Doc No: N2829=09-0019

Date: 2009-02-09

Author: Pablo Halpern
Cilk Arts, Inc.

phalpern@halpernwightsoftware.com

Defects and Proposed Resolutions for Allocator Concepts (Rev 1)

Contents
SUINIMATY ..ot a bbb sb et sn s sa e s s eneas 1
Changes from N28T0 ... 2
Document CONVENTIONScoiiiiiiiiiiiicictc e 2
Typographical and Editorial EXTOTSccccoiiiiiiiiiiiiiiicc s 2
Allocator concept does not match all C++03 allocators...........coceeiieieiciiiiiiiiciie, 3
Allocator: :rebind is different from C++03 rebind....cciniiiicce 3
Construct Method is Limited t0 value LYDE it 4
construct element Function is UNNECESSATY.........ccceiiiiiiiiiiiiiiiiiiiiicccccc 4
Allocator Propagation Relies on Traits Instead of Concepts........ccccoeeuveiveinincnincinicniciccee 5
is scoped allocator Traitis NOot Used.......coiiiiiiiiiiiiiiciccccceeee 6
scoped allocator adaptor has errors ... 6
Two Types of scoped allocator adapPLoOrS ..t 7
Proposed WOTING.......c.ccvviiiiiiiiiiiiiiccce et 7
Typographical and Editorial COITrections...........ccccoeeiiiiiniiiiiiiiiiiciccc e 7
Revised Allocator CONCEPLccciiiiiiiiiiiiiieieiccc s 7
Legacy ALLOCAtOTS.ccoivuiuiiiiiiiciiciecec et 9
Rename rebind to rebind tyPe . 11
Replace construct element with Optional Custom Construct..........ccccccovviiiiiiiniininnns 12
Allocator Propagation ... 13
Remove is scoped allocator trait...... e 16
Modified scoped allocator ada@PLoOr .t seees 16
REFEIEIICES ...t 23
Summary

The previous version of this paper (N2810) was an exposition of a comment submitted in
response to the C++0x CD. The addition of concepts for allocators in the standard library is
incomplete and has a number of defects. Each defect is listed below with a proposed
resolution. For easier reference, most of the proposed changes are aggregated into a modified

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 1 of 23

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2810.pdf

Allocator concept (Appendix A) and a modified scoped allocator adaptor
(Appendix B) at the end.
Changes from N2810

e Added more specific proposed wording.

e Moved discussion for reducing the number of pair constructors into a separate paper
(N2834).

¢ Removed issue about vector and string being under-constrained. Vector and
basic_string will work fine with non-native pointer types.

e Replaced the AdvancedAllocator concept with a custom construct associated
type in the Allocator concept.

e This version of the proposal uses rebind type instead of related instance as the
replacement for rebind in the Allocator concept.

Document Conventions

All section names and numbers are relative to the October 2008 working draft, N2798.
Existing and proposed working paper text is indented and shown in dark blue. Small edits to the working
paper are shown with red-strikeouts-for-deleted-text-and green underlining for inserted text within the indented

blue original text. Large proposed insertions into the working paper are shown in the same dark blue indented
format (no green underlinge).

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

Typographical and Editorial Errors

Correct the errors as described in the proposed wording section of this paper.

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 2 of 23

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2834.pdf

Allocator concept does not match all C++03 allocators

The reason that Allocator is declared auto is to support backwards compatibility with
C++03 allocators. Otherwise, the Allocator concept is not the kind of concept that would
normally be declared auto. However, declaring it auto does not fully succeed at providing
this backwards compatibility. C++03 allocators do not have a generic pointer typenora
variadic construct function. Moreover, the non-variadic construct function in the C++03
allocator takes a pointer argument instead of a T* argument as in the concept. As a result,
there are some C++03 allocators for which there would be no automatically-generated concept
map.

Remove the auto modifier from the Allocator concept. This change will make Allocator
cleaner (by avoiding gratuitous use of auto) and will allow additional evolution without the
constraint of automatic compatibility with C++03 allocators. To address the compatibility
problem, add a LegacyAllocator auto concept and concept map for Allocator to
automatically adapts any class meeting the requirements of a C++03 allocator to.

Allocator: :rebind is different from C++03 rebind

The rebind template in the Al1locator concept serves the same purpose as the rebind
template in the C++03 allocator requirements, but uses a different syntax for both definition
and declaration. In the case of a C++03 allocator, rebinding is done by referencing

Alloc: :rebind<U>: :other, whereas in C++0x, rebinding is done by referencing:
Allocator<Alloc>::rebind<U> (no other nested type). Moreover, the declaration of
rebind in a C++0x concept map is simpler than in a C++03 allocator: template <class T>
rebind = MyAlloc<T>; instead of template <class T> struct rebind {
typedef MyAlloc<T> other; };. These differences are confusing and could cause
strange compilation errors when adding constraints to an unconstrained container template.

Rename the rebind template in the Al1locator concept to something else. Some ideas are
rebind type, retype, related type, sibling, or sibling allocator. Iused
rebind type in the proposed wording because it will be familiar to C++03 programmers, yet
different enough for the compiler to tell you when you’ve used the wrong one. The default
rebind type template can still be implemented in terms of rebind.

