WG21/N1940 J16/06-0010 2006-02-14

Nick Maclaren
University of Cambridge Computing Service,
New Museums Site, Pembroke Street,
Cambridge CB2 3QH, England.
Email: nmml@cam.ac.uk
Tel.: +44 1223 334761
Fax: +44 1223 334679

Why POSIX Threads Are Unsuitable for C++

1.0. Introduction

This attempts to explain why POSIX threads (also called pthreads) are unsuitable to use as a basis
for adding threading to C++. The problem is not with the intent, syntax or interface (though there are
problems with those, t00), but with the model, concepts, semantics and specification.

Please note that it does not make a case against standardising a simple syntactic binding of POSIX func-
tion calls, combined with stating that all areas of semantic conflict are implementation-defined or undefined.
That is quite feasible, though of limited use.

1.1. Assertions

There are several major problems:

1. POSIX threads and C++ have very different and incompatible models and concepts, and forcing C++
to use POSIX’s model will harm the latter badly. Attempting to change the POSIX model, even in the
simplest and most reasonable ways, is a political minefield, as many people can witness.

2. The same applies to much of the semantics and most of the constraints; while this is more soluble, the
result is likely to be compatible with neither serial C++ nor POSIX. Subtle semantic incompatibilities
between standards already cause a great deal of grief to implementors and programmers.

3. The actual POSIX threads specification is partial, often ambiguous and sometimes internally inconsistent.
Attempting to improve this has already caused major political problems, and C++ should avoid getting
involved with those.

4. As the number of cores on a system gets above 2—4, it becomes necessary to improve the performance of
a single task (flow of control), rather than just by separating serial tasks into their own threads, and a
more fine-grained approach is needed. POSIX threads have not proved successful for this.

1.2. References etc.

Unless stated otherwise, all references are to IEEE Std 1003.1 2004 (POSIX), ISO/IEC 14882:1998 (C++),
ISO/IEC 9899:1999 (C99) or ISO/IEC 1539-1:2004 (Fortran). MPI 1.1 (2.0 is essentially extensions to 1.1)
can be found on http://www.mpi.org. OpenMP 2.0 can be found on http://www.openmp.org, and it is
the C and C++ version being referred to here.

I shall make no attempt to describe all of the problems with POSIX threads, even in the above areas, and
the document explains only a selection of some of the more fundamental ones that I know are likely to affect
C++. Note that they refer to fundamental (and often pervasive) problems, and a solution that solves the
particular example is not enough.

1.3. A Common Myth

It is essential to correct the frequently made claim that POSIX threads work because they are used today.
As those of us in High Performance Computing (HPC) can witness, they cause immense problems as soon

WG21/N1940 J16/06-0010 2006-02-14

as anyone stresses them hard enough to expose their flaws. Let us consider just race conditions, where the
reasons are easy to analyse, and use the term “race conditions” for unsafe constructions and “race events”
for ones that get exposed and cause occasional failure.

e Most uses of POSIX threads are not to parallelise tasks at all, but to isolate tasks (e.g. separate requests
to an Internet application server) and to introduce non-blocking behaviour when using blocking interfaces.
Their rate of race conditions is very low indeed.

e The density of race conditions typically varies by factors of thousands or more, between tightly coupled
HPC codes and Internet application servers, leading to factors of millions in the race events (see below).
This is why many HPC people have trouble with this one and few Internet application server people do.

e Many race conditions will be exposed only when two threads can run in parallel, and not when they
have to be serialised on a single CPU, because most systems synchronise memory and other state when
switching context. Also, the number of race conditions is often proportional to the number of CPUs, and
the uselessness of a single CPU system to test multithreaded code is well known in HPC.

e Race events are proportional to the square of the number of race conditions (in obscure cases, higher
powers), because a failure will occur only when two or more threads have a race condition on a single
object (obviously).

So a flawed design might cause failure once a century on an Internet application server with 2 CPUs, but
might show up in minutes on a tightly coupled HPC code on 32 CPUs. This is one reason why almost all
HPC programs use the Message Passing Interface (MPI), a few use Fortran OpenMP, and almost none use
POSIX threads in C or C++ (except for Monte-Carlo and similar embarrassingly parallel tasks). The extra
tedium of sending explicit messages is more than countered by the ability to debug the program.

Some people will now say that HPC is unimportant, and POSIX threads are good enough for most
uses. But what about control programs for chemical plants, nuclear reactors and other such demanding
uses? They need the power of parallelism, and an unpredictable, uncontrollable failure once a decade is not
acceptable.

