
 Doc No: SC22/WG21/N1579
 J16/04-0019

 Date: February 10, 2004

 Project: JTC1.22.32

 Reply to: Herb Sutter David E. Miller
 Microsoft Corp. Atlantic International Inc.
 1 Microsoft Way 67 Wall Street, 22nd floor
 Redmond WA USA 98052 New York NY 10005
 Email: hsutter@microsoft.com Email: j16p0403@atl-intl.com

Strongly Typed Enums

1. Overview .. 2

2. The Problem, and Current Workarounds... 3
2.1. Problem 1: Implicit conversion to an integer ... 3
2.2. Problem 2: Inability to specify underlying type .. 4

2.2.1. Predictable and specifiable space ... 4
2.2.2. Predictable/specifiable type (notably signedness) ... 4

2.3. Problem 3: Scope .. 5
2.4. Problem 4: Incompatible extensions to address these issues... 6

3. Proposal .. 6
3.1. Create a new kind of enum that is strongly typed: enum class .. 7
3.2. Extend existing enums: Underlying type and explicit scoping... 8
3.3. One more extension to existing enums: No implicit conversions... 9

4. Interactions and Implementability ... 10
4.1. Interactions ... 10
4.2. Implementability.. 10

5. Proposed Wording .. 10
5.1. Main change: Updating [dcl.enum] and the Annex A grammar... 11
5.2. Other core changes .. 15
5.3. Recommended library changes.. 16

6. References .. 17

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 2
Strongly Typed Enums

1. Overview

�C enumerations constitute a curiously half-baked concept.�

 � [Stroustrup94], p. 253

C++ [C++03] currently provides only incremental improvements over C [C99] enums. Major safety
and security problems remain, notably in the areas of type safety, unintended errors, code clarity, and
code portability. Worse, in practice these problems typically manifest as silent behavioral changes
when programs are compiled using different compilers, including different versions of the same com-
piler. The results from such silent safety holes can be catastrophic, particularly in life-critical software,
and we should therefore close as many as we can.

Today�s workarounds boil down to not using enums, or at least never exposing them directly. Some of
the workarounds require heroic efforts on the part of library authors and/or users to provide what
should be a basic and safe feature.

This paper proposes extensions to enums that will reduce the likelihood of undetected errors while
enabling code to be written more clearly and portably. The proposed changes are pure extensions to
ISO C++ that will not affect the meaning of existing programs.

This paper is a revision of [Miller03] incorporating direction from the Evolution Working Group at the
October 2003 WG21 meeting. In particular, the EWG direction was that the proposal should be re-
vised to:

• focus on three specific problems with C++ enums (their implicit conversion to integer, the in-
ability to specify the underlying type, and the absence of strong scoping);

• come up with a different syntax than originally proposed;

• provide a distinct new enum type having all the features that are considered desirable; and

• provide pure backward-compatible extensions for existing enums with a subset of those fea-
tures (e.g., the ability to specify the underlying type).

The proposed syntax and wording for the distinct new enum type is based on the C++/CLI [C++/CLI-
WD1.1] draft syntax for this feature. The proposed syntax for extensions to existing enums is de-
signed for similarity.

This proposal falls into the following categories:

• Improve support for library building and security, by providing better type safety without
manual workarounds.

• Make C++ easier to teach and learn, by removing common stumbling blocks that trip new pro-
grammers.

• Improve support for systems programming, particularly for programmers targeting platforms
such as [CLI] that already provide native support for strongly typed enums.

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 3
Strongly Typed Enums

• Remove embarrassments. People with a vested interest in promoting other languages love this
kind of situation because it lets them buttress claims that C++ is �too hard� and �not type-
safe.� We should take away the ammunition.

2. The Problem, and Current Workarounds

2.1. Problem 1: Implicit conversion to an integer

Current C++ enums are not type-safe. They do have some type safety features; in particular, it is not
permitted to directly assign from one enumeration type to another, and there is no implicit conversion
from an integer value to an enumeration type. But other type safety holes exist notably because �[t]he
value of an enumerator or an object of an enumeration type is converted to an integer by integral
promotion� ([C++03] §7.2(8)).