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 3 of 23

Construct Method is Limited to value_type

The construct method in the A11ocator concept only constructs objects of type

value type. This constraint can lead to inconvenient and sometimes inefficient uses of
rebind type in order to construct objects of different types. For example, a container type
might allocate objects of type Node<T> from an allocator, alloc_, of type allocator type
== Alloc<Node<T>>. However, some parts of the Node might be initialized independently
of the T object contained within it. Initializing the inner object would require the use of
rebind type as follows:

Allocator<allocator type>::rebind type<T>(alloc) .construct(p, args);

The above construct is not only hard to read, but it constructs a temporary object of type
Alloc<T>just to call its construct method.

(Note: See an alternative resolution in the next issue.) We have already changed construct
to a template in order to support emplace. Itis a small matter, then, to templatize the pointer
argument as well as the constructor arguments:

template<typename T, typename... Args>
requires HasConstructor<T, Args&&...>
void X::construct (T* p, Argsé&&... args)

{

::tnew ((void*) p) T (forward<Args>(args)...);

}

Note that the rare allocator requiring a very different implementation of construct for each
different data type can use rebind internally in its implementation of construct.

construct_element Function is Unnecessary

The construct element function was originally introduced to dispatch the construction of
elements based on whether the allocator was a scoped allocator. The advent of concepts
allows us to add requirements to the construct member function of each allocator, removing
the need for a separate construct_element dispatch function.

Remove the global construct element template and remove the construct element
function from the AllocatableElement concept. Move the construct function from the

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 4 of 23

Allocator concept to the AllocatableElement concept, as shown in the proposed
wording section of this paper. This change will also lift the restriction on construct
described in the previous issue. Change other uses of construct element to use
construct directly.

This change, however, will remove the default implementation of construct because such a
default implementation would potentially bypass constraints required by a specialized
allocator (such as a scoped allocator). There are at least two ways to regain the default
implementation of construct: 1) Provide a base class containing the most common elements
of an allocator, including a default implementation of construct, as a starting point for most
allocator implementations. 2) Add a new custom construct (name open to change)
associated type to Allocator and add a concept map that provides a default implementation
of construct only for allocators for which custom construct is false type. The latter
solution (shown in the proposed wording) has the additional advantage that the
custom_construct attribute can be the basis of some optimizations (e.g., memcpy can be
used for POD types allocated from an allocator that does not supply a custom construct
function). A side benefit of this approach is that scoped allocator notions can be removed from
otherwise-unrelated parts of the standard and instead migrate into refinements of
AllocatableElements specialized for scoped allocators.

Allocator Propagation Relies on Traits Instead of Concepts

The allocator propagation traits, allocator propagate never,

allocator propagate on copy construction,

allocator propagate on move assignment, and

allocator propagate on copy assignment are pre-concept ways to express what can
now be expressed more cleanly with concepts. These traits control the behavior of allocator
propagation for a set of static member functions in the allocator propagation map
structure. The system is unnecessarily complex now that we have an Allocator concept into
which we can directly insert the propagation functions with default implementations.

Add the following five functions and default implementations to the A1locator concept.
(The fifth function is for move-construction, which is not separately accounted-for in the
current WP):
Alloc select on container copy construction(const Allocé& x) { return x; }
Alloc select on container move construction(Allocé&& x) { return x; }

void do on container copy assignment (Alloc& to, Allocé& from) { }
void do on container move assign(Alloc& to, Alloc&& from) { }

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 5 of 23

void do_on container swap(Alloc& a, Alloc& b) { }
Refinements of Allocator for individual allocator types can override these defaults as

desired.

See the proposed wording section for an embodiment of this proposed resolution.

is_scoped allocator Trait is not Used

The is scoped allocator trait is still in the WP, but is not referenced since allocator
concepts were introduced. A concept-based approach needs to be introduced to replace the
purpose of the is scoped allocator trait —i.e., to dispatch the element-construction
functionality based on allocator type.

Remove the is scoped allocator trait. Constrain the construct member function of
any scoped allocator such that an element must be ConstructibleWithAllocator using
the inner allocator type. Combined with the proposed resolution for the previous issue
(moving the construct function into AllocatableElement), this resolution removes
scoped allocator notions from unrelated parts of the standard, reducing clutter and confusion.

scoped allocator adaptor has errors

The scoped allocator adaptor templates have errors in them, some of which cause them
not to model the Allocator concept in every detail. Specifically:

e There are places where void is used instead of unspecified allocator type.

e The construct and destroy methods take pointer instead of value type*. (But
if the resolution to the construct issue is accepted, it should take a pointer to
template-argument type.)

e Some Allocator constraints are missing.

Correct the errors. See related issues in this paper for other changes that may apply.

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 6 of 23

Two Types of scoped allocator adaptors

The WP describes scoped allocator adaptor as a class template with two template
parameters, one for the outer allocator type and one for the inner allocator type. A
specialization of scoped allocator adaptor takes only one template parameter. In the
latter case, not only are both the outer and inner allocators the same type, they are also the
same object. Thus there is a difference between scoped allocator adaptor<Al, Al>,
which holds two distinct instances of type A1, and scoped allocator adaptor<Al>,
which holds a single instance of type A1. This use of a default parameter has already caused
significant confusion.

