
Overview of Linux-Kernel Reference Counting

Paul E. McKenney

Linux Technology Center

IBM Beaverton

paulmck@us.ibm.com

Document number: N2167=07-0027
Date: 2007-01-12
Project: Programming Language C++, Evolution
Working Group
Reply-to: paulmck@linux.vnet.ibm.com
Revision: Draft 1

Abstract

This document describes several reference-counting
disciplines used in the Linux kernel, and con-
cludes by summarizing the memory-barrier, atomic-
instruction, and compiler-control required by each.
This material is adapted from a tutorial document,
so the alert reader may notice a few departures from
the typical standards-document style.

These disciplines show ample precedent for spec-
ifying that a given variable should have atomic re-
sponse to normal loads and stores, and for the ability
to separately specify atomic operations, memory bar-
riers, and disabling of compiler optimizations in uses
of variables.

1 Introduction

Reference counting tracks the number of references to
a given object in order to prevent that object from
being prematurely freed. Although this is a concep-
tually simple technique, there are a great many vari-
ants adapted to different situations. This is analo-
gous to similar situations in construction, for exam-

Release Synchronization
Acquisition Reference
Synchronization Locking Counting RCU

Locking - CAM CA
Reference A AM A
Counting
RCU CA MCA CA

Table 1: Reference Counting and Synchronization
Mechanisms

ple, a hinge is simply a hinge, but there is an aston-
ishing variety of hinges for different purposes. Insist-
ing that programmers use a single style of reference
counting is as nonsensical as insisting that all doors
and cabinets use a single style of hinge – after all, a
hinge designed for a bank vault might be inappropri-
ate for a kitchen cabinet.1 The examples herein are
taken from the Linux 2.6.19 kernel, with primitives
described in Section 3.

A key reason for the variety of reference-counting
techniques is the wide variety of mechanisms used
to protect objects from concurrent access. Further-
more, the same object might be protected by dif-
ferent mechanisms at different times, which further
increases the required number of styles of reference
counting. In the Linux kernel, the main categories of
synchronization mechanisms are (1) locking, includ-
ing semaphores and mutexes, (2) reference counts,

1My wife concurs, with the possible exception of kitchen

cabinets filled with truffles. Your mileage with your own spouse

may vary.

1

and (3) RCU. Table 1 divides reference-counting
mechanisms into the following broad categories:

1. Simple counting with neither atomic opera-
tions, memory barriers, nor alignment con-
straints (“-”).

2. Atomic counting without memory barriers
(“A”).

3. Atomic counting, with memory barriers required
only on release (“AM”).

4. Atomic counting with a check combined with the
atomic acquisition operation, and with memory
barriers required only on release (“CAM”).

5. Atomic counting with a check combined with the
atomic acquisition operation (“CA”).

6. Atomic counting with a check combined with the
atomic acquisition operation, and with memory
barriers also required on acquisition (“MCA”).

However, because all Linux-kernel atomic operations
that return a value are defined to contain mem-
ory barriers, all release operations contain memory
barriers, and all checked acquisition operations also
contain memory barriers. Therefore, cases “CA”
and “MCA” are equivalent to “CAM”. Therefore,
there are sections below for only the first four cases:
“-”, “A”, “AM”, and “CAM”. The Linux primitives
that support reference counting are presented in Sec-
tion 3. Later sections cite optimizations that can
improve performance if reference acquisition and re-
lease is very frequent, and the reference count need
be checked for zero only very rarely.

2 Implementation of

Reference-Counting Cate-

gories

Simple counting protected by locking (“-”) is de-
scribed in Section 2.1, atomic counting with no mem-
ory barriers (“A”) is described in Section 2.2 atomic
counting with acquisition memory barrier (“AM”) is
described in Section 2.3, and atomic counting with

check and release memory barrier (“CAM”) is de-
scribed in Section 2.4.

2.1 Simple Counting

Simple counting, with neither atomic operations nor
memory barriers, can be used when the reference-
counter acquisition and release are both protected
by the same lock. In this case, it should be clear
that the reference count itself may be manipulated
non-atomically, because the lock provides any neces-
sary exclusion, memory barriers, atomic instructions,
and disabling of compiler optimizations. This is the
method of choice when the lock is required to protect
other operations in addition to the reference count,
but where a reference to the object must be held after
the lock is released. Figure 1 shows a simple API that
might be used to implement simple non-atomic ref-
erence counting – although simple reference counting
is almost always open-coded instead.

