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1 Introduction

1.1 Overview

The HEP (high-energy physics) community has long embraced C++ as its primary lan-
guage for obtaining, saving to mass storage, restoring from mass storage, and analyzing
large amounts of physics event data. Current experiments as well as experiments under
development make extensive use of large bodies of code written in C++. Several ad hoc
toolkits and libraries have been written to support the physicist user base in its efforts
to process petabytes of scientific data.

We believe that many of these activities have been significantly more difficult than
they might have been. We attribute much of this difficulty to the lack of a standard
means to obtain information from a C++ language processor regarding a compiled piece
of code, a facility historically termed reflection.

1 This document arose from a three-day workshop held at Fermilab starting January 31, 2005. It
summarizes the combined input of a representative sampling of knowledgeable members of the high-energy
physics community.

2 Affiliation: Fermi National Accelerator Laboratory, Batavia, Illinois, USA
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The purpose of this document is to identify and describe the features of a reflection
mechanism that would satisfy the needs of our community and would support the tasks
mentioned above.

After identifying the significant aspects of reflection mechanisms, this document will
briefly describe many of the HEP applications (programs, components, tools, and design
patterns) that would directly benefit from the availability of additional compiler-supplied
information. We then present an overview of the capabilities that would make a reflection
mechanism most useful for the described applications.

Finally, we present a representative survey of mature HEP-developed products which
today depend on their own limited extra-linguistic implementations of C++ reflection
capabilities.

1.2 Nomenclature

Broadly, a reflection mechanism is a means to obtain and exploit, under control of a
compiled program, information that is traditionally known only to the compiler. More
precisely, we define reflection as the aggregate of three sets of capabilities:

1. Introspection: Access to information that appears in the definitions of C++ enti-
ties [C++03, §3/3] such as functions, classes, and templates.

2. Interaction: Ability to invoke functions and to influence (and create) objects based
on information acquired via introspection.

3. Extension: Ability to influence the behavior of a class (as opposed to an instance of
a class), effectively altering the information that future introspection would deliver,
without compiling additional code.

We note that conventional notions of introspection have focused on run-time avail-
ability of compile-time information. However, compile-time access to introspection in-
formation can be generally useful for tailoring code behavior via generic programming
and metaprogramming techniques. The type traits facility specified in the forthcoming
TR1 [Austern05, §4] is certainly a step in this direction, but is insufficient for our pur-
poses. While it can provide compile-time answers to such queries as, “Is this data type
integral?” it can’t answer such questions as “Is an instance of this class usable as a
niladic functor?” or “Does this class have a debugPrint() member?”

2 Executive summary

Prior published work on the subject of reflection includes [Adams04], [Forman99], [DosReis04],
[Vollmann00], [Vollmann05], and [Vandevoorde03]. With some modifications, those or
other approaches and systems can be utilized to satisfy many of the requirements we
present in this paper. The hope is that C++0x will incorporate features along similar
lines, thereby providing most of the reflection capabilities which current HEP applica-
tions employ but obtain ad hoc.
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Our most basic need is the ability to represent a program’s types and functions as
data structures that are usable outside of that program4. External tools such as the
Pivot [DosReis04] and GCC_XML [King] provide some of this functionality:

• A class library for the representation of a program’s structure (the Pivot only),
• Tools for extracting this structural (implementation-independent) information from

a body of source code, and
• A mechanism for saving this representation in an external format.

We also require implementation-dependent quantities, e.g., the size, ordering, and padding
of data members, in order to support our needs in creating a persistence mechanism.
These are not today provided by either of these tools. Further, because these tools are
inherently outside the compiler, they are more difficult to use, requiring a “two phase”
build of an application (further discussed below).

Of next greatest importance is the ability to inspect and modify object data, based
on the representations of the type of that object. When combined with the facility de-
scribed above, the ability to inspect—and to modify—object data is important for saving
and restoring object state. The ability to interact with an object through such a facility
would decrease (or perhaps eliminate) our need for implementation-dependent informa-
tion concerning the layout of class member data. The ability to make a persistence
mechanism that is independent of C++ implementations is important to our community;
it reduces the amount of domain-specific code that we must support.

We would next like to remove the need for the two-phase build5 inherent in the use
of any external tool. To do so requires that the data structures carrying the reflection
information be created by the compiler, and made available (on demand) to the compiled
application. Our community exerts considerable effort to support and maintain the code
generation tools we currently use in the first build phase, and these tools are inadequate
in that they understand only a subset of C++. Integration of such tools into the compiler
would solve these problems.