2.0. Background and Abstract Models

This section is precisely not about the memory model. That is a prerequisite for any kind of shared-
memory parallelism, asynchronous actions (whether I/O as in POSIX or message passing as in MPI) and
even reliable signal handling (not just of asynchronous signals). Given an adequate memory model, all of
those become supportable; without one, all are necessarily undefined behaviour.

It is describing structural models of threading, and why the one assumed by POSIX conflicts with C++.

2.2. Explicit versus Implicit Threading

Hoare’s seminal paper “Communicating Sequential Processes” assumes that the programmer writes the
code to control the program’s data and control flow but, for the past 20 years, most parallel extensions
to serial languages have used an implicit model where the programmer describes the linkages (and obeys
constraints), and the implementation controls the program’s flow.

Both MPI and POSIX threads use the explicit model, with the former using entirely separate processes
and explicit, library-based message passing. POSIX threads use explicit communication, but implicit data
sharing, which is part of the reason that they have inconsistencies of design. A similar approach that was
once used in HPC is separate processes with some sort of shared memory (often called SHMEM, of which
there are many variants); if readers are not familiar with examples, please ignore this reference.

Almost all recent parallel extensions of the C, C++ or Fortran languages (as distinct from libraries) have
used an implicit model, often designed so that a clean program can be executed efficiently in serial or in
parallel, depending on the implementation. This is stated explicitly as a target of OpenMP (e.g. in 1.3
Execution Model) and Fortran (e.g. in C.12.8 Parallel computation).

In the context of using multiple CPUs to increase performance, it is claimed (correctly) that it is much
easier to develop parallel applications and to add parallelism to serial ones using the implicit model, but it

WG21/N1940 J16/06-0010 2006-02-14

is also true that almost all modern, scalable, parallel applications use MPI. Experience is that debugging
and tuning OpenMP programs is very hard, but experience with the array features of Fortran is much more
positive.

For example, an implementation could parallelise the C++ class valarray in a comparable way to that
Fortran implementations can and do parallelise Fortran’s array features. In fact, it probably has been done.

2.3. Hierarchical versus Unstructured Threading

Over the years, there have been many ways in which threading has been added to serial models, but we can
ignore most of them as unfashionable (at least in the context of C++) and hence politically unacceptable.
Dataflow is one such approach. There are two main models that are relevant to C++, which will be described
in simplistic terms.

The first is a hierarchy, where a parallel construct spawns a number of threads and waits for them all to
finish; this can be done recursively, leading to an execution tree (with no connexion to the parse tree). A
thread’s lifetime is the scope of its creation, in some sense. OpenMP (see section 1.3) and virtually every
other parallel extension of C, C++ or Fortran use some variation of it, because it adds implicit parallelisation
cleanly into their abstract machine models. The systems MVS, VMS and CMS support this, in its explicit
form.

[Note that the threads referred to above may be virtual, and may be mapped onto a fized number of perma-
nently executing physical threads; in fact, they usually are. |

The second is a fixed set of parallel, independent processes, optionally with the ability to share data.
This has been most successful in its distributed memory (i.e. message passing), explicit form, and al-
most all scalable HPC programs use MPI. Models like Bulk Synchronous Parallel Computation (BSP, see
http://www.bsp-worldwide.org) use it in its implicit form.

For some reason, POSIX threads adopted the second model, with explicit control of communication and
implicit passing of data. This is generally adequate for the sort of application that could equally well
be written to use multiple unthreaded processes with shared memory segments (including embarrassingly
parallel HPC applications) but, as demonstrated below, causes major trouble for many other types of parallel
codes.

2.4. Model Incompatibilities: C++ Exceptions

OpenMP is intended to be transparent (see above), but it defines C++ exceptions to be handled entirely
within the current thread, to simplify integration with POSIX. Unfortunately, it does not specify how the
C++ abstract machine maps to threads, and its restrictions on exception handling are so draconian that
C++ programs need major changes to maintain semantics.