Use separate names, scoped allocator adaptor and scoped allocator adaptor2
for the single-parameter and dual-parameter adaptor templates, respectively. Remove the
default argument of unspecified allocator type.

Proposed Wording

Typographical and Editorial Corrections

Section 20.8 [memory], Header <memory> synopsis, add missing close-angle-bracket and
remove unnecessary semicolon:

/1 20.8.6, the default allocator:

template <class T> class allocator;

template <ObjectType T>
concept map Allocator<allocator<T> > { }3

Section 20.8 [memory], change all occurrences of pointer: :reference to
pointer::result type:
requires Convertible<pointer, const pointer>
&& Convertible<pointer, generic pointer>

&& SameType<pointer::refereneeresult type, value type&>
&& SameType<pointer::refereneeresult type, reference>;

(and a number of other occurrences).

Revised Allocator Concept

In section 20.8 [memory], remove the auto keyword from the Allocator concept, correct the
spelling of HasDereference and rebind_ type:

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 7 of 23

/1 20.8.2.2 Allocator concepts

aute concept Allocator<ftypename AlleeX> see belows

auto concept LegacyAllocator<typename X> See below

template <LegacyAllocator X> concept map Allocator<X> see below

In section 20.8.2.2 [allocator.concepts], modify the Allocator concept and add a concept map
as follows:
agte concept Allocator<typename X>
CopyConstructible<X>, EqualityComparable<X> {

ObjectType value type = typename X::value type;
typename has custom construct = false type;

PereferenceabteHasDereference pointer = see below;
BereferenceableHasDereference const pointer = see below;
requires Regular<pointer>

&& RandomAccessIterator<pointer>

&& Regular<const pointer>

&& RandomAccessIterator<const pointer>;
SignedIntegrallike difference type =

RandomAccessIterator<pointer>::difference type;

typename generic pointer = void*;
typename const generic pointer = const void*;
typename reference = value typeé&;
typename const reference = const value typeé&;
UnsignedIntegrallike size type = see below;
template<ObjectType T> class rebind type = see below;

requires Destructible<value type>;
requires Convertible<pointer, const pointer>
&& Convertible<pointer, generic pointer>
&& SameType<pointer::result type, value typeé&>
&& SameType<pointer::result type, reference>;
requires Convertible<const pointer, const generic pointer>
&& SameType<const pointer::result type, const value typeé&>
&& SameType<const pointer::result type, const reference>;
requires SameType<rebind type<value type>, X>;
requires SameType<generic pointer
, rebind type<unspecified unique type>: :generic pointer>;
/1 see description of generic pointer, below
requires SameType<const generic pointer
, rebind type< unspecified unique type>: :const generic pointer>;
/1 see description of generic pointer, below

pointer X::allocate(size type n);
pointer X::allocate(size type n, const generic pointer p);
void X::deallocate (pointer p, size type n);
size type X::max size() const {
return numeric limits<size type>::max(); }

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 8 of 23

template<ObjectType T> X::X(const rebind type<T>& y);

-~

@
B\
«
[0)]

A~

-~
.

~

@
B\
«
[0)]

void X::destroy(value type* p) {
addressof (*p) ->~value type();
}

pointer X::address(reference r) const {
return addressof (r); [/l see below
}

const pointer X::address(const reference r) const ({
return addressof (r); [/l see below
}

X select on container copy construction (const X& x) { return x; }
X select on container move construction (X&& x) { return x; }

void do on container copy assignment (X& to, const X& from) { }
void do on container move assignment (X& to, X&& from) { }

void do on container swap (X& a, X& b) { }

}

Remove the definition of construct at paragraph 15:

Legacy Allocators

At the end of 20.8.2.2 [allocator.concepts], add a new sub-section:

20.8.2.3 Support for legacy allocators [allocator.concepts.legacy]

Classes that meet the allocator requirements described in table 32 of ISO/IEC 14882:2003 are known as
legacy Allocators. The LegacyAllocator auto concept abstracts the requirements of legacy allocators. A
concept map adapts LegacyAllocator tothe Allocator concept. [Note: not all legacy allocator
requirements can be precisely described using concepts. In particular, rebind is under-constrained and the
second argument of allocate (p, u) isdiscarded in the default implementation to make up for the fact that
it is over-constrained. Legacy allocators that are not a precise fit for the LegacyAllocator concept can
be used as allocators by supplying a concept map adapting them to the A11locator concept. —end note]

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 9 of 23

http://www.open-std.org/JTC1/SC22/WG21/docs/standards#14882

auto concept LegacyAllocator<typename X>
DefaultConstructible<X>, CopyConstructible<X>, EqualityComparable<X>

HasDereference pointer = X::pointer;

HasDereference const pointer = X::const pointer;
typename reference = X::reference;

typename const reference = X::const reference;
ObjectType value type = typename X::value type;
UnsignedIntegrallike size type = X::size type;
SignedIntegrallike difference type = X::difference type;
template<ObjectType T> struct rebind = see below;

requires Destructible<value type>;
requires Regular<pointer>
&& RandomAccessIterator<pointer>
&& Regular<const pointer>
&& RandomAccesslterator<const pointer>;
requires Convertible<pointer, const pointer>
&& SameType<pointer::result type, value typeé&>
&& SameType<pointer::result type, reference>;
requires SameType<const pointer::result type, const value type&>
&& SameType<const pointer::result type, const reference>;

pointer X::address (reference r) const;
const pointer X::address(const reference r) const;

pointer X::allocate(size type n);
pointer X::allocate(size type n, const void *p)
{ return X::allocate(n); }

void X::deallocate (pointer p, size type n);

size type X::max size() const;