Next in importance is the ability to access introspection information at compile time.
The type traits facility [Austern05, §4] provides access to some type information, but it
is not sufficient for such purposes as compile-time feature discovery, the ability to ask a
class whether it supports a specific functionality and to adapt code accordingly. Lacking
such facilities, our community, among others, currently forgoes numerous opportunities
for early tuning of application code.

We would next like the ability to invoke functions based on reflection information. For
example, such reflection information might constitute an interface to an external entity.
This permits an application to make use of that external entity’s services. Conversely, an
application can publish its own capabilities for other applications to discover and exploit
at run-time. (Similar interests are described in [Vollmann00].) This ability facilitates use
of component programming in C++.

4 Technically, of a translation unit rather than necessarily of an entire program.

5 In the first phase of building, the reflection information is generated, and possibly new code is au-
tomatically written (and compiled) using that information. In the second phase of building, the generated
code is used to build the user application.
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Finally, we would like the ability to extend at run-time, with user-defined details, the
information associated with an entity. Our community has termed this annotation, and
would find this useful in providing application-specific hints to deal with dynamically-
sized data in legacy types.

Should Vandevoorde’s experimental metacode project [Vandevoorde03] prove to be
feasible and achieve standardization in C++, we believe it would provide sufficient ex-
pressive power as to provide many of the above features directly, and to permit straight-
forward development of libraries to provide most or all of the remaining functionality.

3 How we use reflection

In this section, we describe categories of applications and programming techniques that
employ reflection and that are important in physics (and very likely in other) contexts.
We also indicate the specific reflection capabilities whose standardization would signifi-
cantly improve the implementation of such applications.

3.1 Externalization

By externalization we mean the extraction of object state from a running program for its
later reconstitution in a different context. Externalization is important for such appli-
cations as inter-process communication and long-term data storage. IPC is a prime use
for serialization, the ability to march sequentially through each data member (including
base classes) of an object and append each to a stream. Long-term data storage is the
canonical use case for persistence, the ability to take an in-memory representation of
an object and store it permanently, usually either directly in a file or in a database.
Persistence may involve the use of serialization as well as more advanced mappings of
objects to storage, e.g., the use of several distinct storage streams.

Implementation of externalization requires the ability to obtain the static type infor-
mation about an object and use it to traverse an object’s public and non-public bases
and members. Such per-member knowledge needs to include type, access, and offset
information.

Externalization needs the ability to create objects, accommodating the possibility
that an object may be not default-constructible. We also require the ability to recover
on one platform objects that were externalized elsewhere. The object type and identity
must thus be preserved across C++ implementations.

Support for schema evolution provides the ability to cope with changes, over time, in
the definition of a persistent object’s type. Current applications perform ad hoc match-
ing, based on member names, in order to restore an object of some class.

Support for transient data provides the ability to reduce space requirements of per-
sistence by storing only specified parts of an object’s data. Any missing (transient) parts
would be reconstructed, if needed, by other means. Since no persistence mechanism
can a priori be expected to know which subobjects of a generic object may be transient,
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there must be some means (often termed annotation) for a user program to provide such
additional information. Since the persistence mechanism learns about the class via
reflection, such an annotation capability should be coupled to reflection information.

Annotation can also be used to support persistence of an array whose extent is not
deducible at compile-time. This facility is especially useful to provide persistence for
types that are beyond a programmer’s control.

We note that the same capabilities that enable externalization also make possible
object browsing frameworks for visualization and data exploration. Physics analysis has
historically made heavy use of such frameworks.

3.2 Algorithm tailoring

The ability to customize algorithms, e.g., via template specialization, has proven a valu-
able feature of modern C++. Programming techniques such as traits and policy classes
have been devised and have evolved in support of such customization in the context of
generic code. While clearly useful, we view such techniques as workarounds, in signifi-
cant part, to cope with the absence of reflection from C++.

Among the most common use cases is the desire to take advantage, in generic code,
of a specific client class’s features. If a class provides, say, a member sort(), a generic
algorithm is typically better off to call it rather than std::sort(), for instances of that
class. While numerous coding practices have been proposed to handle such a scenario,
none has achieved widespread acceptance, and some have even (with some justification)
been labeled “arcane.”

A reflection mechanism that can report on the presence of a designated member
function, coupled with other features previously articulated, can more uniformly sup-
port such use cases.6

3.3 Component programming

Component programming refers to the technique of discovering at run-time what capa-
bilities are available from some system external to the current program’s code, and then
exploiting those capabilities. Reciprocally, the C++ application may wish to make known
its own capabilities and interface so that other components can take advantage of its
abilities.