OpenMP 2.8 parallel Construct:

A throw ezecuted inside a parallel region must cause execution to be resumed within the dynamic extent
of the same structured block, and it must be caught by the same thread that threw the exception.
Please ignore simplifications and syntactic errors in the following, and consider parallelising code like:
void fred (void) {
<some use of valarray, a for-loop or independent function calls>

}

try {
fred();

} catch (some exception) {
<some action>

3

The following is required by OpenMP to maintain the semantics:

WG21/N1940 J16/06-0010 2006-02-14

void fred (void) {
<construct an exception object A>
#pragma omp parallel
try {
#pragma omp for
<some use of valarray, a for-loop or independent function calls>
} catch O {
<copy the current exception object into A>

}
throw(A) ;
}
try {
fred();

} catch (some exception) {
<some action>

}

This obviously cannot be done if the function fred cannot copy the exception object between threads, or
if the program calls a parallel class which calls user code which raises an exception to be caught outside the
library call. There are doubtless other such restrictions.

Note that this specification is unnecessary, and the exception could perfectly well pass back over the
parallel clause. This would not be entirely trivial to specify, as there would have to be rules for how multiple
exceptions in separate threads would be merged into one, but it could be done. And, despite common belief,
it is no harder to implement than allowing a call to exit from any thread.

2.5. Model Incompatibilities: Process Termination

Thread cancellation is problematic in any language with either pointers into thread-local data or destruc-
tors, let alone both. POSIX requires the former and C++ the latter. But POSIX is confusing enough even
with normal termination and without bringing in destructors. The specification of exit says:

POSIX System Interfaces 3. ezit():

The exit() function shall first call all functions registered by atexit(), in the reverse order of their regis-
tration, except that a function is called after any previously registered functions that had already been called
at the time it was registered. Each function is called as many times as it was registered. If, during the call
to any such function, o call to the longimp() function is made that would terminate the call to the registered
function, the behavior is undefined.

The exit() function shall then flush all open streams with unwritten buffered data, close all open streams,
and remove all files created by tmpfile(). Finally, control shall be terminated with the consequences described
below.

There is precisely one reference to threads, it refers to _exit, not exit, and so is irrelevant to C++, so
what does happen in a threaded program?

The above specification implies that atexit is called in the thread that calls exit; if that thread is the
only one that is active, the intent is clear, though it may cause the implementor a headache. We need to
think what happens to the other active threads.

Are atexit functions allowed or required to tidy up such threads and, if so, how? If they can or have to use
pthread_join and pthread._cancel, are they allowed to use the other facilities, including pthread create?
Even more horribly, are those threads allowed to use threading facilities on the thread that is running
the atexit functions? The current wording does not even forbid them from adding atexit functions,
asynchronously, while an atexit function is running in another thread.

If the atexit functions do not clean up, “C++ 18.3 Start and termination” states that exit destroys
non-local objects with static storage duration — but in which thread or threads are destructors called? And

WG21/N1940 J16/06-0010 2006-02-14

do the threads continue to run while that is going on, possibly initialising more objects that need destroying?

That sounds a bad idea, but C++ entangles the calling of atexit functions and the calling of destructors,
so the only practical place to stop the threads is before calling any atexit functions, which means that
destructors will necessarily be called in the thread that called exit, and not their ‘owning’ thread. I do not
know C++ well enough to know if that is soluble, or even a significant issue.

The threads must clearly not be destroyed until the very end, because their stacks may contain I/O buffers
and the closing of <cstdio.h> FILE objects comes last. So stopping the threads must be a suspension
operation — which POSIX does not have.

But we have forgotten something. Memory is only synchronised when the threads call some specific
functions, so we cannot just suspend them, but have to persuade them to call a function and then suspend
themselves. Even if there were a suitable signal to demand this, POSIX’s approach to signal safety (and
thread cancellation) is to mask signals off over critical sections, so that would not work, either.

Resolving this problem alone will not be quick, easy or clean.

2.6. Choice of Abstract Model

Questions raised by this section include:
e Should C++ specify a single threading model, or permit extensions to use different ones?

e Exactly what variation in threading models should be required, or permitted, and what properties of
permitted models should it require/assume?

This document makes no attempt to answer these questions, but merely points out that the POSIX
threading model conflicts very seriously with C++, and that adopting it will mean some quite major changes
to C++ in harmful ways. It will also be very hard to do without introducing inconsistencies with the existing
language, and may take a long time.

MPI is heavily used, but is a ‘pure’ library interface for message passing between separate processes, and
needs nothing from C++ beyond an adequate memory model. So it may be ignored in this respect.

All of BSP, OpenMP (with fixed exception handling) and a parallelised valarray (etc.) library fit well
with C++. The latter two are the most plausible, politically, and are compatible with each other.

And, of course, those are not the only models. Some people have added dataflow to C, though not very
successfully, and I don’t claim to know everything that is going on even in “my” areas.