For example:

enum Color { ClrRed, ClrOrange, ClrYellow, ClrGreen, ClrBlue, ClrViolet };
enum Alert { CndGreen, CndYellow, CndRed };

Color c = ClrRed;
Alert a = CndGreen;

a = c; // error
a = ClrYellow; // error
bool armWeapons = (a >= ClrYellow); // ok; oops

The current workaround is simply not to use the enum. At minimum, the programmer manually
wraps the enum inside a class to get type-safety:

class Color { // class simplified for clarity
 enum Color_ { Red_, Orange_, Yellow_, Green_, Blue_, Violet_ };
 Color_ value;

public:
 static const Color Red, Orange, Yellow, Green, Blue, Violet;

 explicit Color(Color& other) : value(other.value) { }

 bool operator<(Color const& other) { return value < other.value; }

 int toInt() const { return value; }
};

const Color Color::Red(Color::Red_);
 // etc.

// � here, repeat all the above scaffolding for Alert �

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 4
Strongly Typed Enums

Alert a = Alert::Green;
bool armWeapons = (a >= Color::Yellow); // error

2.2. Problem 2: Inability to specify underlying type

Current C++ enums have an implementation-defined underlying type, and this type cannot be speci-
fied explicitly by the programmer. This causes two related problems that merit distinct attention.

2.2.1. Predictable and specifiable space

It can be necessary to specify definitely how much space will be used by the representation of an
enumeration variable, particularly to be able to lay out fields in a struct with the expectation those
fields will have the same sizes and layouts across multiple compilers, as in data communications and
storage applications. Because current C++ enums allow implementations to take either the minimal
space necessary or a larger amount, they cannot be used reliably in such structures.

For example, consider the following subtle portability pitfall:

enum Version { Ver1 = 1, Ver2 = 2 };

struct Packet {
 Version ver; // bad, size can vary by implementation
 // � more data �

 Version getVersion() const { return ver; }
};

The current workaround is, again, not to use the enum:

enum Version { Ver1 = 1, Ver2 = 2 };

struct Packet {
 unsigned char ver; // works, but requires casting
 // � more data �

 Version getVersion() const { return (Version)ver; }
};

2.2.2. Predictable/specifiable type (notably signedness)

It can be necessary to specify how a value of the enumeration will be treated when used as a number,
notably whether it will be signed or unsigned. The difference can affect program correctness, and it
should be able to make this portably reliable without requiring heroic effort on the part of the library
writer or user.

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 5
Strongly Typed Enums

For example, consider the behavior of enum E in this code, where the naïve user declared Ebig using
a constant ending in a suffix specifying unsignedness and expected the compiler to understand the
intent:

enum E { E1 = 1, E2 = 2, Ebig = 0xFFFFFFF0U };

int main() {
 cout << sizeof(E) << endl;
 cout << "Ebig = " << Ebig << endl;
 cout << "E1 ? -1 =\t" << (E1 < -1 ? �less� : E1 > -1 ? �greater� : �equal�) << endl;
 cout << "Ebig ? -1 =\t" << (Ebig < -1 ? �less� : Ebig > -1 ? �greater� : �equal�) << endl;
}

This result of all three tests (the value of Ebig, and E1�s and Ebig�s comparisons to -1) is actually im-
plementation-defined and thus nonportable. This is counter-intuitive to users.

To illustrate, here is a sampling of the variety of results across compilers on the same Windows XP
test platform, all of which report sizeof(E) to be 4:

Compiler Ebig = ? E1 ? -1 Ebig ? -1 Warning

Borland 5.5.1 -16 greater less none

Digital Mars 8.38 4294967280 greater greater none

Comeau 4.3.3 (EDG 3.3) 4294967280 less less integer conversion resulted in a change of sign

gcc 2.95.3 4294967280 less less comparison between signed and unsigned

gcc 3.3.2 4294967280 less less comparison between signed and unsigned
integer expressions

Metrowerks CodeWarrior 8.3 -16 greater less none

Microsoft Visual C++ 6.0 -16 greater less none

Microsoft Visual C++ 7.1 4294967280 less less none

Microsoft Visual C++ 8.0 (alpha) -16 greater less signed/unsigned mismatch

Note the variance of behaviors across compilers, and from version to version of the same compiler.

