
Document Number: J16/04-0066 = WG21 N1626
Date: 2004-04-04

Reply To: William M. Miller
The MathWorks, Inc.
wmm@world.std.com

Proposed Resolution for Core Issue 39 (Rev. 1)

I. Introduction

The previous version of this paper (J16/03-0126 = WG21 N1543) contains an in-depth analysis
of Core Language issue 39 and proposed Working Paper wording changes to implement the de-
liberations of the Core Language Working Group at the Kona (October, 2003) meeting. That
wording was discussed at the Sydney, Australia (March, 2004) meeting, resulting in some small
modifications. This paper contains the complete wording of the proposed resolution, for ease of
reference.

The wording herein is the same as in the earlier paper, with two exceptions:

The revision proposed for 5.2.5¶4 was modified as described in message c++std-core-
10295, and the wording was changed slightly as a result of the CWG’s review.

In response to the concerns raised in message c++std-core-10442, the proposal now
contains a revision to the text of 5.2.2¶4.

II. Detailed Wording Changes
1) Change 10.2¶2 to read:

The following steps define the result of name lookup for a member name f in a
class scope C.

The lookup set for f in C, called S(f,C), consists of two component sets: the dec-
laration set, a set of members named f; and the subobject set, a set of subobjects
where declarations of these members (possibly including using-declarations) were
found. In the declaration set, using-declarations are replaced by the members they
designate, and type declarations (including injected-class-names) are replaced by
the types they designate. S(f,C) is calculated as follows.

If C contains a declaration of the name f, the declaration set contains every decla-
ration of f declared in C that satisfies the requirements of the language construct
in which the lookup occurs. [Note: Looking up a name in an elaborated-type-
specifier (3.4.4) or base-specifier (clause 10), for instance, ignores all non-type
declarations, while looking up a name in a nested-name-specifier (3.4.3) ignores
function, object, and enumerator declarations. As another example, looking up a

Proposed Resolution for Core Issue 39 (Rev.1) J16-04/0066 = WG21 N11626

page 2 of 3

name in a using-declaration (7.3.3) includes the declaration of a class or enumera-
tion that would ordinarily be hidden by another declaration of that name in the
same scope.] If the resulting declaration set is not empty, the subobject set con-
tains C itself, and calculation is complete.

Otherwise (i.e., C does not contain a declaration of f or the resulting declaration
set is empty), S(f,C) is initially empty. If C has base classes, calculate the lookup
set for f in each direct base class subobject Bi, and merge each such lookup set
S(f,Bi) in turn into S(f,C).

The following steps define the result of merging lookup set S(f,Bi) into the inter-
mediate S(f,C):

If each of the subobject members of S(f,Bi) is a base class subobject of at east
one of the subobject members of S(f,C), or if S(f,Bi) is empty, S(f,C) is un-
changed and the merge is complete. Conversely, if each of the subobject mem-
bers of S(f,C) is a base class subobject of at least one of the subobject mem-
bers of S(f,Bi), or if S(f,C) is empty, the new S(f,C) is a copy of S(f,B

i
).

Otherwise, if the declaration sets of S(f,Bi) and S(f,C) differ, the merge is am-
biguous: the new S(f,C) is a lookup set with an invalid declaration set and the
union of the subobject sets. In subsequent merges, an invalid declaration set is
considered different from any other.

Otherwise, the new S(f,C) is a lookup set with the shared set of declarations
and the union of the subobject sets.

The result of name lookup for f in C is the declaration set of S(f,C). If it is an in-
valid set, the program is ill-formed. [Example:

struct A { int x; }; // S(x,A) = { { A::x }, { A } }
struct B { float x; }; // S(x,B) = { { B::x }, { B } }
struct C: public A, public B { }; // S(x,C) = { invalid, { A in C, B in C } }
struct D: public virtual C { }; // S(x,D) = S(x,C)
struct E: public virtual C { char x; }; // S(x,E) = { { E::x }, { E } }
struct F: public D, public E { }; // S(x,F) = S(x,E)

int main() {
F f;
f.x = 0; // OK, lookup finds { E::x }

}

S(x,F) is unambiguous because the A and B base subobjects of D are also base subobjects
of E, so S(x,D) is discarded in the first merge step. —end example]

2) Turn the non-example text of 10.2¶4-6 into notes.

Proposed Resolution for Core Issue 39 (Rev.1) J16-04/0066 = WG21 N11626

page 3 of 3

3) Add the following text as a new paragraph following the current 10.2¶7:

[Note: Even if the result of name lookup is unambiguous, use of a name found in
multiple subobjects might still be ambiguous (4.11, 5.2.5, 11.2).] [Example:

struct B1 {
void f();
static void f(int);
int i;

};

struct B2 {
void f(double);

};

struct I1: B1 { };
struct I2: B1 { };

struct D: I1, I2, B2 {
using B1::f;
using B2::f;

void g() {
f(); // Ambiguous conversion of this
f(0); // Unambiguous (static)
f(0.0); // Unambiguous (only one B2)
int B1::* mpB1 = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion

}
};

—end example]

4) Add the following text as a new paragraph following 5.2.5¶4:

If E2 is a non-static data member or a non-static member function, the program is
ill-formed if the class of which E2 is directly a member is an ambiguous base
(10.2) of the naming class (11.2) of E2.

5) Change 5.2.2¶4 as follows:

If the function is a nonstatic member function, the “this” parameter of the func-
tion (9.3.2) shall be initialized with a pointer to the object of the call, converted as
if by an explicit type conversion (5.4). [Note: There is no access or ambiguity
checking on this conversion; the access checking and disambiguation are is
done as part of the (possibly implicit) class member access operator. See 10.2,
11.2, and 5.2.5.]