3.0. Inconsistencies in POSIX Threads

This section is very messy, but that is because it is describing a messy situation. It attempts to explain
why the C99 and POSIX standards are internally inconsistent in ways that matter very seriously to real
parallel programs. The issues occur in serial ones (especially with signal handling), but are much more
exposed by parallelism (including all of POSIX threads, OpenMP and MPT).

3.1. The C99 Synchronisation Model

POSIX states clearly that it is currently based on C99 (see 2.2 Application Conformance and elsewhere),
so any problems with C99’s memory model will affect POSIX.

Let us omit describing the C99 sequence point problem in detail, on the grounds of not restarting old and
unproductive arguments, and merely note that there is no consensus on the precise synchronisation rules for
serial code.

A far worse problem is the object model problem, where C99 is seriously ambiguous, and often in-
consistent, when it comes to specifying the exact type of an object referred to by an lvalue. C++ has
closed many of the loopholes, but by no means all. As far as parallelism is concerned, the critical as-
pect is knowing how much data an lvalue refers to, and therefore whether two lvalues refer to overlap-
ping objects. I have a paper describing this, which has been widely circulated. It is temporarily on
http://www.hpcf.cam.ac.uk/export/0Objects. As a trivial example, consider:

WG21/N1940 J16/06-0010 2006-02-14

static char p[50] = "ABCDE", *q = "FGHIJ";
void fred (void) {strcat(p,q);}
int joe (void) {return strcmp(p,"XYZ");}

Can functions fred and joe be called in parallel? If not, why not? If so, why? There is no consensus
on this for either POSIX(1996)/C90, or POSIX(2001)/C99, or even whether there has been a change.

Please note that this is merely an example, and that some of the ambiguities affect constructions that
are in use in most programs. I did not write that paper in the abstract, but as a result of experience with
real problems in real programs on real implementations.

There are also equally bad problems elsewhere.
C99 5.1.2.8 Program execution, paragraph 5:

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous accesses are complete and
subsequent accesses have not yet occurred.

— At program termination, all data written into files shall be identical to the result that execution of the
program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.19.3.
C99 6.7.3 Type qualifiers, footnote 114:

A volatile declaration may be used to describe an object corresponding to a memory-mapped input/output
port or an object accessed by an asynchronously interrupting function. Actions on objects so declared shall
not be “optimized out” by an implementation or reordered except as permitted by the rules for evaluating
exTPTessions.

The above makes it very clear that a C99 compiler may optimise memory accesses ad lib., except for
those to volatile objects and across an implementation-defined set of I/O calls, and the most aggressive
optimisation levels in most compilers do something very like that.

Equally importantly for practical POSIX programs, C99 specifies nothing about the synchronisation of
non-interactive I/O and other external actions, or signals and other exceptional conditions. In C99, only
signals raised by a call to the raise function result in defined behaviour, though the proof is somewhat messy
and the references are omitted. C++ is very similar, both with regard to C++ exceptions and signals.

Similar remarks can be made about the floating-point flags and modes defined in <fenv.h>, though with
completely different (and almost unbelievable) properties. As there seem to be no practical applications that
use them, or compilers that support them correctly, let us skip the details. This is merely being flagged as
a potential issue, with the recommendation that C++ avoid it.

In cases anyone thinks that these issues do not arise in practice, I can witness that they do — but they
are rarely even identified because so few people have the skills to track them down, and identify whether
they are due to programmer error, implementor error, a defect in a standard or an incompatibility between
standards.

3.2. The POSIX Synchronisation Model

POSIX is based on C99 (above), but there is no clear statement of what extensions to the C99 language
(as distinct from the library) it specifies. Attempting to get this placed on a task list for POSIX 2001 failed,
on the grounds that it was not within the remit of the Austin Group — and SC22WG15 has now been
disbanded.

POSIX Base Definitions 4.10 Memory Synchronization:

Applications shall ensure that access to any memory location by more than one thread of control (threads
or processes) is restricted such that no thread of control can read or modify a memory location while another
thread of control may be modifying it. Such access is restricted using functions that synchronize thread

