
Document Number: J16/04-0165 = WG21 N1725
Date: 2004-11-08

Reply to: William M. Miller
Edison Design Group, Inc.
wmm@edg.com

Copy Elision in Exception Handling

I.      The Problem  

Clause 15 has two passages dealing with copy elision in exception handling.  15.1¶5 says,

If the use of the temporary object can be eliminated without changing the meaning
of the program except for the execution of constructors and destructors associated
with the use of the temporary object (12.2), then the exception in the handler can
be  initialized  directly  with  the  argument  of  the  throw  expression.  When  the
thrown object  is a class object,  and the copy constructor used to initialize the
temporary  copy  is  not  accessible,  the  program  is  ill-formed  (even  when  the
temporary object could otherwise be eliminated). Similarly, if the destructor for
that object is not accessible, the program is ill-formed (even when the temporary
object could otherwise be eliminated).

In a sometimes overlapping, sometimes differing passage, 15.3¶17 says,

If the use of a temporary object can be eliminated without changing the meaning
of the program except for  execution of constructors and destructors associated
with the use of the temporary object, then the optional name can be bound directly
to the temporary object specified in a throw-expression causing the handler to be
executed. The copy constructor and destructor associated with the object shall be
accessible even when the temporary object is eliminated.

Part  of the difference is terminological.   For instance,  15.1¶5 refers to “the exception in the
handler,” while the “optional name” in 15.3¶17 is a reference to the exception-declaration that is
part of a handler (15¶1).  There are substantive differences, however: 15.3¶17 appears to deal
only with the case in which the exception-declaration has a name, and then only if the operand of
the  throw-expression is  a  temporary.   By contrast,  15.1¶5  seems to  apply to  all  exception-
declarations and appears to allow something like the return value optimization of 12.8¶15, where
copying a local automatic object can be avoided by constructing it directly into the return value.

Another issue is that 12.8¶15 would appear to be an exhaustive catalog of the circumstances in
which constructor and destructor side-effects can be ignored in copy elision.  However, these two
passages in clause 15 specify additional  contexts  in which this  kind of optimization  may be
applied.

Finally,  clause  15  actually  specifies  two  distinct  copy operations  that  are  performed  during
exception handling: the copy from the operand of the throw-expression to the exception object
(15.1¶3)  and  the  copy from  the  exception  object  to  the  object  declared  by  the  exception-



Copy Elision in Exception Handling J16/04-0165 = WG21 N1725

declaration (15.3¶16).   These  operations  are  logically  distinct  and  separately susceptible  to
optimization, although these elisions can be combined to achieve the effect described in these
passages.   Both  15.1¶5  and  15.3¶17  blur  this  distinction  and  thus  provide  an  insufficient
specification for these optimizations.

II.      Proposed Resolution  

For consistency, both within clause 15 and with clause 12, I believe the principal specification of
copy elision in exception handling ought to be in 12.8¶15, with references to that section in
clause 15.

1. Change 12.8¶15 as follows:

When certain  criteria  are met,  an implementation is  allowed to omit  the copy
construction of a class object, even if  the copy constructor and/or destructor for
the object have side effects. In such cases, the implementation treats the source
and target of the omitted copy operation as simply two different ways of referring
to the same object, and the destruction of that object occurs at the later of the
times when the two objects would have been destroyed without the optimization.
[Footnote: Because only one object is destroyed instead of two, and one copy
constructor  is  not  executed,  there  is  still  one  object  destroyed  for  each  one
constructed.] This  elision  of  copy  operations  is  permitted  in  the  following
circumstances (which may be combined to eliminate multiple copies):

• in a return statement in a function with a class return type, when the
expression is the name of a non-volatile automatic object with the same
cv-unqualified type as the function return type, the copy operation can
be  omitted  by  constructing  the  automatic  object  directly  into  the
function’s return value

• in  a  throw-expression,  when  the  operand  is  the  name of  a  non-
volatile automatic object, the copy operation from the operand to
the  exception  object  (15.1)  can  be  omitted  by  constructing  the
automatic object directly into the exception object

• when a temporary class object that has not been bound to a reference
(12.2) would be copied to a class object with  the same cv-unqualified
type, the copy operation can be omitted by constructing the temporary
object directly into the target of the omitted copy

• when the exception-declaration of an exception handler (clause 15)
declares an object of the same type (except for cv-qualification) as
the exception object (15.1), the copy operation can be omitted by
treating  the  exception-declaration as  an  alias  for  the  exception

page 2 of 3



Copy Elision in Exception Handling J16/04-0165 = WG21 N1725

object if the meaning of the program will be unchanged except for
the  execution  of  constructors  and  destructors  for  the  object
declared by the exception-declaration

[Example: ...

2. Change 15.1¶5 as follows:

If the use of the temporary object can be eliminated without changing the meaning
of the program except for the execution of constructors and destructors associated
with the use of the temporary object (12.2), then the exception in the handler can
be  initialized  directly  with  the  argument  of  the  throw  expression. When  the
thrown object  is a class object,  and the copy constructor  used to initialize the
temporary copy and the destructor shall be is not accessible, the program is ill-
formed (even when the temporary object could otherwise be eliminated even if
the copy operation is elided (12.8). Similarly, if the destructor for that object is
not accessible, the program is ill-formed (even when the temporary object could
otherwise be eliminated).

3. Change 15.3¶17 as follows:

If the use of a temporary object can be eliminated without changing the meaning
of the program except for  execution of constructors and destructors associated
with the use of the temporary object, then the optional name can be bound directly
to the temporary object specified in a throw-expression causing the handler to be
executed. The copy constructor and destructor associated with the object shall be
accessible even when the temporary object is eliminated if the copy operation is
elided (12.8).

page 3 of 3


