
WG21/N2275 J16/07-0135 2007-05-02
Nick Maclaren

University of Cambridge Computing Service,
New Museums Site, Pembroke Street,

Cambridge CB2 3QH, England.
Email: nmm1@cam.ac.uk

Tel.: +44 1223 334761
Fax: +44 1223 334679

Non-Memory Actions (Library)

1.0. Introduction

This is another go to try to explain some aspects of the non-memory actions, and how they cause
trouble with concurrency. The original paper was N1947, which contains a lot more detail, but
was effectively ignored because of incomprehensibility. This document has quite a lot of wording
in common with N2273, to make them both self-contained.

It relates to standard- or implementation-defined behaviour and side-effects that are not clearly
modifications to or accesses of a memory location, hidden or otherwise. It includes objects that
have strange properties, of the sort that are not normal for a simple object stored in memory.

Note that this is not a purely theoretical problem, as I have seen it cause trouble on a fair
number of systems. A great many implementations (at all levels, from hardware up to libraries)
remember to honour the synchronisation and serialisation properties for memory accesses, but tend
to forget about the non-memory ones. This is not helped by most languages that mention them
effectively specifying them as undefined behaviour, because that makes it almopst impossible for
customers to report problems as bugs through the usual support interfaces.

1.1. Examples and the Problem

C++ as of today has relatively few that have any effects outside the library, though several in
that, but POSIX and C99 introduce many more. Here is a partial list of the most relevant ones, of
which only the first three are actually required in C++ implementations today, but where several
others are required for C99 and POSIX 2001 support (see later).

1: C++ exceptions. These are objects with some extra restrictions, a certain amount of hidden
state, and the property that rethrowing an exception could be regarded as a modification action
on that hidden state.

2: Timestamps etc. <ctime> is the only one that I know of in C++, but POSIX adds more.
Quite a lot of code gets really, really unhappy when time appears to run backwards, as can
happen even with sequential consistency if the timestamp extraction is not synchronised with
the memory accesses.

3: C++, C (and POSIX) I/O. This is a soluble problem, but will become an insoluble one if it is
ignored – see later.

4: C++ (and POSIX) signals. The existing C++ standard specifies the syntax and some vague
intent, but leaves the semantics undefined. POSIX relies on the undefined handling.

5: IEEE 754 exception flags and modes, or at least the subset of features supported in C99.

6: Code-generated interrupts (e.g. SIGFPE), whether handled as C++ exceptions, signals or other-
wise. The Language Independent Arithmetic standard should also be mentioned.

WG21/N2275 J16/07-0135 2007-05-02



7: Some of POSIX concurrency modes, most especially PTHREAD CANCEL ASYNCHRONOUS,
signal handling and the thread scheduling options.

8: WG14 Technical Report 18037 provides some hardware I/O register support for C99, but I have
no idea what C++’s position on it is.

9: Implementation-specific versions of the above, which are probably more widely used than the
standardised ones, and other implementation-modes, states, counts and flags. A class that is
extremely important to many users and often gets forgotten is hardware counters (including
IEEE 754 exception counts).

Some of those are apparently specific to a particular thread, but that is deceptive. POSIX
allows the handlers of code-generated interrupts to be handled in a newly created thread, and
there are other, more esoteric, issues that can affect some people. E.g., for arcane hardware and
operating system reasons, some issues can impact a whole system (let alone a process!); this is not
obvious even to the library implementor, let alone the developer, but is clearly of great importance
to real-time and embedded developers, and even HPC ones.

There is also the problem that the handler of an event (whether a C++ exception or some other
kind of event) may do something that is visible to other threads or a non-memory action may
become visible in other ways. For these reasons, such actions need some suitable wording. The
remaining sections refer to wording that I think will be needed.

1.1. Proposal

There is obviously no hope of specifying all the above in any detail; many of the areas have been
left undefined for good reasons (whether or not you agree with me that the standard should have
made them implementation-defined). In N2273, I propose that some informative wording should
be included, such as the following::

• Where an implementation includes extensions that have side-effects (in the most general
sense), as far as is practical an implementation should define the synchronisation of such
behaviour in terms of the basic memory model.

But the library also needs to specify some primitives that are clearly documented to ensure that
non-memory actions are synchronised with memory ones, especially for those actions that are not
clearly associated with any particular memory location. This could then be used by other parts of
the library as well as programmers. I can see little point in having separate “low-level” versions,
as non-memory actions rarely are clearly “acquire-like” or “release-like”. For example, the same
IEEE 754 exception flag can be set multiple times, unsequenced. So everything here should be
assumed to be ordered in the memory model sense, because

Upon thinking it over, what I said in N1947 doesn’t make sense in the context of the current
memory model. What is needed is some primitives like the following:

• A synchronisation call that ensures that the current thread’s view of memory and non-memory
actions is consistent (as defined by the implementation!) There would be no implication on
ordering of semi-asynchronous events, or on other threads. This is a classic fence.