It would be better if it were possible to easily write more portable code. Current workarounds require
forgoing enums and instead writing class wrappers (as in §2.1) or explicit casts (as in §2.2.1).

2.3. Problem 3: Scope

Current C++ enums are not strongly scoped. In particular:

• It is not legal for two enumerations in the same scope to have enumerators with the same
name. For example:

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 6
Strongly Typed Enums

enum E1 { Red };
enum E2 { Red }; // error

• More generally, the name of an enumerator exists in the enclosing scope, which causes name
conflicts and/or surprising results even when the enumerations are in different scopes. For ex-
ample:

namespace NS1 {
 enum Color { Red, Orange, Yellow, Green, Blue, Violet };
};

namespace NS2 {
 enum Alert { Green, Yellow, Red };
};

using namespace NS1;

NS2::Alert a = NS2::Green;
bool armWeapons = (a >= Yellow); // ok; oops

The current workaround is not to use the enum and instead write a class wrapper (as in §2.1).

2.4. Problem 4: Incompatible extensions to address these issues

Implementations already vary widely in practice in some of these areas, as shown in §2.2.2.

Some implementations already have added incompatible extensions to address some of these prob-
lems, which is undesirable. It would be better if the extensions were instead provided consistently
and reliably as standardized extensions in ISO C++ itself.

3. Proposal

This proposal is in two parts, following the EWG direction to date:

• provide a distinct new enum type having all the features that are considered desirable; and

• provide pure backward-compatible extensions for existing enums with a subset of those fea-
tures (e.g., the ability to specify the underlying type).

The proposed syntax and wording for the distinct new enum type is based on the C++/CLI [C++/CLI-
WD1.1] draft syntax for this feature. The proposed syntax for extensions to existing enums is de-
signed for similarity.

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 7
Strongly Typed Enums

3.1. Create a new kind of enum that is strongly typed: enum class

We propose adding a distinct new enum type with the following features:

• Declaration: The new enum type is declared using enum class, which does not conflict with
existing enums and conveys the strongly-typed and strongly-scoped nature of these enums.
The body between the braces is the same as for existing enums. For example:

enum class E { E1, E2, E3 = 100, E4 /* = 101 */ };

• Conversions: There is no implicit conversion to or from an integer. For example:

enum class E { E1, E2, E3 = 100, E4 /* = 101 */ };

void f(E e) {
 if(e >= 100) // error
 ;
}

• Underlying type: The underlying type is always well-specified. The default is int, and can be
explicitly specified by the programmer by writing : type following the enumeration name,
where the underlying type type may be any integer or floating point types except wchar_t,
and the enumeration and all enumerators have the specified type. This underlying type speci-
fier is not required on forward declarations. For example:

enum class E : unsigned long { E1 = 1, E2 = 2, Ebig = 0xFFFFFFF0U };

• Scoping: Like a class, the new enum type introduces its own scope. The names of enumerators
are in the enum�s scope, and are not injected into the enclosing scope. For example:

enum class E { E1, E2, E3 = 100, E4 /* = 101 */ };

E e1 = E1; // error
E e2 = E::E2; // ok

The following example, demonstrate how the removal of the implicit conversion and the addition of
strong scoping help solve the problems described in §2.1 and §2.3:

// no need to prefix the enumerators with �Clr� and �Cnd�
// because they are not in the same scope
enum class Color { Red, Orange, Yellow, Green, Blue, Violet };
enum class Alert { Green, Yellow, Red };

Color c = Color::Red; // explicit qualification is required
Alert a = Color::Green;

bool armWeapons = (a >= Color::Yellow); // error

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 8
Strongly Typed Enums

The following example demonstrates how the specification of underlying type helps solve the prob-
lem described in §2.2:

enum class Version : UINT8 { Ver1 = 1, Ver2 = 2 };

struct Packet {
 Version ver; // ok, portable (for suitable definitions of UINT8)
 // � more data �

 Version getVersion() const { return ver; }
};