1 struct sref {

2 int refcount;
3 };

4
5 void sref_init(struct sref *sref)

6 {
7 sref->refcount = 1;
8 }

9
10 void sref_get(struct sref *sref)

11 {
12 sref->refcount++;

13 }
14
15 int sref_put(struct sref *sref,

16 void (*release)(struct sref *sref))
17 {

18 WARN_ON(release == NULL);
19 WARN_ON(release == (void (*)(struct sref *))kfree);
20

21 if (--sref->refcount == 0) {
22 release(sref);

23 return 1;
24 }

25 return 0;
26 }

Figure 1: Simple Reference-Count API

2

2.2 Atomic Counting

Simple atomic counting may be used in cases where
any CPU acquiring a reference must already hold a
reference. This style is used when a single CPU cre-
ates an object for its own private use, but must allow
other CPU, tasks, timer handlers, or I/O completion
handlers that it later spawns to also access this ob-
ject. Any CPU that hands the object off must first
acquire a new reference on behalf of the recipient ob-
ject. In the Linux kernel, the kref primitives are
used to implement this style of reference counting, as
shown in Figure 2.

Atomic counting is required because locking is not
used to protect all reference-count operations, which
means that it is possible for two different CPUs to
concurrently manipulate the reference count. If nor-
mal increment and decrement were used, a pair of
CPUs might both fetch the reference count concur-
rently, perhaps both obtaining the value “3”. If both
of them increment their value, they will both ob-
tain “4”, and both will store this value back into the
counter. Since the new value of the counter should
instead be “5”, one of the two increments has been
lost. Therefore, atomic operations must be used both
for counter increments and for counter decrements.

If releases are guarded by locking or RCU, mem-
ory barriers are not required, but for different rea-
sons. In the case of locking, the locks provide any
needed memory barriers (and disabling of compiler
optimizations), and the locks also prevent a pair of re-
leases from running concurrently. In the case of RCU,
cleanup must be deferred until all currently executing
RCU read-side critical sections have completed, and
any needed memory barriers or disabling of compiler
optimizations will be provided by the RCU infras-
tructure. Therefore, if two CPUs release the final
two references concurrently, the actual cleanup will
be deferred until both CPUs exit their RCU read-
side critical sections.

Quick Quiz 1: Why isn’t it necessary to guard
against cases where one CPU acquires a reference just
after another CPU releases the last reference?

The kref structure itself, consisting of a single
atomic data item, is shown in lines 1-3 of Fig-
ure 2. The kref_init() function on lines 5-8 ini-

1 struct kref {

2 atomic_t refcount;
3 };

4
5 void kref_init(struct kref *kref)
6 {

7 atomic_set(&kref->refcount,1);
8 }

9
10 void kref_get(struct kref *kref)

11 {
12 WARN_ON(!atomic_read(&kref->refcount));
13 atomic_inc(&kref->refcount);

14 }
15

16 int kref_put(struct kref *kref,
17 void (*release)(struct kref *kref))
18 {

19 WARN_ON(release == NULL);
20 WARN_ON(release == (void (*)(struct kref *))kfree);

21
22 if ((atomic_read(&kref->refcount) == 1) ||

23 (atomic_dec_and_test(&kref->refcount))) {
24 release(kref);
25 return 1;

26 }
27 return 0;

28 }

Figure 2: Linux Kernel kref API

tializes the counter to the value “1”. Note that the
atomic_set() primitive is a simple assignment, the
name stems from the data type of atomic_t rather
than from the operation. The kref_init() function
must be invoked during object creation, before the
object has been made available to any other CPU.

The kref_get() function on lines 10-14 uncon-
ditionally atomically increments the counter. The
atomic_inc() primitive does not necessarily explic-
itly disable compiler optimizations on all platforms,
but the fact that the kref primitives are in a separate
module and that the Linux kernel build process does
no cross-module optimizations has the same effect.

The kref_put() function on lines 16-28 checks for
the counter having the value “1” on line 22 (in which
case no concurrent kref_get() is permitted), or if
atomically decrementing the counter results in zero
on line 23. In either of these two cases, kref_put()
invokes the specified release function and returns
“1”, telling the caller that cleanup was performed.
Otherwise, kref_put() returns “0”.

Quick Quiz 2: If the check on line 22 of Figure 2
fails, how could the check on line 23 possibly succeed?