Reflection can facilitate such applications. It is necessary to bind with only a single
type, namely that of a reflection object, in order for an application to gain access to
any other object that may be available within a running application. This allows the
reflection objects’ clients to use, without recompilation, existing and new services that

6 While modern C++ can determine (via SFINAE application, for example) the presence of a specified
member type, no coding technique has yet been devised to detect with well-formed code, at either compile-
time or run-time, the presence of any other kind of specified member.
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may become available. These features are particularly useful for applications that re-
quire human interaction when the combination of activities that may be performed is
not known at compile time. In addition, a C++ application can publish its own interface
in such a fashion as to permit the bridging of two computing environments.

To permit such use, the reflection machinery must be able to construct type-information
objects and to access data and invoke available functions based on the contents of such
objects. Further, the reflection machinery should be able to emit type-information ob-
jects describing its client application’s capabilities.

Our community makes extensive use of the factory pattern [Gamma95] to instantiate
an object whose type is determined at run-time. In the absence of reflection capability,
this has required cooperation from the classes that define the types of objects to be thus
instantiated. These candidate classes have been intrusively burdened to supply specific
functionality for the factory to call, to “register” themselves before their instances can
be created, or both. Support from a reflection mechanism would obviate the need for
such intrusion. The primary requirement would be the ability for the mechanism to
instantiate an object by invoking a class’s constructor upon request.

4 Essential features and capabilities

In this chapter we provide an overview of the basic requirements for a reflection system
as motivated by the HEP community’s common uses described in the previous chapter.
Most of these software needs are so important that the community’s software specialists
today implement the needed reflection capabilities themselves. Many or most of these
home-grown implementations are neither very clean nor easy to use; nonetheless, their
functionality is considered sufficiently important that good developers are willing to cope
with anticipated maintenance headaches in order to get the needed capabilities.

We begin by articulating the basic operating principles envisioned for a reflection
mechanism.

4.1 Basic principles

A reflections mechanism will be most valuable if:

1. The mere availability of reflection capabilities does not impact programs which
make no use of reflection.

2. The mechanism is non-intrusive so that applications need not modify any class
definition in any way in order to utilize reflection capabilities.

3. The mechanism is self-contained, requiring neither a separate pre-compilation
step, nor run-time access to the compiled sources, nor the presence of the compiler
at run-time.

4. The capabilities of reflection are sufficiently rich to support the important applica-
tion areas we have previously identified.
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We note that existing persistence mechanisms and other reflection-like tools written for
HEP applications today manage to achieve most of the desired capabilities, but at the
cost of being non-self-contained and sometimes intrusive (see §5 for an overview of two
representative projects).

4.2 Introspection

Most of the requirements in this area pertain to the run-time acquisition of static type
and type-related information regarding entities declared at namespace scope or at class
scope. By type-related we mean to include such information as mutability, accessibility
(in the case of sub-objects), and (in the case of template specializations) template pa-
rameters. By static we limit ourselves in this section to information that, coupled with
knowledge regarding such compiler decisions as data and function placement, can be
deduced by examining definitions and other declarations in the source code. For brevity,
we occasionally refer to the ensemble of such extended type information as “Type infor-
mation” (note the capitalization).

For entities that are composites, we will require the ability to iterate over the con-
stituent parts and to obtain the Type information of each. Examples of such com-
posites would include function and template argument lists (each argument is a con-
stituent), classes (each member is a constituent), and overload sets (each function is a
constituent). We would prefer to iterate separately over distinct kinds of constituents;
for example, we would like to iterate over a class’s data members separately from its
function members.

Finally, as a special feature, introspection should make available at compile time suf-
ficient information to tailor template code to take best advantage of a class’s properties.
As examples, it would be extremely useful to determine whether a class has a member
function matching a given name and signature, or a data member of a given name and
type, or (in general) all the attributes of any specified class member, such as the return
type of a particular member function.

4.3 Interaction

The basic reflection requirements in this category involve the ability to access an object
and to invoke a function, specifying the entity only at run-time. The objective of such
requirements is to permit interaction, in a generic way, with object instances, without
need to provide advance notice of the types to be involved in such interaction.

Interaction logically depends on introspection. As a particular example, the ability
to call functions interactively would give us the ability to create objects by calling upon
an appropriate constructor, after discovering via introspection what constructors of a
particular type are available.
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4.4 Extension

The most aggressive requirements on a reflection mechanism would be the ability to
extend the type system in a dynamic fashion. In the absence of run-time invocation of
compiler facilities, we would require extension only in the nature of annotation and of
externally-based type information. As described earlier, such annotation can be used in
conjunction with objects whose types have a dynamic component (such as dynamically-
allocated or partially-used arrays).