3.2. Extend existing enums: Underlying type and explicit scoping

We propose extending existing enums with a subset of the features listed in §3.1:

• Underlying type: The underlying type may be specified. The default is to follow the existing
implementation-defined rules, otherwise the underlying type can be explicitly specified by the
programmer by writing : type following the enumeration name, where the underlying type
type may be any integer or floating point types except wchar_t, and the enumeration and all
enumerators have the specified type. For example:

enum E : unsigned long { E1 = 1, E2 = 2, Ebig = 0xFFFFFFF0U };

• Scoping: Existing enums now introduce their own scopes. The names of enumerators are in the
enum�s scope, and they are also injected into the enclosing scope. This design achieves two
goals: a) to preserve backward compatibility so that the meaning of existing programs is un-
changed; and b) to enable programmers to write enum-agnostic code that operates on both
kinds of enums, because enumerators may be (redundantly) referred to by explicit scope
qualification using the enum name. For example:

enum E { E1, E2, E3 = 100, E4 /* = 101 */ };

E e1 = E1; // ok
E e2 = E::E2; // ok

The following example demonstrates how the specification of underlying type helps solve the prob-
lem described in §2.2:

enum Version : UINT8 { Ver1 = 1, Ver2 = 2 };

struct Packet {
 Version ver; // ok, portable (for suitable definitions of UINT8)
 // � more data �

 Version getVersion() const { return ver; }
};

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 9
Strongly Typed Enums

3.3. One more extension to existing enums: No implicit conversions

There is one other extension to existing enums which deserves separate consideration because it is the
only area where the same feature is exposed using different syntax for existing and the proposed new
enums (it is implicit for enum class enums):

• Conversions: By default there is still an implicit conversion to an integer. By specifying the
keyword explicit, the implicit conversion to integer is disabled. For example:

explicit enum class E { E1, E2, E3 = 100, E4 /* = 101 */ };

void f(E e) {
 if(e >= 100) // error
 ;
}

The primary argument in favor of extending existing enums with an optional explicit is that it can
encourage adoption of this safety feature in two common scenarios. Note in particular that many life-
critical systems fall into one or both of these categories:

• Code bases that are required to be compatible with multiple compilers, including older compilers. This
extension enables such backward compatibility, for example by code such as the following
which can be controlled using a compiler command line macro setting, an easy practice during
standardized, multi-platform builds:

#if(compiler_supports_explicit_enums)
 #define explicit_enum explicit enum
#else
 #define explicit_enum enum
#endif

explicit_enum E { E1, E2, E3 = 100, E4 /* = 101 */ };

• Stabilized code bases that are not open to routine maintenance. In these cases, even a small change to
the code base commonly requires management approval.

This extension would enable a developer to assert to management that the impact is a purely one-
word change that can only expose bugs; that is, the argument would be that all that is needed is to
make a one-word change to an existing enum declaration and that there will be no other effect on the
existing code base except that dubious uses, which will often be bugs, will turn into compiler errors.

The same effect cannot (easily) be achieved by converting existing enums to enum classes, which also
enforce strong scoping and so will affect other code besides code that relies on the implicit conver-
sion. The closest approximation might be to convert the existing enum to an enum class accompanied
by adding one constant variable for each enumerator having the same name as the enumerator, so
that existing code that relies on the name being available will find the constant now that the enumera-
tor is not in the enclosing scope. This is not very maintainable because of the duplication of enumera-
tors with constants and having to change the two in sync, but it could be an acceptable and automat-
able solution for a one-time lint-like check of the code to expose the places where it relies on the im-
plicit conversion.

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 10
Strongly Typed Enums

It could be argued that this is just one of dozens or hundreds of places where we have unspecified
behavior in the standard. We separate this point so that it can be decided separately from the main
proposal whether migrating this one case by itself justifies adding a single-purpose extension to the
language.

The proposed wording includes this explicit feature. To remove this feature from the proposed word-
ing requires only removing �explicitopt� from the enum-class-key production (two places).

4. Interactions and Implementability

4.1. Interactions

Particularly in the Conversions clause, references to enumerations need to reflect that only non-
explicit enumerations have an implicit conversion to an integral type.