3

Quick Quiz 3: How can it possibly be safe to non-
atomically check for equality with “1” on line 22 of
Figure 2?

2.3 Atomic Counting With Release

Memory Barrier

This style of reference is used in the Linux kernel’s
networking layer to track the destination caches that
are used in packet routing. The actual implementa-
tion is quite a bit more involved; this section focuses
on the aspects of struct dst_entry reference-count
handling that matches this use case, shown in Fig-
ure 3.

1 static inline

2 struct dst_entry * dst_clone(struct dst_entry * dst)
3 {
4 if (dst)

5 atomic_inc(&dst->__refcnt);
6 return dst;

7 }
8

9 static inline
10 void dst_release(struct dst_entry * dst)
11 {

12 if (dst) {
13 WARN_ON(atomic_read(&dst->__refcnt) < 1);

14 smp_mb__before_atomic_dec();
15 atomic_dec(&dst->__refcnt);
16 }

17 }

Figure 3: Linux Kernel dst clone API

The dst_clone() primitive may be used if the
caller already has a reference to the specified dst_

entry, in which case it obtains another reference that
may be handed off to some other entity within the
kernel. Because a reference is already held by the
caller, dst_clone() need not execute any memory
barriers. The act of handing the dst_entry to some
other entity might or might not require a memory
barrier, but if such a memory barrier is required, it
will be embedded in the mechanism used to hand the
dst_entry off.

The dst_release() primitive may be invoked
from any environment, and the caller might well ref-
erence elements of the dst_entry structure imme-
diately prior to the call to dst_release(). The

dst_release() primitive therefore contains a mem-
ory barrier on line 14 preventing both the compiler
and the CPU from misordering accesses.

Please note that the programmer making use of
dst_clone() and dst_release() need not be aware
of the memory barriers, only of the rules for using
these two primitives.

2.4 Atomic Counting With Check and

Release Memory Barrier

The fact that reference-count acquisition can run con-
currently with reference-count release adds further
complications. Suppose that a reference-count re-
lease finds that the new value of the reference count
is zero, signalling that it is now safe to clean up the
reference-counted object. We clearly cannot allow a
reference-count acquisition to start after such clean-
up has commenced, so the acquisition must include
a check for a zero reference count. This check must
be part of the atomic increment operation, as shown
below.

Quick Quiz 4: Why can’t the check for a zero ref-
erence count be made in a simple “if” statement with
an atomic increment in its “then” clause?

The Linux kernel’s fget() and fput() primitives
use this style of reference counting. Simplified ver-
sions of these functions are shown in Figure 4.

Line 4 of fget() fetches the a pointer to the
current process’s file-descriptor table, which might
well be shared with other processes. Line 6 invokes
rcu_read_lock(), which enters an RCU read-side
critical section. The callback function from any sub-
sequent call_rcu() primitive will be deferred until a
matching rcu_read_unlock() is reached (line 10 or
14 in this example). Line 7 looks up the file structure
corresponding to the file descriptor specified by the
fd argument, as will be described later. If there is an
open file corresponding to the specified file descriptor,
then line 9 attempts to atomically acquire a reference
count. If it fails to do so, lines 10-11 exit the RCU
read-side critical section and report failure. Other-
wise, if the attempt is successful, lines 14-15 exit the
read-side critical section and return a pointer to the
file structure.

4

1 struct file *fget(unsigned int fd)
2 {

3 struct file *file;
4 struct files_struct *files = current->files;
5

6 rcu_read_lock();
7 file = fcheck_files(files, fd);

8 if (file) {
9 if (!atomic_inc_not_zero(&file->f_count)) {

10 rcu_read_unlock();

11 return NULL;
12 }

13 }
14 rcu_read_unlock();

15 return file;
16 }
17

18 struct file *
19 fcheck_files(struct files_struct *files, unsigned int fd)

20 {
21 struct file * file = NULL;

22 struct fdtable *fdt = rcu_dereference((files)->fdt);
23
24 if (fd < fdt->max_fds)

25 file = rcu_dereference(fdt->fd[fd]);
26 return file;

27 }
28
29 void fput(struct file *file)

30 {
31 if (atomic_dec_and_test(&file->f_count))