// template<ObjectType T> X::X(const typename rebind<T>::otheré& y);
/I Not used, but part of Table 32

requires CopyConstructible<value type>

void X::construct (pointer type p, const value typeé&);

void X::destroy(pointer p);
}

It is not clear to me if rebind<> or the rebound constructor can be expressed as in a concept.
Some cleanup of these parts may be needed before FCD.

template <LegacyAllocator X>
concept map Allocator<X> ({

}

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 10 of 23

Note that the construct () function in the legacy allocator is not ignored in this mapping.
ISO/IEC 14882:2003 did not require that construct be called by containers and many
implementations handled it inconsistently. The addition of the variadic construct function
makes a direct mapping from C++03 allocators to C++0x allocators impossible. An adaptor

function could construct a temporary object of type value type, then call the C++03
construct function, but that would add a new CopyConstructible requirement and a
quiet inefficiency (caused by an extra copy) for all C++03 allocators even though very few
require a custom construct function. It seems safer to simply ignore the legacy construct
function and let the user create their own concept map if necessary.

Rename rebindto rebind type
Modify paragraph 4 to rename rebind:

typename generic pointer;
typename const generic pointer;

A type that can store value of a pointer (const_pointer) from any allocator in the same family (see
member template rebind_type in 20.8.2.1) as X and which will produce the same value when explicitly
converted back to that pointer type. For any two allocators X, and Y of the same family, the
implementation of a library facility using Allocator<X> and Allocator<Y>, is permitted to add additional
requirements, SameType<Allocator<X>::generic_pointer, Allocator<Y>::generic_pointer> and
SameType<Allocator<X>::const_generic_pointer, Allocator<Y>::const_generic_pointer> [Example:
template<ObjectType T, Allocator Alloc = allocator<T> >
requires Destructible<T> &&
SameType<Alloc::generic_ pointer,
Alloc::Rrebind type<list node<T>>::generic pointer> &&
SameType<Alloc::const generic pointer,
Alloc::Rgebin type<Iist_node<T>>::const_generic_pointer>
class list;

And the same thing for paragraph 7:
template<ObjectType T> class rebind type;

Class Template: The associated template rebind_type is a template that produces allocators in the same
family as X: if the name X is bound to0 SomeAllocator<value type>, then rebind type<U>is
the same type as SomeAllocator<U>. The resulting type SameAllocator<U> shall meet the
requirements of the A11ocator concept. The default value for rebind type isatemplate R for
which R<U>is X: : template rebind<U>::other.

Note that the last use of rebind is deliberate and should not be changed to rebind type.

And also section 14.9.2.2 [concept.map.assoc], paragraph 3:

concept Allocator<typename Alloc> {
template<class T> class rebind type;

}

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 11 of 23

http://www.open-std.org/JTC1/SC22/WG21/docs/standards#14882

template<typename T>
class my allocator ({

template<typename U> class rebind type;
bi

template<typename T>
concept map Allocator<my allocator<T>> {
template<class U>

using rebind type = my allocator<T>::rebind type;
}
Replace construct_element with Optional Custom Construct

In section 20.8 [memory], in the synopsis for <memory>, remove construct element:

qar
B

=
=

B
K
[0}

oo
TEO O & s » T
AR

-

m
T

oo C
7 S
-
E-

:]5 o]

~
T

g

T
T

o) .
7

< 2y ox
Yo s+ argo/7

0]
/I
[¢g]

11 o
T OCTy 7

In section 20.8.2.2 [allocator.concepts], add a definition for custom construct after the
definition of value type:

typename custom construct;

Type: If defined to other than false type, indicates that items allocated using this allocator can be
constructed in the normal fashion , i.e., without supplying extra constructor arguments. Otherwise, the
allocator shall provide a (custom) construct member function that adapts the element construction as
necessary.

Default: true type

In section 20.8.3 [allocator.element.concepts] paragraph 8, modify the definition of the
AllocatableElement concept and related concept map:

auto concept AllocatableElement<class Alloc, class T, class... Args>

{
requires Allocator<Alloc>;
void Alloc::construct—etement (Aldees—ay T* t, Argsé&&... args);

template <Allocator Alloc, class T, class... Args>
requires SameType<Alloc::has custom construct, false type>
&& HasConstructor<T, Args...>
concept map AllocatableElement<Alloc, T, Args&é&...>
{

void Alloc::construct—etement (Atdees—ay T* t, Argsé&&... args) {
AT P EPEPEE PN PN RN o ol { AY o ot e~
LT T O T e e 1T O LTI I T« CUIToCTTT™ T
new T ((void*)t, forward<Args>(args)...);

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 12 of 23

Remove section 20.8.10 entirely:

Modify Section 23.1.1 [container.requirements.general], paragraph 3 as follows:

Objects stored in these components shall be constructed using eenstruct—element{20-8-10}