The standard allows enumerations and enumerators in places where integral and/or integral constant
expressions are allowed or required (e.g., in switch statements). Since this does not apply to enumera-
tions that have a floating point underlying type, these places need to be updated to refer to integer
enumerations (or equivalently integral enumerations), enumerations having an integral underlying
type.

Generally, places that refer to �integer/integral or enumeration type� need to be updated to �inte-
ger/integral or integer/integral enumeration type.� Places that refer to �arithmetic or enumeration
type� need no change.

By design, there are no effects on legacy code.

4.2. Implementability

There are no known or anticipated difficulties in implementing these features. These features have
been implemented in Microsoft Visual C++ 8.0 (alpha).

5. Proposed Wording

In this section, where changes are either specified by presenting changes to existing wording, strike-
through text refers to existing text that is to be deleted, and underscored text refers to new text that is
to be added.

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 11
Strongly Typed Enums

5.1. Main change: Updating [dcl.enum] and the Annex A grammar

In §A.6, change the production for enum-specifier as follows:

enum-specifier:
enum enum-class-key identifieropt enum-baseopt { enumerator-listopt }

enum-class-key:
explicitopt enum
enum class
enum struct

enum-base:
: simple-type-specifier

Change §7.2 as follows. Existing footnotes are unchanged, and some existing references to grammar
elements have been italicized for consistency (these changes to italics only are unmarked):

7.2 Enumeration declarations [dcl.enum]

1 An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-
name, within its scope.

enum-name:
identifier

enum-specifier:
enum enum-class-key identifieropt enum-baseopt { enumerator-listopt }

enum-class-key:
explicitopt enum
enum class
enum struct

enum-base:
: simple-type-specifier

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

An enumeration type declared with an enum-class-key of only enum is a POE (�plain old
enum�), and its enumerators are POE enumerators. The simple-type-specifier of an enum-base shall
be a fundamental type that is not void or wchar_t. The identifiers in an enumerator-list are de-

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 12
Strongly Typed Enums

clared as constants, and can appear wherever constants are required. An enumerator-definition
with = gives the associated enumerator the value indicated by the constant-expression. The con-
stant-expression shall be of integral, floating point, or enumeration type. If the first enumerator
has no initializer, the value of the corresponding constant is zero. An enumerator-definition
without an initializer gives the enumerator the value obtained by increasing the value of the
previous enumerator by one.

2 [Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, c, and d to be zero, b and e to be 1, and f to be 3. �end example]

3 The point of declaration for an enumerator is immediately after its enumerator-definition. [Exam-
ple:

const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. �end example]

4 Each enumeration defines a type that is different from all other types. Each enumeration also
has an underlying type; the value of sizeof() applied to an enumeration type, an object of enu-
meration type, or an enumerator, is the value of sizeof() applied to the underlying type. The
underlying type can be explicitly declared using enum-base; if not explicitly declared, the un-
derlying type of a non-POE enumeration type defaults to int. The type of the enumeration has
the same representation (including size, bit layout, and alignment requirements) as the under-
lying type. Following the closing brace of an enum-specifier, each enumerator has the type of its
enumeration. Prior to the closing brace, if the enumeration is a non-POE type or the underly-
ing type is specified, then the type of each enumerator is that of the underlying type; otherwise,
the type of each enumerator is the type of its initializing value.:

• If an initializer is specified for an enumerator, the initializing value has the same type as
the expression.

• If no initializer is specified for the first enumerator, the type is initializing value has an
unspecified integral type.

• Otherwise the type of the initializing value is the same as the type of the initializing
value of the preceding enumerator unless the incremented value is not representable in
that type, in which case the type is an unspecified integral type sufficient to contain the
incremented value.

An integer enumeration (or POE) type or integral enumeration (or POE) type is an enumeration (or
POE) type having an integral underlying type. A floating point enumeration (or POE) type is an
enumeration (or POE) type having a floating point underlying type.