WG21/N1940 J16/06-0010 2006-02-14

execution and also synchronize memory with respect to other threads. The following functions synchronize
memory with respect to other threads:

fork() pthread_barrier_wait() pthread_cond_-broadcast() pthread_cond_signal() pthread_cond_timedwait()
pthread_cond_wait() pthread_create() pthread_join() pthread_mutex_lock() pthread_mutex_timedlock()
pthread_mutex_trylock() pthread_mutez_unlock() pthread_spin_lock() pthread_spin_trylock()
pthread_spin_unlock() pthread_rwlock_rdlock() pthread_rwlock_timedrdlock() pthread_rwlock_timedwrlock()
pthread_rwlock_tryrdlock() pthread_rwlock_trywrlock() pthread_rwlock_unlock() pthread_rwlock_wrlock()
sem_post() sem_trywait() sem_wait() wait() waitpid()

Unfortunately, that brings in the object model problem, because an obvious prerequisite to avoiding
overlap is to know how big objects are. And that is what C99 (and hence POSIX) does not specify (see the
Objects paper referred to above). This problem with C and threading is precisely why I wrote the document
in the first place!

It also makes no reference to sequence points, volatile or I/O calls, and so has not a single point of
contact with C99’s rules. It is unclear what constraints this places on the C compiler beyond those placed by
C99, if any. This confusion is one reason that getting threaded C99 code to ‘work’ in HPC involves dropping
the optimisation level for no good reason, changing source code in irrelevant ways, adding arbitrary delays
and null system calls, and similar voodoo.

As implied above, POSIX relies heavily on non-interactive I/O and signals, yet the above specifies nothing
about them. Consider thread A signalling thread B, or thread A writing on a FIFO that is read by thread
B. If they are not synchronised by the above, what are they synchronised by? Are they allowed to breach
causality? This is not a joke, and really happens — some implementations will pre-execute code that they
know will be needed later, as permitted by the C99 standard, and neither C99 nor POSIX require them to
worry about either I/O (except to interactive devices) or signal synchronisation.

Many Internet application servers use threads to serve different requests, but use a connexionless model.
When the server sets up some state, it sends a message to some external entity, that entity responds, the
server receives the response, and another thread handles the response, they assume that it can use the state
that was set up in the first place. But POSIX does not require that to be supported.

As above, I can witness that these problems arise in practice.

3.3. Other Model Issues with POSIX

POSIX Base Definitions 3.393 Thread:

A single flow of control within a process. FEach thread has its own thread ID, scheduling priority and
policy, errno value, thread-specific key/value bindings, and the required system resources to support a flow of
control. Anything whose address may be determined by a thread, including but not limited to static variables,
storage obtained via malloc(), directly addressable storage obtained through implementation-defined functions,
and automatic variables, are accessible to all threads in the same process.

It looks very reasonable, until one thinks a bit harder. What about a va_list object created in a
thread; can it really be used in another? That is what the wording says. Is it really reasonable to require
implementations to support that? As an implementor, it sends shivers up my spine.

And would one really want to allow C++ exception objects to be accessed from threads other than the
one handling them? The above wording states that it is permitted, but it is a potential implementation
nightmare, especially for systems that are not based on Unix, as I can witness from personal experience.

POSIX System Interfaces 3. longjmp():

The longjmp() function shall restore the environment saved by the most recent invocation of setjmp()
in the same thread, with the corresponding jmp_buf argument. If there is no such invocation, or if the
function containing the invocation of setjmp() has terminated execution in the interim, or if the invocation
of setymp() was within the scope of an identifier with variably modified type and execution has left that scope
in the interim, the behavior is undefined.

WG21/N1940 J16/06-0010 2006-02-14

Did they really mean to say that? It certainly states that a single jmp_buf can be used by two threads
in parallel, and it will select the right data. It is very doubtful that any implementations do that, or it is
what was meant.

3.4. POSIX Thread Safety
POSIX Base Definitions 3.396 Thread-Safe:

A function that may be safely invoked concurrently by multiple threads. FEach function defined in the Sys-
tem Interfaces volume of IEEE Std 1003.1-2001 is thread-safe unless explicitly stated otherwise. Examples
are any “pure” function, a function which holds a mutex locked while it is accessing static storage, or objects
shared among threads.

That seems to conflict with POSIX Base Definitions 4.10 Memory Synchronization, which says that
only some functions synchronise memory. The obvious interpretation is that 3.396 is referring to the hidden
objects used to implement a function, and 4.10 to the objects visible to the programmer. For some functions,
that makes sense, though it gets rather less rational on a closer inspection.

POSIXs list of not thread-safe functions (System Interfaces 2.9.1 Thread-Safety) is erroneous, in that
it does not include mblen, mbtowc, srand and tmpnam, and bizarre, in that it does not include abort,
atexit, exit, raise, setlocale and signal. It is unclear what thread-safety means for setlocale
and signal, and truly baffling what it might mean for abort and exit.