AllocatableElement<allocator type, value type, Args...>::construct (where
allocator type is the container’s allocator type, value type is the container’s element type, and
Args... are the types of the constructor’s arguments) and destroyed using the destroy member function of
the container’s allocator (20.8.2.2) unless otherwise specified. A container may directly call constructors and
destructors for its stored objects, without calling the construct—element or destroy functions, if the

aHecator-medels-the-MinimalAllocatorconcept-custom construct type inthe Allocator concept

map is false type. [Note If the component is instantiated with a scoped allocator of type A (i.e., an

scoped allocator adaptor Or scoped allocator adaptorZ) then construct—element
may pass an inner allocator argument to T’s constructor. — end note]

Rename construct element to construct in section 23.2.7 [vector.bool], paragraph 2:

Unless described below, all operations have the same requirements and semantics as the primary vector
template, except that operations dealing with the bool value type map to bit values in the container storage
and AllocatableElement: : construct—element{23-1) (20.8.3) is not used to construct these values.

Allocator Propagation
At the end of section 20.8.2.2 [allocator.concepts], add descriptions of the propagation
functions:
X select on container copy construction (const X& x);
Returns: x for allocators that should propagate from the existing container to the new container on copy-
construction, X () otherwise.

Default: returns x

Remarks: Used to select the allocator for a new container during copy-construction. The choice as to
whether the allocator should propagate from the existing container to the new one varies by allocator
type. See 23.1.1 [container.requirements.general].

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 13 of 23

[Note: in situations where the copy constructor for a container is elided, this function is not called. The
behavior in these cases is as if select on container copy construction returned x —end
note]

X select on container move construction (X&& x)

Returns: move (x) for allocators that should propagate from the existing container to the new container
on move-construction, X () otherwise.

Default: returns move (x)

Remarks: Used to select the allocator for a new container during move-construction. The choice as to
whether the allocator should propagate from the existing container to the new one varies by allocator
type. See 23.1.1 [container.requirements.general].

[Note: in situations where the move constructor for a container is elided, this function is not called. The
behavior in these cases is as if select on container move construction returned x —end
note]

void do_on container copy assignment (X& to, const X& from);

Effects: assigh to = from for allocators that should propagate from the right-hand container to the left-
hand container on container copy-assignment; otherwise no effect.

Remarks: The choice as to whether the allocator should propagate from the right-hand container to the
left-hand container during assignment one varies by allocator type. See 23.1.1
[container.requirements.general].

void do_on container move assignment (X& to, X&& from) { }
Effects: assigh to = move (from) for allocators that should propagate from the right-hand container
to the left-hand container on container move-assignment; otherwise no effect.

Remarks: The choice as to whether the allocator should propagate from the right-hand container to the
left-hand container during assignment one varies by allocator type. See 23.1.1
[container.requirements.general].

void do_on container swap(X& a, X& b);
Effects: assign swap(to, from) for allocators that should propagate on container swap; otherwise no
effect.

Remarks: The choice as to whether the allocator should be swapped when containers are swapped varies
by allocator type. See 23.1.1 [container.requirements.general].

In section 20.8 [memory], remove mention of the allocator propagate traits from the
<memory> synopsis:

S
N

)]
MO

H e e e dr

H H = = B He-

q

ar

D DD D K-
He He He He He

Hi-
[0)]

)

HO)

QO i h P
a aq q q- qt

N
~
@D

D W
B

B
D
a ot qt qt q- @

T

L P ~
N

o)
P D Q@

P -

q
s

q
ST,

q

\

@

@

B
=
D

q
q
q
q
ol
H e O

>

Do
ar qt K-
N

~[e

g
¢
g
¢

B
>
b
|
|
|
|
[J¢)]
[¢)]
5
B
5

g
q
¢
q
g
¢

HORMORMORMORNO)

>

8

e

L L L L L L)
q
)]

¢
q
O

a ot qt qt q- @

® ¢ @ ¢ ¢ qf
q

H e e d
DD DD H
QO h P P H
QO O p Y

q

B ook

OB ORMORMORO)

SRR)]
a qt qt qt qr

H = e e e
q

¢ P @ ¢
q

® P @ ¢ P

q

[FORTORTORTORTO]

P D g

O]
N

H O
q q
T qt qt qt q- go

a aq q q qt
B

H

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 14 of 23

Fomnl o+ alaaao AT aatror atroxr N alaaao AT aatror Troanap N
L__/lllt/_LL/I.L__/ \= e yeye) g e S T p= [SR o iy ap LT TOO O g v S my = p= L ES 9 0 A) N Epy an
ISESECT D S | astor Mmoot n rLlamanrmana 11 aat oy Ao N e N ITnonneaxr
o CLTOCTC & e e w2y (_A.l._/J__t/J_ t—/u\juk__/_ll = A tJ_/_A._(_A._L_L oTT J__(_A.u(_/l.tlk_ = (S e my an LTI T T
>
ESILr] ESEEIEN [1l .
true—type—{—
Remove section 20.8.4 [allocator.propagation] in its entirety:
PR IS clace A1 P e I I S Aresra
L__/lllt/_LL/I.L__/ \= e yeye) g e S o o 1T A= | S g oTT J__tJJ__It/(_A.\j(_A.l. _J.l._/ g
£o1 o + e | 1l .
T ST Ty T T7
Fomernd 4+ alaoca N1 1 ~An ISE SIEVEEDE “RN B PPV SN VS SNE SO NEENENPACENE SIS SN2 SN |
cemplat tass—Adt struet—allocator propagationtmap—
P SN SN P W | o ol ot oy o conatyaat 2 A (ot NT T A~ c) .
stetiePlloc—selectfor copyconstructionfeonstAitocs
ISR SN S IO mass oo (N1] A~ 4 1] ac ¢ Faroam) .
statie—oidm assiga{iitoct—torPlloctt fromty
at ot 1~ oA corn oo (N1] A~ 4 1] ol froara) .
stetie—votdecopyasstoniidloct torAllocs froms
ST S i) roF+aA—arwran (A1 1 ac o A1] ot) .
O CTrC T A== QVV(A.tJ (111 o oy A Y g w4 o T