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 13
Strongly Typed Enums

5 For a POE type whose underlying type is not explicitly specified, the underlying type The un-
derlying type of an enumeration is a floating point type that can represent all the floating point
enumerator values defined in the enumeration (if any of the enumerator values are floating point
values) or otherwise an integral type that can represent all the enumerator values defined in the
enumeration. It is implementation-defined which integral type is used as the underlying type
for an enumeration except that if the underlying type is a floating point type then the underly-
ing shall not be larger than float unless the values of a floating point enumerator cannot fit in
or be exactly represented by a float, and if the underlying type is an integral type then the un-
derlying type shall not be larger than int unless the value of an enumerator cannot fit in an int
or unsigned int. If the enumerator-list is empty, the underlying type is as if the enumeration
had a single enumerator with value 0. The value of sizeof() applied to an enumeration type, an
object of enumeration type, or an enumerator, is the value of sizeof() applied to the underlying
type.

6 If the enum-base is specified, then the values of the enumeration are the values of the underly-
ing type specified in the enum-base. Otherwise, fFor an enumeration where emin is the smallest
enumerator and emax is the largest, the values of the enumeration are the values of the underly-
ing type in the range bmin to bmax, where bmin and bmax are, respectively, the smallest and largest
values of the smallest bit-field that can store emin and emax.81) It is possible to define an enu-
meration that has values not defined by any of its enumerators.

7 Two enumeration types are layout-compatible if they have the same underlying type.

8 The value of an enumerator or an object of an POE enumeration type is converted to an integer
by integral promotion (4.5). [Example:

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makes color a type describing various colors, and then declares col as an object of that type,
and cp as a pointer to an object of that type. The possible values of an object of type color are
red, yellow, green, blue; these values can be converted to the integral values 0, 1, 20, and 21.
Since enumerations are distinct types, objects of type color can be assigned only values of type
color.

color c = 1; // error: type mismatch,
 // no conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1
 // integral promotion

�end example]

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 14
Strongly Typed Enums

9 An expression of arithmetic or enumeration type can be converted to an enumeration type ex-
plicitly. The value is unchanged if it is in the range of enumeration values of the enumeration
type; otherwise the resulting enumeration value is unspecified.

10 The enum-name and each enumerator declared by an enum-specifier is declared in the scope that
immediately contains the enum-specifier. Each enumerator is declared at the end its enumerator-
definition in the scope of its enum-specifier, and can be used anywhere without access restric-
tion. If its enum-specifier is a POE type, each enumerator is additionally inserted into the scope
that immediately contains the enum-specifier. These names obey the scope rules defined for all
names in (3.3) and (3.4). [Example:

enum direction { left=�l�, right=�r� };

void g()
{
 direction d; // OK
 d = left; // OK
 d = direction::right; // OK
 // ...
}

�end example]

An enumerator declared in class scope can be referred to using the class member access opera-
tors (::, . (dot) and -> (arrow)), see 5.2.5. [Example:

class X {
public:
 enum direction { left=�l�, right=�r� };
 int f(int i)
 { return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{
 direction d; // error: direction not in scope
 int i;
 i = p->f(left); // error: left not in scope
 i = p->f(X::right); // OK
 i = p->f(p->left); // OK
 // ...
}

�end example]

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 15
Strongly Typed Enums

5.2. Other core changes

Change §4.5(2) as follows:

An rvalue of type wchar_t (3.9.1) or an integral POE enumeration type (7.2) can be converted
to an rvalue of the first of the following types that can represent all the values of its underlying
type: int, unsigned int, long, or unsigned long.

In §4.6, after paragraph 1 insert the following new paragraph:

An rvalue of floating point POE type (7.2) can be converted to an rvalue of the first of the fol-
lowing types that can represent all the values of its underlying type: float, double, or long
double.

In §4.7(1), change �enumeration type� to �integral POE type�.

In §4.9(1), change �floating point type� to �floating point or floating point POE type�.

In §4.9(2), change �enumeration type� to �integer POE type�.

In §4.12(1) and §5(9), change �enumeration type� to �POE type�.

In §5(9) footnote 54, change �enumerated type� to �POE type�.

In §5.2.2(7), change �or a floating point type that is subject to the floating point promotion� to �or a
floating point or floating point POE type that is subject to the floating point promotion�.

