, symantec.

Transparent Garbage Collection for C++
(Revised)
Document Number: N2129=06-0199

Hans Boehm, HP Labs
Mike Spertus, Symantec Research Labs

- ,_
\f |
== Symantec Research Labs 4 I\
iy

, symantec. W

Agenda—Goals

- Garbage collection must be available
- Garbage collection must be optional

- Garbage collection should be transparent, generally requiring no code
changes

- Optional garbage collection granularity

- The programmer must be able to indicate type-safety

- The programmer must not be required to indicate type-safety
- Garbage collection requires standardization

Research and Advanced Development

, symantec.

Agenda—Proposal

- Reachability

- Syntax

- Impact on operator new()

- Finalization split off into separate proposal
- Implementation status

- Open guestions

Research and Advanced Development

, symantec.

Garbage collection must be available

- The availability of garbage collections makes most programs
much easier and attractive to implement with no negatives.

= Vanilla C++ programs should be able to ignore memory management
when not critical

- C++is now increasingly ruled out as an implementation language
for the many programs and developers that do not require manual
memory management.

- Even for manually managed programs, legitimizes leak detectors

- Reference counting not sufficient
= Too many data structures are not DAGs
= Extensive programmer-support required for smart pointers

Research and Advanced Development

, symantec. ay

Garbage Collection must be optional

- The availability of manual memory management makes many
large and specialized programs possible to implement.

= Low-level systems programming
= Programs that make heavy use of virtual memory
= Programs with specialized performance requirements,

- Backwards compatibility. Although it might be technically
conforming to turn “operator delete” into a “no-op,” the
performance profile of some existing programs would experience
unacceptable changes

Research and Advanced Development

, symantec. ﬂa

Transparent garbage collection

- While smart-pointers are useful in the context of manually

managed programs, they are not suitable for programs that wish
to ignore memory management entirely.

- It should be possible to garbage collect most existing programs
with no source changes at all, except for perhaps a single line per

program (not per-module) to request automatic memory
management.

Research and Advanced Development

§ gmantec 3%

Granularity

- Garbage collection vs. manual memory management should be
specifiable at any level of granularity

= Program level

= Module level

= Specific data types
= Specific objects

Research and Advanced Development

, symantec. ay

Must be able to specify type-safety information

- Fully conservative (i.e., does not assume type safety) collection
not suitable for very large programs

= Large programs may consume a high-percentage of (32-bit) address
space, causing unused objects to be retained.

= Programs manipulating large pointer-sparse data structures (e.g.,
mpeg files) are common.

* Scanning these for pointers is time consuming
* Scanning these for pointers can cause disk thrashing

* Scanning these for pointers can cause unused objects to be
retained

Research and Advanced Development

, symantec. ay

Must not be required to specify type-safety

- Some programs are not type-safe
= Should still work all right by default
= Typical programmers should not need to worry about annotations

- The vast majority of vanilla programs do not require asserting
type-safety for good results

- If libraries (e.g., standard libraries) are annotated, even very large
programs should automatically get the benefit of type-aware
garbage collection without any programmer input required

Research and Advanced Development

, symantec. ﬁﬂ

Standardization is required

- GC libraries have been used for many years, but...
= Can’t access type information
= Library vendors (including standard libraries) can't use
= Many users waiting for stamp of approval

= Most people believe that C++ is not an option if they don’t want to
manually manage memory

Research and Advanced Development

, symantec. ay

Reachability

- An object is reachable if it is accessible via a pointer chain from
the “roots”. Interior pointers are allowed (e.g., to support multiple
inheritance).

. Strict reachability

= Only consider pointer types.

= Don’t consider type of pointer to avoid problems with void *,
inheritance, etc.

= Unions are based on last store
- Relaxed reachability
= Pointers may be stored in any datatype large enough to hold them
* E.g., Windows programmers frequently store pointers in DWORDs

- Compilers must not break reachability
= See Boehm, “Simple Garbage-Collector Safety”

Research and Advanced Development

, symantec. ﬂg

Syntax

- gc_Torbidden

= This code cannot be used in garbage collected programs
-« (gc_required

= This code assumes the presence of a garbage collector

= A diagnostic is required if this is combined with gc(forbidden)
code (possibly at link time).

- Inthe absence of gc_forbidden or gc_required, the code is
compatible with either the presence or absence of garbage
collection

Research and Advanced Development

, symantec. ﬁm

Type information syntax

« (gc_strict

= All occurrences of primitive non-pointer types are assumed not to
contain pointers.

= Collectors may make use of this information but are not required to.
- gc_relaxed

= Primitive non-pointer types here may contain pointers

= The default
- If alignment added to the standard, will add an additional one

= Current proposal assumes natural alignment for pointers

Research and Advanced Development

, symantec.

Some examples

- Program that assumes garbage collection
= gc_required

main()

= Nothing else necessary. No need to free memory

- Modularity is good

= gc_strict class A {
A *next;
B b;
int data[1000000];

= Scan next and b for pointers, but no need to scan data.

= This is even true for A objects created in non-strict code (because
such code would explicitly refer to class A, not int[1000000]).

Research and Advanced Development

, symantec.

Some examples—Continued

class mpeg {

gc_strict mpeg(size_t % i
mpegData = new char

y char *mpegData;
- mpeg class can be used anywhere without unnecessarily
scanning mpegData for pointers.

« gc_strict {
typedef 1nt binop;

}

- binop cannot contain a pointer.

Research and Advanced Development

, symantec.

Impact on operator new

- Allocation of garbage collected objects will not go through
operator new

= Many garbage collector are inextricably linked to allocation

= operator new signature not sufficient for effective communication
of type information

- Programs that redefine : zoperator new will work but will not
benefit from garbage collection

- Classes with class-specific allocators will work but will not
garbage collected

= Their memory will still be scanned for pointers (respecting strictness
annotations)

= The underlying pools may be garbage collected as a whole
= STL containers will only be collected if they use the default allocator

Research and Advanced Development

, symantec. ay

Finalization proposal split off

- Finalization split into separate proposal
= With or without finalization, GC remains very valuable

- Enough to talk about to merit separate discussion

= Compiler optimizations commonly cause an object to become
unreachable while resources released by the finalizers are still in the
use, leading to premature finalization.

= Requires annotation by the programmer on when it is safe to call
finalizers.

= Java has been bitten badly by this
= Treating destructors as finalizers is not an option

* e.g., Deadlocks/data corruption can result from synchronization
context

Research and Advanced Development

, symantec. W

Implementation status

« Ontrack

- Conservative collectors are stable and mature and will probably
be the choice for most early implementations.
= Implementation risks are well-mitigated
= However, we do not restrict the choice of algorithm

* Moving collectors must maintain std: : less<T *>, e.g., to avoid
breaking Set<T *>,

- EXxpect to have a modified g++ to support front-end syntax by next
meeting

Research and Advanced Development

Discussion

Research and Advanced Development