Modify the end of Section 23.1.1 [container.requirements.general], paragraph 4:

Notes: the algorithms swap (), equal () and lexicographical compare () are defined in Clause
25. Those entries marked “(Note A)” should have constant complexity. Those entries marked “(Note B)” have
constant complexity unless alocator—propagate—never<X:alocator—type>rvalue-istrue
Allocator<allocator type>::select for move construction returnsan allocator
different from rv.get allocator (), inwhich case they have linear complexity.

Modify Section 23.1.1 [container.requirements.general], paragraph 8:

Copy and move constructors for all container types defined in this Clause obtain an allocator by calling
Allocator<allocator type>::select on container copy construction or
Allocator<allocator type>::select on container move construction on their

respective first parameters. All other constructors for these container types take an A11ocator argument
(20.1.2), an allocator whose value type is the same as the container’s value type. A copy of this argument is
used for any memory allocation performed, by these constructors and by all member functions, during the
lifetime of each container object or until the allocator is replaced. The allocator may be replaced only via
assignment or swap () . Allocator replacement is performed by calling

a{er—type>—swap€)Allocator<allocator type> :do on container copy assignment,
Allocator<allocator type>::do on container move assignment, Or

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 15 of 23

Allocator<allocator type>::do on container swap Wwithinthe implementation of the
corresponding container operation. Calling the preceding A11ocator functions may or may not modify the
allocator, depending on the implementation of those functions for the specific allocator type. In all container
types defined in this Clause, the member get allocator () returns a copy of the allocator object used to
construct the container, or most recently used to replace the allocator.

Remove is_scoped allocator trait

In section 20.8 [memory], remove is scoped allocator from the <memory> synopsis:

Modified scoped allocator adaptor
Modity the introduction of section 20.8.7 [allocator.adaptor] as follows:

20.8.7 Scoped Allocator Adaptor [allocator.adaptor]

The scoped _allocator adaptorand scoped allocator adaptor?2 classtemplates is-anare
allocator templates that specifiesy the memory resource (the outer allocator) to be used by a container (as any
other allocator does) and also specifies an inner allocator resource to be used by every element in the
container. Fhis-adaptorisinstantiated-with-outerand-trneratocatortypes—H-The scoped_allocator_adaptor

template is instantiated with only one allocator type {i-ethe-second-type-is-veid); — the same allocator type is
used for both the outer and inner allocator types and the same allocator instance is used for both the outer and

inner allocator instances. The scoped_allocator_adaptor2 template is instantiated with two allocator types,

one for the inner allocator and one for the outer aIIocator Ihemte#aeetsepeetat&ed—ter—thesmgte—aueeater

A . [Note the
scoped allocator _adaptoriis derlved from the outer allocator type, so it can be substituted for the
outer allocator type in most expressions. — end note]. To minimize the chance that an allocator will be

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 16 of 23

constructed in an inappropriate scope, these adaptors are not propagated on copy and move construction
unless instantiated with allocators that are not default-constructible.

In section 20.8.7 [allocator.adaptor], completely replace the declarations scoped allocators with
the following:

// Base class for exposition only
template<Allocator Alloc>
class scoped allocator adaptor base<Alloc> : public Alloc
{
public:
typedef Alloc outer allocator type;

typedef typename Allocator<Alloc>::size type size type;
typedef typename Allocator<Alloc>::difference type difference type;
typedef typename Allocator<Alloc>::pointer pointer;

typedef typename Allocator<Alloc>::const pointer const pointer;
typedef typename Allocator<Alloc>::generic pointer generic pointer;
typedef typename Allocator<Alloc>::const generic pointer

const generic pointer;

typedef typename Allocator<Alloc>::reference reference;
typedef typename Allocator<Alloc>::const reference const reference;
typedef typename Allocator<Alloc>::value type value type;
pointer address (reference Xx) const;

const pointer address(const reference x) const;

pointer allocate(size type n);

pointer allocate(size type n, const generic pointer u);
void deallocate (pointer p, size type n);

size type max size() const;

void destroy(value type* p);
}i

template<Allocator Alloc>
class scoped allocator adaptor<Alloc>
public scoped allocator adaptor base<Alloc>

typedef Alloc outer allocator type;
typedef Alloc inner allocator type;

requires DefaultConstructible<Alloc> scoped allocator adaptor();
scoped allocator adaptor (scoped allocator adaptoré&&);

scoped allocator adaptor (const scoped allocator adaptoré&);
scoped allocator adaptor (Alloc&& outerAlloc);

scoped allocator adaptor (const Alloc& outerAlloc);

template <Allocator Alloc2>

requires Convertible<Alloc2&&, Alloc>
scoped allocator adaptor (scoped allocator adaptor<Alloc2>&&);

