
Adding a Policy-
Based Smart 
Pointer Framework 
to the Standard 
Library

David B. Held

WG21/N1739=J16/04-0179



Introduction

� Users demand smart pointer 
flexibility

� A default smart pointer type is a 
Good Thing™

� A single smart pointer type is 
insufficient

� Conclusion: add a PBSP 
framework to the Standard Library



Ownership Strategies I

� External count (e.g.: shared_ptr<>)
� Intrusive count (e.g.: COM and 

CORBA® pointers)
� Reference linked
� Collected (e.g.: managed_ptr<>)

Shared Ownership



Ownership Strategies II

� No copy (e.g.: scoped_ptr<>)
� Deep copy (e.g.: grin_ptr<>)
� Move copy (e.g.: move_ptr<>)



Storage Policies

� Scalar storage (default)
� Array storage (leak-safe wrapper)
� FILE* wrapper?
� Win32® HWND wrapper?
� Mutex wrapper?



Checking Strategies

� Checking for null on dereference 
adds up to 40% time overhead

� Assert vs. throw
� Compile-time default-init rejection 

(require explicit initialization)



Observations

� Users want choice so badly they 
will and do hand-roll their own 
smart pointers

� The Standard Library will be 
underutilized if it only offers one 
point in the SP design space

� A proliferation of independent 
smart pointer types leads to 
redundancy



Proposed Solution

� Add a PBSP framework to the 
Standard Library

� Reduces avoidable boilerplate 
across types

� Simplifies and helps customization



Concerns

� Usability of any complex policy-
based library is affected by 
template alias support (c.f.: N1489)

� A move configuration may only be 
practical with intrinsic move 
support (à la N1377)

� Proliferation of types may 
complicate interoperability



Impact

� tr1::shared_ptr<> + weak_ptr<>

can be emulated
� With proper move support, 
std::auto_ptr<> can be emulated

� Remaining Boost smart pointer 
types, including scoped_ptr<> and 
intrusive_ptr<> can be emulated



Result

� Eventually, std::auto_ptr<>, 
tr1::*_ptr<>, etc. should be 
mandated as policy configurations

� shared_ptr<>, due to its broad use 
and general-purpose nature, 
should be the default configuration



Implementation I

� Framework should follow the 
policy_ptr<> design soon to be 
reviewed by Boost

� This design is directly derived from 
Loki::SmartPtr<>, which has had 
users since its debut in ’01

� The design has been refined 
through experience and community 
criticism



Implementation II

� Modern compilers can handle the 
complexity of PB-designs

� Framework will benefit from 
acceptance of N1377 and N1489 
(move semantics and template 
aliases)



Conclusion

� The existing set of Standard 
Library and TR smart pointers are 
necessary but not sufficient

� There are no significant obstacles 
to adoption of this proposal

� A PBSP framework will meet smart 
pointer demands now and for the 
future