32 call_rcu(&file->f_u.fu_rcuhead, file_free_rcu);
33 }

34
35 static void file_free_rcu(struct rcu_head *head)
36 {

37 struct file *f;
38

39 f = container_of(head, struct file, f_u.fu_rcuhead);
40 kmem_cache_free(filp_cachep, f);
41 }

Figure 4: Linux Kernel fget/fput API

The fcheck_files() primitive is a helper function
for fget(). It uses the rcu_dereference() prim-
itive to safely fetch an RCU-protected pointer for
later dereferencing (this emits a memory barrier on
CPUs such as DEC Alpha in which data dependen-
cies do not enforce memory ordering). Line 22 uses
rcu_dereference() to fetch a pointer to this task’s
current file-descriptor table, and line 24 checks to see
if the specified file descriptor is in range. If so, line 25
fetches the pointer to the file structure, again using
the rcu_dereference() primitive. Line 26 then re-
turns a pointer to the file structure or NULL in case
of failure.

The fput() primitive releases a reference to a file
structure. Line 31 atomically decrements the refer-
ence count, and, if the result was zero, line 32 in-
vokes the call_rcu() primitives in order to free up
the file structure (via the file_free_rcu() function
specified in call_rcu()’s second argument), but only
after all currently-executing RCU read-side critical
sections complete. The time period required for all
currently-executing RCU read-side critical sections to
complete is termed a “grace period”. Note that the
atomic_dec_and_test() primitive contains a mem-
ory barrier. This memory barrier is not necessary in
this example, since the structure cannot be destroyed
until the RCU read-side critical section completes,
but in Linux, all atomic operations that return a re-
sult must by definition contain memory barriers.

Once the grace period completes, the file_free_

rcu() function obtains a pointer to the file structure
on line 39, and frees it on line 40.

This approach is also used by Linux’s virtual-
memory system, see get_page_unless_zero() and
put_page_testzero() for page structures as well
as try_to_unuse() and mmput() for memory-map
structures.

3 Linux Primitives Supporting

Reference Counting

The Linux-kernel primitives used in the above exam-
ples are summarized in the following list. The RCU
primitives may be unfamiliar to some readers, so a

5

brief overview with citations is included in Section 5.

• atomic t Type definition for 32-bit quantity to
be manipulated atomically.

• void atomic dec(atomic t *var); Atomi-
cally decrements the referenced variable without
necessarily issuing a memory barrier or disabling
compiler optimizations.

• int atomic dec and test(atomic t

*var); Atomically decrements the refer-
enced variable, returning TRUE if the result
is zero. Issues a memory barrier and disables
compiler optimizations that might otherwise
move memory references across this primitive.

• void atomic inc(atomic t *var); Atomi-
cally increments the referenced variable without
necessarily issuing a memory barrier or disabling
compiler optimizations.

• int atomic inc not zero(atomic t

*var); Atomically increments the refer-
enced variable, but only if the value is non-zero,
and returning TRUE if the increment occurred.
Issues a memory barrier and disables com-
piler optimizations that might otherwise move
memory references across this primitive.

• int atomic read(atomic t *var); Returns
the integer value of the referenced variable. This
is not an atomic operation, and it neither issues
memory barriers nor disables compiler optimiza-
tions.

• void atomic set(atomic t *var, int

val); Sets the value of the referenced
atomic variable to “val”. This is not an atomic
operation, and it neither issues memory barriers
nor disables compiler optimizations.

• void call rcu(struct rcu head

*head, void (*func)(struct rcu head

*head)); Invokes func(head) some time after
all currently executing RCU read-side critical
sections complete, however, the call_rcu()

primitive returns immediately. Note that head

is normally a field within an RCU-protected
data structure, and that func is normally
a function that frees up this data structure.
The time interval between the invocation of
call_rcu() and the invocation of func is
termed a “grace period”. Any interval of time
containing a grace period is itself a grace period.

• type *container of(p, type, f); Given a
pointer “p” to a field “f” within a structure of the
specified type, return a pointer to the structure.

• void rcu read lock(void); Marks the begin-
ning of an RCU read-side critical section.

• void rcu read unlock(void); Marks the end
of an RCU read-side critical section. RCU read-
side critical sections may be nested.

• void smp mb before atomic dec(void); Is-
sues a memory barrier and disables code-motion
compiler optimizations only if the platform’s
atomic_dec() primitive does not already do so.

• struct rcu head A data structure used by the
RCU infrastructure to track objects awaiting a
grace period. This is normally included as a field
within an RCU-protected data structure.