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 17 of 23

template <Allocator Alloc2>
requires Convertible<const Alloc2&, Alloc>
scoped allocator adaptor (const scoped allocator adaptor<Alloc2>&);

template <class T, class... Args>
requires ConstructibleWithAllocator<T, inner allocator type,Args&é&...>
void construct (T* p, Argsé&&... args);

/I stop recursion
template <class T, Allocator Alloc2, class... Args>
requires ConstructibleWithAllocator<T, Alloc2, Argsé&&...>
void construct (T* p, allocator arg t,
const Alloc2&, Argsé&&... args);

const Alloc& outer allocator() const;
const Allocé& inner allocator() const;

};

template<Allocator OuterA, Allocator InnerA>
class scoped allocator adaptor?2
public scoped allocator adaptor base<OuterA>
{
public:
typedef OuterA outer allocator type;
typedef InnerA inner allocator type;

requires DefaultConstructible<OuterA> && DefaultConstructible<InnerA>
scoped allocator adaptor2();
scoped allocator adaptor2(scoped allocator adaptor2&& other);
scoped allocator adaptor2(const scoped allocator adaptor2é& other);
scoped allocator adaptor2 (OuterA&& outerAlloc,
InnerA&& innerAlloc);
scoped allocator adaptor2(const OuterA& outerAlloc,
const InnerA& innerAlloc):;

template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<OuterA2&&, OuterA>
&& Convertible<InnerA2&&, InnerA>
scoped allocator adaptor2 (
scoped allocator adaptor2<OuterA2&, InnerA2>&&) ;
template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<const OuterA2&, OuterA>
&& Convertible<const InnerA2&, InnerA>
scoped allocator adaptor?2(
const scoped allocator adaptorZ2<OuterA2&, InnerA2>g);

template <class T, class... Args>
requires ConstructibleWithAllocator<T, inner allocator type,Args&é&...>
void construct (T* p, Argsé&&... args);

/I Recursion stop

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 18 of 23

template <class T, Allocator Alloc2, class... Args>
requires ConstructibleWithAllocator<T, Alloc2, Argsé&&...>
void construct (value type* p, allocator arg t,

const Alloc2&, Argsé&&... args);
const OuterA& outer allocator () const;
const InnerA& inner allocator() const;

private:
inner allocator type inner alloc; //for exposition only
b

template <Allocator Allocl, Allocator Alloc2>
bool operator==(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);
template <Allocator Allocl, Allocator Alloc2>
bool operator!=(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);

template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator==(const scoped allocator adaptor2<OuterAl,InnerAl>& a,
const scoped allocator adaptor2<OuterAl,InnerAl>& b);
template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator!=(const scoped allocator adaptor2<OuterAl, InnerAl>& a,
const scoped allocator adaptor2<OuterAl, InnerAl>& b);

template <Allocator Alloc>
concept map Allocator<scoped allocator adaptor<Alloc> > {
typedef true type custom construct;

template <class T> using rebind type =
scoped allocator adaptor<Allocator<Alloc>::rebind type<T> >;

requires DefaultConstructible<X>

X select on container copy construction(const X&) { return X(); }
requires ! DefaultConstructible<X>

X select on container copy construction(const X& x) { return x; }
requires DefaultConstructible<X>

X select on container move construction (X&&) { return X(); }
requires ! DefaultConstructible<X>

X select on container move construction (X&& x) { return x; }

template <Allocator Al, Allocator A2>
concept map Allocator<scoped allocator adaptor2<Al, A2> > {
typedef true type custom construct;

template <class T> using rebind type =
scoped allocator adaptor2<Allocator<Al>::rebind type<T>, A2>;

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 19 of 23

requires DefaultConstructible<X>

X select on container copy construction(const X&) { return X(); }
requires ! DefaultConstructible<X>

X select on container copy construction(const X& x) { return x; }
requires DefaultConstructible<X>

X select on container move construction (X&&) { return X(); }
requires ! DefaultConstructible<X>

X select on container move construction (X&& x) { return x; }

}

Replace the function descriptions in sections 20.8.7.1 [allocator.adaptor.cntr], 20.8.7.2
[allocator.adaptor.members], and 20.8.7.3 [allocator.adaptor.globals] with the following:

20.8.7.1 scoped_allocator_adaptor_base members [allocator.adaptor.base]

pointer address (reference x) const;
const pointer address(const reference x) const;

returns: this->outer allocator type::address(x);
pointer allocate(size type n);
returns: this->outer allocator type::allocate(n);

template <typename HintP>
pointer allocate(size type n, HintP u);

returns: this->outer allocator type::allocate(n, u);
void deallocate (pointer p, size type n);

effects: this->outer allocator type::deallocate(p, n);
size type max size () const;

returns: this->outer allocator type::max size();
void destroy (pointer p);

effects: this->outer allocator type::destroy(p);
20.8.7.2 scoped_allocator_adaptor constructors [allocator.adaptor.cntr]

requires DefaultConstructible<Alloc> scoped allocator adaptor();
effects: Default-initializes the A11oc sub-object.

scoped allocator adaptor (scoped allocator adaptor&& other);
scoped allocator adaptor (const scoped allocator adaptoré& other);

effects: initializes the A11oc sub-object from other.outer allocator ().