The macros of the single-char I/O functions (e.g. putc) are clearly stated as not sequence-point safe (C99
7.1.4 footnote 156), yet are thread-safe in POSIX. Many vendors have responded by eliminating the macros,
which is a performance penalty for the programs that relied on them being very efficient and optimisable.
But the question remains: what on earth does thread-safe but not sequence-point safe mean?

More seriously, the penalty of requiring all I/O functions to be thread-safe is considerable. In a highly
parallel program written so that only one thread does I/O to any one file (which is what all experienced
parallel programmers do), there is the penalty of a lock on every I/O operation. Does C++ really want to
impose that on the programmers who write sane code?

3.5. Specification Summary

As a long-standing expert of last resort on many areas of programming (including Fortran, C, portability,
error handling and threading), I would classify the causes of the problems encountered in tested programs
written by experienced programmers as follows (very roughly):

Ambiguity in the standard Fortran C pthreads
Clear programmer error 45% 25% 15%
Clear implementor error 40% 20% 10%
Ambiguity in the standard 15% 55% 30%
Inconsistency between standards — — 45%

Of course, I am excluding the much larger number of obvious user errors, as they get filtered out at an
earlier stage. Also, to be fair, the sample size for the last category is very small, but the results are very
disturbing. That is another reason that I say that the POSIX threads specification is unsuitable to use as
a basis for C++ threading.

4.0. Implementation Aspects

The implementation problems of using a different model are usually exaggerated. If C++ were to use a
cleaner, simpler and more suitable model, implementing that using POSIX threads might well be quicker,
easier and more reliable than attempting to implement a ‘simple’ integration of POSIX threads into C++.
The reason is that it would enable the implementor to avoid many of the undefined or unreliable areas of
POSIX threads. The process termination issues above are a good example. This benefit should not be
underestimated.

WG21/N1940 J16/06-0010 2006-02-14

As far as exception handling is concerned, a proper hierarchical model would be much simpler than the
POSIX one, and would allow an exception to pass from a child thread back to its parent when the child
thread fails to handle it and dies. This is no harder than allowing exit to be called from an arbitrary
thread, as I can witness from actual implementation experience.

4.1. Efficiency

Up until recently, most systems made use of multiple, semi-independent CPUs by running a large pool
of serial processes in parallel, but each process was definitely serial. There were a fair number of older
systems which used parallelism for performance, and they generally tended to use inter-dependent CPUs
with restrictive, lightweight threads which ran within the context of a process. To some extent, the two
models are still with us in applications, exemplified by the Internet application servers and HPC programs,
and there are some signs that the second type of system may be making a comeback.

Originally, threads were called lightweight processes, and were designed to be very cheap. However,
POSIX threads took a different approach, and have added so many of the features of processes that they
are very similar to separate processes with a common virtual address map. In fact, most systems either
implement them as a derivative of full processes, or implement both as derivatives of a system process/thread.

In particular, POSIX more-or-less requires them to be scheduled as independent processes. Because this
is precisely what is not wanted for tightly coupled parallel applications, several systems have created their
own, more genuinely lightweight threads. There were, of course, several alternatives in use before about
1990, but most of them have faded from memory, though they may return.

This is not a minor point. My experience (on several systems) with attempting to tune OpenMP and
POSIX threads codes is that the majority of tightly-coupled programs fail to scale because of obscure
interactions with the scheduler, usually in aspects that are neither documented nor controllable (not even
by the system administrator). I have seen degradations of factors of 100 and more, and believes that this
may be why so many people have given up.

To keep this document within bounds, and to avoid delving into areas that are so arcane that most
programmers do not know they exist, I shall not discuss scheduling models.

5.0. Conclusion

The conclusion was stated in the first section — POSIX threads are not a suitable basis for adding
threading to C++, either conceptually or as a specification. Designing a form of threading that fits more
naturally into C++ would lead to a more reliable result, would almost certainly be quicker, and might well
be easier to implement using POSIX threads than integrating POSIX threads as they stand.

If there is a need to provide a POSIX threads binding (as part of a full POSIX binding or otherwise), my
suggestion is to define the syntactic binding, to require implementation-definition of the major problem areas
(like process termination and exception handling), and to say that all other areas of conflict are undefined
behaviour. That is what will be the case in practice, anyway, as it is at present when POSIX is called from
C++.

WG21/N1940 J16/06-0010 2006-02-14

