008/

N2768| Allocator Concepts, part 1 (revision 2)
N2654| Allocator Concepts (Rev 1)
N2554] The scoped allocator model (Rev 2)

IN2525] Allocator-specific move and swap

N2621] Core Concepts for the C++0x Standard Library

IN2623] Concepts for the C++0x Standard Library: Containers

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) Page 26 of 26

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2623.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2768.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2654.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2525.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2621.pdf