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 20 of 23

scoped allocator adaptor (OuterA&& outerAlloc);
scoped allocator adaptor (const OuterA& outerAlloc);

effects: initializes the A1 1oc sub-object from outerAlloc.

template <Allocator Alloc2>
requires Convertible<Alloc2&&, Alloc>
scoped allocator adaptor (scoped allocator adaptor<Alloc2>&& X);
template <Allocator Alloc2>
requires Convertible<const Alloc2&, Alloc>
scoped allocator adaptor (const scoped allocator adaptor<Alloc2>& X);

effects: initializes the A11oc sub-object from x.outer allocator().

20.8.7.3 scoped_allocator_adaptor?2 constructors [allocator.adaptor2.cntr]

requires DefaultConstructible<OuterA> && DefaultConstructible<InnerA>
scoped allocator adaptor2();

effects: Default-initializes the OuterA sub-objectand inner alloc member.

scoped allocator adaptor2(scoped allocator adaptor2&& other);
scoped allocator adaptor2(const scoped allocator adaptor2& other);

effects: initializes the OuterA sub-object from other.outer allocator () and the
inner alloc member fromother.inner allocator ().

scoped allocator adaptor2 (OuterA&& outerAlloc,
InnerA&& innerAlloc);

scoped allocator adaptor2(const OuterA& outerAlloc,
const InnerA& innerAlloc);

effects: initializes the OuterA sub-object from outerAlloc and the inner alloc member from
innerAlloc.

template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<OuterA2&&, OuterA>
&& Convertible<InnerA2&&, InnerA>
scoped allocator adaptor2(
scoped allocator adaptor2<OuterAZ&, InnerAZ>&& X);
template <Allocator OuterA2, Allocator InnerA2>
requires Convertible<const OuterA2&, OuterA>
&& Convertible<const InnerA2&, InnerA>
scoped allocator adaptor?2(
const scoped allocator adaptorZ2<OuterA2&, InnerA2>&x);

effects: initializes the OuterA sub-object from x.outer allocator () andthe inner alloc
member from x.inner allocator ().

20.8.7.4 scoped_allocator_adaptor and scoped_allocator_adaptor2 members
[allocator.adaptor.members]

template <class T, class... Args>
requires ConstructibleWithAllocator<T, inner allocator type, Args&é&...>
void construct (T* p, Argsé&&... args);

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 21 of 23

Effects: outer allocator () .construct(p, allocator arg t,
inner allocator (), forward<Args>(args)...)

template <class T, Allocator Alloc2, class... Args>
requires ConstructibleWithAllocator<T, Alloc2, Argsé&é&...>
void construct (T* p, allocator arg t,
const Alloc2& a2, Argsé&&... args);

Eﬁeds:outer_allocator().construct(p, allocator arg t, aZz,
forward<Args>(args) ...);

[Note: this overloaded version of construct is to prevent recursion into ever-deeper inner allocators in
the case where the outer allocator is itself a scoped allocator adaptor. — end note]

const outer allocator type& outer allocator() const;
returns: the outer allocator used to construct this object (i.e., the A11oc sub-object).
const inner allocator typeé& inner allocator() const;

returns: the inner allocator used to construct this object. For scoped allocator adaptor, returns
the same reference as outer allocator (). For scoped allocator adaptor, returns the
inner alloc member.

20.8.7.5 scoped_allocator_adaptor globals [allocator.adaptor.globals]

template <Allocator Allocl, Allocator Alloc2>
bool operator==(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);

returns: a.outer allocator() == b.outer allocator()

template <Allocator Allocl, Allocator Alloc2>
bool operator!=(const scoped allocator adaptor<Allocl>& a,
const scoped allocator adaptor<Allocl>& b);

returns: ! (a == Db).

template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator==(const scoped allocator adaptor2<OuterAl, InnerAl>& a,
const scoped allocator adaptor2<OuterAl, InnerAl>& b);

returns: a.outer allocator() == b.outer allocator() &&
a.inner allocator() == b.inner allocator().

template <Allocator OuterAl, Allocator InnerAl,
Allocator OuterA2, Allocator InnerA2>
bool operator!=(const scoped allocator adaptor2<OuterAl, InnerAl>& a,
const scoped allocator adaptor2<OuterAl, InnerAl>& b);

returns: ! (a == Db) .

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 22 of 23

References

All documents referenced here can be found at
http://www.open-std.org/[TC1/SC22/WG21/docs/papers/2008/.

N2768: Allocator Concepts, part 1 (revision 2)

N2654: Allocator Concepts (Rev 1)

N2554: The scoped allocator model (Rev 2)

N2525: Allocator-specific move and swap

N2621: Core Concepts for the C++0x Standard Library
N2623: Concepts for the C++0x Standard Library: Containers

N2829: Defects and Proposed Resolutions for Allocator Concepts (Rev 1) Page 23 of 23

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2768.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2654.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2525.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2621.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2623.pdf