5 Survey of related projects in the HEP community

This chapter provides a brief overview of two specific projects that members of the high-
energy physics community have undertaken or contributed to in attempts to address
the lack of reflection capabilities in C++98 and C++03.

5.1 CINT

Many high energy physicists work extensively with a data analysis framework called
ROOT [Brun05]. To allow these users to express equations and algorithms interactively,
and to link to complex analysis code modules, ROOT relies on an interpreter called
CINT [Goto02]. Originally designed as a portable C interpreter, CINT was later enhanced
to support much of C++. It is used in several ways:

• A “CINT script” can make use of compiled classes and functions.
• Compiled C++ code can use the CINT API to make callbacks to compiled or to

interpreted functions.
• CINT also offers a gdb-like debugging environment for interpreted programs.

Each of these features requires introspection and interaction capabilities. For func-
tions written in C and residing in shared object (or dynamically loadable) libraries, nec-
essary information can be deduced from the compiled code in the library; the developers
of CINT were able to find a utility (dlsim) to extract from the object code sufficient
information to allow invoking the function.

However, C++ code is much richer in complexity; a C++ library’s contents alone are
insufficient to deduce the needed reflection information. Use of classes and their mem-
bers necessitates an additional step to acquire the needed information: CINT processes
the library’s class definitions and function declarations in the source header files to
generate C++ source files (called “rootcint dictionaries”). A dictionary can be compiled to
form a module containing reflection information objects; this module can then be linked
with the user program either dynamically or statically. The user code — or utilities such
as the ROOT persistence mechanism — can make use of these reflection information
objects.

The user can choose when to generate and compile the rootcint dictionary files. If
the dictionaries are generated before static linking of the overall program, ROOT can
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deliver persistence in a statically linked executable. By compiling dictionaries generated
at run-time (and dynamically linking the resulting code along with the ordinary class
code), ROOT can deliver interpretor-like control of C++ (compiled) classes.

In-memory reflection information objects produced by generating and compiling dic-
tionaries comprise most of the introspection information and provide most of the in-
teraction capabilities desired from static type information objects. ROOT uses this in-
formation to provide non-intrusive persistence, including schema evolution. CINT also
provides a mechanism to call, at run-time, any of the functions described in these re-
flection information objects.

Implementing this system would have been simpler (and more robustly portable)
if standard C++ provided the reflection capabilities outlined in this document. In the
absence of such a standard reflection mechanism, CINT developers had to devise nu-
merous workarounds:

• They had to define and implement their own reflection information class.
• They had to write and maintain a parser to read and understand C++ header files.
• They had to write a code generator to produce the rootcint dictionary files (which

in turn contain definitions of reflection information objects).
• They had to devise a mechanism for compiling and linking the dictionaries.

All of these steps have caused major headaches whenever either the C++ language or
the level of compliance attained by available compilers evolved. Despite heroic efforts,
the CINT community has never been in a position to handle all C++ features, nor in a
position to make every possible class persistent.

5.2 SEAL Reflex

SEAL Reflex [Roiser04] was developed by the HEP community in an attempt to remedy
some of the deficiencies of the CINT parser and to provide full reflection information
encompassing as much of the C++ ISO/ANSI standard as possible.

SEAL Reflex requires (as does CINT) generation, compilation, and linking of dictionar-
ies in order to make reflection information available at run-time. Again, these in-memory
reflection information objects provide introspection information (§4.2) and interaction
capabilities (§4.3) meeting many of the requirements set forth above.

Because it relies on GCC_XML [King], SEAL Reflex guarantees that all of a user’s
header files can be properly parsed. GCC_XML is a front end to the GNU compiler, used
to generate XML files representing the C++ entities. These XML files are then parsed by
a code generator that produces the dictionaries.

Some of the desiderata guiding the design of SEAL Reflex are:

• Lightweight standalone system (no external dependencies).
• Automatic and non-intrusive generation of dictionary libraries.
• Emphasis on run-time performance and minimization of the memory footprint.
• Full C++ standard compliance.
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Other than avoiding the need for a custom parser by relying on GCC_XML, the de-
velopers of SEAL Reflex faced all the same awkward implementation issues that CINT’s
developers encountered.

6 Conclusion

In this document, we have described the needs and representative requirements of the
high-energy physics community for a general reflection mechanism to be incorporated
into a future revision of the C++ language. We invite feedback from prospective users
with similar needs, and encourage all members of the C++ community to contribute and
discuss ideas regarding language-based and library-based solutions that meet these and
related needs.
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