4 Counter Optimizations

In some cases where increments and decrements are
common, but checks for zero are rare, it makes sense
to maintain per-CPU or per-task counter. See the
paper on sleepable read-copy update (SRCU) for an
example of this technique [7]. This approach elim-
inates the need for atomic instructions or memory
barriers on the increment and decrement primitives,
but still requires that code-motion compiler optimiza-
tions be disabled. In addition, the primitives such
as synchronize_srcu() that check for the aggre-
gate reference count reaching zero can be quite slow.
This underscores the fact that these techniques are
designed for situations where the references are fre-
quently acquired and released, but where it is rarely
necessary to check for a zero reference count.

6

5 Background on RCU

Read-copy update (RCU) is a synchronization API
that is sometimes used in place of reader-writer locks.
RCU’s read-side primitives offer extremely low over-
head and deterministic execution time, in fact, non-
realtime server-class implementations of RCU imple-
ment the rcu_read_lock() and rcu_read_unlock()

primitives as empty C-preprocessor macros, so that
neither the compiler nor the CPU see any RCU read-
side overhead whatsoever.2 These properties imply
that RCU updaters cannot block RCU readers, which
means that RCU updaters can be expensive, as they
must leave old versions of the data structure in place
to accommodate pre-existing readers. Furthermore,
these old versions must be reclaimed after all pre-
existing readers complete. The Linux kernel offers a
number of RCU implementations, the first such im-
plementation being called “Classic RCU”.

A full description of RCU is beyond the scope
of this document, however, McKenney’s disserta-
tion [3] contains an extensive RCU bibliography as
well as detailed descriptions of early Linux imple-
mentation and corresponding APIs, along with early
Linux RCU usage and corresponding performance
results. The Wikipedia RCU page [8] provides a
short overview of RCU’s operation, also present-
ing “toy” implementations of RCU infrastructure.
Numerous publications compare RCU performance
to a number of alternative synchronization mecha-
nisms within the Linux kernel [1, 4, 9], and Hart
et al. [2] compare various locking and non-blocking-
synchronization schemes to an RCU-infrastructure
implementation similar to Linux’s “Classic RCU”.
Of course, the ultimate description of RCU in Linux
is the source code [10], which makes significant use
of the RCU API [5]. McKenney maintains a list of
cscope databases listing RCU API usage on a per-
Linux-version basis [6].

2The DEC Alpha CPU being the one exception proving this

rule.

6 Operations Required for Ref-

erence Counting

Properties of atomic variables and operations on
those variables may be categorized as follows:

1. Atomic response to normal loads and stores.

2. Atomic operations.

3. Memory barriers.

4. Disabling of compiler optimizations that move
memory references.

Table 2 shows which of the reference-counting
methods described in this paper require which of the
above properties. This table shows that while mem-
ory barriers can imply disabling of compiler code-
motion optimizations without penalty, tying atomic
operations to memory barriers may penalize the sim-
ple atomic-counting reference-counting scheme de-
scribed in Section 2.2.

Even more severe penalties are imposed on
SRCU [7] if optimization disabling is not provided
independently, for example, as provided by the gcc
compiler’s “memory” attribute on __asm__ direc-
tives. In some cases, the C-language “volatile” key-
word can be used, however, the semantics of this key-
word are ill-defined. In particular, for some architec-
tures, some compilers will emit expensive memory-
barrier instructions that are not needed for SRCU.

Finally, SRCU requires that normal loads and
stores to its per-CPU counter variables be atomic, in
other words, loads must see either the initial value or
the complete result of one preceding store. This abil-
ity is provided natively for properly aligned C/C++
integers and pointers on all mainstream CPUs, and
should be exposed in any C/C++ specification that
touches on multithreaded behavior.

In summary, there is ample precedent for specify-
ing that a given variable should have atomic response
to normal loads and stores, and for the ability to
separately specify atomic operations, memory barri-
ers, and disabling of compiler optimizations in uses
of variables.

7

Implementation Type
Property - A AM CAM SRCU

Atomic Response to Y
Normal Loads/Stores
Atomic Operations Y Y Y
Memory Barriers Y Y
Disable Compiler Y Y Y
Optimizations

Table 2: Reference Counting and Required Opera-
tions

7 Answers to Quick Quizzes

Quick Quiz 1: Why isn’t it necessary to guard
against cases where one CPU acquires a reference
just after another CPU releases the last reference?
Answer: Because a CPU must already hold a ref-
erence in order to legally acquire another reference.
Therefore, if one CPU releases the last reference,
there cannot possibly be any CPU that is permitted
to acquire a new reference. This same fact allows
the non-atomic check in line 22 of Figure 2.