• A synchronisation call between threads A and B that ensures that their views are consistent
and consistent with each other. That would include semi-asynchronous events caused by one
and affecting the other or that affect both (e.g. pthread kill). This is a pairwise barrier.

• A synchronisation call between all threads that ensures that their views are consistent and
consistent with each other. That would include all semi-asynchronous events (i.e. all threads
would see the effect or none). This is a classic barrier.

WG21/N2275 J16/07-0135 2007-05-02



In the latter two cases, I can see uses both for versions that wait for the other thread or threads,
and for ones that don’t. Producing precise wording for the latter may be a bit tricky, but I think
is worth trying.

2.0. Specific Issues

2.1. C++ Exceptions

I mention this in N2273. I don’t think that the library issues are significant enough to consider
separately. What I propose there is:

Proposal: It should be undefined behaviour to access a C++ exception from any thread except the
one in which it was thrown.

2.2. Timestamps

I think that functions like clock() and time() should imply fences of some sort (e.g. the one I
mention above). A lighter weight approach is probably possible, but is it worth the effort? What
I can witness is that merely making them “read-like” actions is likely to cause confusion, and not
saying anything in the standard unquestionably will lead to implementors and users interpreting it
incompatibly.

2.3. I/O etc.

This is a problem. The problem isn’t technical, so much as POSIX has taken some decisions
that have catastrophic effects on performance and usability, and I can witness that this already
causes serious confusion. I will try to write another paper on the details.

The performance problem is that POSIX has specified that the I/O functions are thread safe,
which means that a large number of threads all reading stdin or writing small units to cout,
cerr or clog will run like a drain – and there are reasonable programs that do that. But, more
importantly, those are used for diagnostics in all sorts of places, and POSIX says that is defined even
in threaded code. If C++ forbids threads to write to cerr or clog without explicit synchronisation,
then a lot of existing non-portable but conforming code will become undefined.

There are many usability problems, but threading introduces several new ones. One is that it
is not specified what the unit of interleaving is. POSIX defines “thread-safe” as “A function that
may be safely invoked concurrently by multiple threads”, which does not help with deciding whether
(say) printf should be atomic at the top level, the basic built-in scalar value level or the fputc

level. C++ I/O is no different in this respect – for example when writing a complex object to
cout! Consider the following:

std::complex<double> a = std::complex<double>(1.23,4.56),

b = std::complex<double>(9.89,0.12);

Thread A: std::clog << a;

Thread B: std::clog << b;

Another is that I/O buffers are inherently asynchronous objects, and the rules for them are
unclear.

This is all made a lot more complicated by wording such as in “27.3.1 Narrow stream objects
. . . The object cerr controls output to a stream buffer associated with the object stderr, declared in

WG21/N2275 J16/07-0135 2007-05-02



<cstdio>.” Does that imply that they must honour the same “thread-safety’ rules or doesn’t it?
And does that mean that the implementation may use different rules for C and POSIX and C++,
or must they be the same?

Specifying all of this better is known technology, and not even hard, but C++ should not attempt
to follow POSIX either in both going overboard on demanding “thread-safety’ or in leaving that
largely unspecified. The following proposal is almost certainly redundant, as it will already be on
board, but I shall make it anyway.

Proposal: This should be regarded as an outstanding work item, to clarify what the C++ standard
defines.

2.4. IEEE 754 Flags and Modes

This is too complicated an issue for me to cover here, but I will try to write another paper on
the details.

The current draft of C++0X is seriously confusing, in that it includes the function interfaces of
C99 but not the language changes. And, despite being in the library, C99 <fenv.h> is really a
compiler feature, with its primary consequences being on code generation.

I believe that this needs to be clarified, though I am not at all sure what should (or even
can!) be said. What I can guarantee is that virtually every implementor will choose a different
interpretation of the C++0X standard unless something is said.

Proposal: This should be regarded as an outstanding work item, but only to clarify what the C++
standard defines.

2.5. Non-C++ I/O, SHMEM etc.

There are a lot of I/O-like interfaces that are heavily used within C++, even if not all are actually
described as I/O. For example, there is MPI (the Message Passing Interface) so heavily used on
clusters, various “SHMEM” interfaces derived from the Cray designs and used in high-performance
computing on shared-memory machines, several GUI interfaces, many data-passing protocols used
in commercial code and communications, and so on.

All of the respectable ones have their own synchronisation models, and all they really need from
the C++ library is a suitable interface to the memory model, as described above. But they really
do need that. It doesn’t really matter whether it is in terms of atomics or separate functions, as
long as it has the right semantics and a clear specification.

WG21/N2275 J16/07-0135 2007-05-02


