Adding a Policy-
Based Smart
Pointer Framework

to the Standard

Library

David B. Held




Introduction

Users demand smart pointer
flexibility

A default smart pointer type is a
Good Thing™

A single smart pointer type is
insufficient

Conclusion: add a PBSP
framework to the Standard Library




Ownership Strategies |
Shared Ownership

External count (e.g.: shared_ptr<>)
Intrusive count (e.g.: COM and

CORBA® pointers)
Reference linked
Collected (e.g.: managed_ptr<>)




Ownership Strategies |

No copy (e.g.: scoped_ptr<>)
Deep copy (€.9.: grin_ptr<>)
Move copy (e.g.: move_ptr<>)




Storage Policies

Scalar storage (default)

Array storage (leak-safe wrapper)
FILE* wrapper?

Win32® HWND wrapper?
Mutex wrapper?




Checking Strategies

Checking for null on dereference
adds up to 40% time overhead

Assert vs. throw

Compile-time default-init rejection
(require explicit initialization)




Observations

Users want choice so badly they
will and do hand-roll their own
smart pointers

The Standard Library will be
underutilized if it only offers one
point in the SP design space

A proliferation of independent
smart pointer types leads to
redundancy




Proposed Solution

Add a PBSP framework to the
Standard Library

Reduces avoidable boilerplate
across types

Simplifies and helps customization




Concerns

Usability of any complex policy-
based library is affected by
template alias support (c.f.: N1489)

A move configuration may only be
practical with intrinsic move
support (a la N1377)

Proliferation of types may
complicate interoperability




Impact

trl::shared_ptr<> + weak_ptr<>
can be emulated

With proper move support,
std: :auto_ptr<> Cdn be emulated

Remaining Boost smart pointer
types, including scoped_ptr<> and
intrusive_ptr<> can be emulated




Result

Eventually, std::auto_ptr<>,
trl::* ptr<>, etc. should be

mandated as policy configurations
shared_ptr<>, due to its broad use

and general-purpose nature,
should be the default configuration




Implementation |

Framework should follow the
policy_ptr<> design soon to be

reviewed by Boost

This design is directly derived from
Loki::SmartPtr<>, Which has had
users since its debut in '01

The design has been refined

through experience and community
criticism




Implementation Il

Modern compilers can handle the
complexity of PB-designs

Framework will benefit from
acceptance of N1377 and N1489
(move semantics and template
aliases)




Conclusion

The existing set of Standard
Library and TR smart pointers are
necessary but not sufficient

There are no significant obstacles
to adoption of this proposal

A PBSP framework will meet smart
pointer demands now and for the
future