Quick Quiz 2: If the check on line 22 of Fig-
ure 2 fails, how could the check on line 23 possibly
succeed?
Answer: Suppose that kref put() is protected
by RCU, so that two CPUs might be executing
line 22 concurrently. Both might see the value “2”,
causing both to then execute line 23. One of the two
instances of atomic dec and test() will decrement
the value to zero and thus return 1.

Quick Quiz 3: How can it possibly be safe to
non-atomically check for equality with “1” on line 22
of Figure 2?
Answer: Remember that it is not legal to call
either kref get() or kref put() unless you
hold a reference. If the reference count is equal
to “1”, then there can’t possibly be another CPU
authorized to change the value of the reference count.

Quick Quiz 4: Why can’t the check for a
zero reference count be made in a simple “if”
statement with an atomic increment in its “then”
clause?
Answer: Suppose that the “if” condition com-

pleted, finding the reference counter value equal
to one. Suppose that a release operation executes,
decrementing the reference counter to zero and
therefore starting cleanup operations. But now the
“then” clause can increment the counter back to a
value of one, allowing the object to be used after it
has been cleaned up.

Acknowledgements

I owe thanks to Michael Wong for his careful review
of this paper, and am indebted to Daniel Frye for his
support of this effort.

References

[1] Arcangeli, A., Cao, M., McKenney, P. E.,

and Sarma, D. Using read-copy update tech-
niques for System V IPC in the Linux 2.5 ker-
nel. In Proceedings of the 2003 USENIX Annual
Technical Conference (FREENIX Track) (June
2003), USENIX Association, pp. 297–310.

[2] Hart, T. E., McKenney, P. E., and

Brown, A. D. Making lockless synchroniza-
tion fast: Performance implications of memory
reclamation. In 20th IEEE International Parallel
and Distributed Processing Symposium (Rhodes,
Greece, April 2006).

[3] McKenney, P. E. Exploiting Deferred
Destruction: An Analysis of Read-Copy-
Update Techniques in Operating System
Kernels. PhD thesis, OGI School of Sci-
ence and Engineering at Oregon Health
and Sciences University, 2004. Available:
http://www.rdrop.com/users/paulmck/RCU/

RCUdissertation.2004.07.14e1.pdf [Viewed
October 15, 2004].

[4] McKenney, P. E. RCU vs. lock-
ing performance on different CPUs. In
linux.conf.au (Adelaide, Australia, January
2004). Available: http://www.linux.

8

org.au/conf/2004/abstracts.html#90

http://www.rdrop.com/users/paulmck/

RCU/lockperf.2004.01.17a.pdf [Viewed June
23, 2004].

[5] McKenney, P. E. RCU Linux usage. Avail-
able: http://www.rdrop.com/users/paulmck/
RCU/linuxusage.html [Viewed January 14,
2007], October 2006.

[6] McKenney, P. E. Read-copy update
(RCU) usage in Linux kernel. Available:
http://www.rdrop.com/users/paulmck/

RCU/linuxusage/rculocktab.html [Viewed
January 14, 2007], October 2006.

[7] McKenney, P. E. Sleepable RCU. Available:
http://lwn.net/Articles/202847/ Revised:
http://www.rdrop.com/users/paulmck/RCU/

srcu.2007.01.14a.pdf [Viewed August 21,
2006], October 2006.

[8] McKenney, P. E., Purcell, C., Algae,

Schumin, B., Cornelius, G., Qwertyus,

Conway, N., Sbw, Blainster, Rufus, C.,

Zoicon5, Anome, and Eisen, H. Read-copy
update. Available: http://en.wikipedia.org/
wiki/Read-copy-update [Viewed August 21,
2006], July 2006.

[9] Morris, J. Recent developments in
SELinux kernel performance. Available:
http://www.livejournal.com/users/james_

morris/2153.html [Viewed December 10,
2004], December 2004.

[10] Torvalds, L. Linux 2.6. Available: ftp://

kernel.org/pub/linux/kernel/v2.6 [Viewed
June 23, 2004], August 2003.

9