Change §5.2.9(7) as follows:

A value of integral, floating point or enumeration type can be explicitly converted to an enu-
meration type. The value is unchanged if the original value is within the range of the enumera-
tion values and representable by the enumeration�s underlying type (7.2). Otherwise, the re-
sulting enumeration value is unspecified.

In §5.2.10(5) and §5.3.1(9), change �enumeration type� to �integral enumeration type�.

In §5.3.4(6), change �non-negative value� to �non-negative integral value�.

In §5.6(2), §5.7(1), §5.7(2) and §5.8(1), change �enumeration type� to �integral enumeration type�.

In §5.11(1), §5.12(1), §5.13(1) and §5.19(1) (six places), change �integral or enumeration� to �integral or
integral enumeration�.

In §5.19(1), change �enumerators� to �integral enumerators�.

In §6.4(4) (two places), change �integral or enumeration� to �integral or integral enumeration�.

In §6.4.2(2) (two places) and §7.1.5.1(2), change �enumeration type� to �integral enumeration type�.

In §7.1.5.3 and §A.6, change the production of elaborated-type-specifier as follows (note that this also
fixes several occurrences of keywords that were not put in code font):

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 16
Strongly Typed Enums

elaborated-type-specifier:
class-key ::opt nested-name-specifieropt identifier
class-key ::opt nested-name-specifieropt templateopt template-id
enumenum-class-key ::opt nested-name-specifieropt identifier
typenametypename ::opt nested-name-specifier identifier
typenametypename ::opt nested-name-specifier templatetemplate opt template-id

In §7.1.5.3(3) (two places), change �enum keyword� to �enum-class-key�.

In §9.1(2), change �enumerator� to �POE enumerator�.

In §9.2(1), change �enumerators� to �POE enumerators�, and change �enumeration� to �integral
enumeration�.

In §9.2(4), change �enumeration� to �integral enumeration�.

In §9.2(13), change �an enumerated type� to �a POE type�.

In §9.3.1(2), change �an enumerator� to �a POE enumerator�.

In §9.4(3), change �enumerator� to �POE enumerator�.

In §9.4.2(4) and §9.6(3), change �enumeration� to �integral enumeration�.

In §9.7(1) and §9.8(1), change �enumerators� to �POE enumerators�.

In §10.2(5), change �an enumerator� to �a POE enumerator�.

In §13.6(2), change �enumeration� to �POE�.

In §14(5), change �enumerator� to �POE enumerator�.

In §14.1(4), §14.3.2(1), §14.3.2(5), §14.4(1), and §14.6.2.3(2), change �enumeration� to �integral enu-
meration�.

5.3. Recommended library changes

In §18.2.1.3, change the declaration of float_round_style to add the enum-base : signed char .

In §18.2.1.4, change the declaration of float_denorm_style to add the enum-base : signed char .

In §22.2.1, change the declaration of ctype_base to add the enum-base : unsigned char .

In §22.2.1.5, change the declaration of codecvt_base to add the enum-base : unsigned char .

In §22.2.5.1, change the declaration of time_base to add the enum-base : unsigned char .

In §22.2.6.3, change the declaration of money_base::part to add the enum-base : unsigned char .

In §27.4.2, change the declaration of ios_base::event to add the enum-base : unsigned char .

In §27.4.2(1), change �an enumerated type, seekdir� to �an enumerated type with underlying type
unsigned char, seekdir�.

ISO/IEC JTC1/SC22/WG21 N1579 = ANSI/INCITS J16 04-0019 page 17
Strongly Typed Enums

6. References

[C99] Programming Language C (ISO/IEC 9899:1999(E)).

[C++03] Programming Language C++ (ISO/IEC 14882:2003(E)).

[C++/CLI-
WD1.1]

C++/CLI Language Specification, Working Draft 1.1, Jan. 2004 (Ecma/TC39-
TG5/2004/3).

[CLI] Common Language Infrastructure (CLI) (ECMA-335, 2nd edition, December 2002).

[Miller03] D. Miller. �Improving Enumeration Types� (ISO/IEC JTC1/SC22/WG21 N1513 =
ANSI/INCITS J16 03-0096).

[Stroustrup94] B. Stroustrup. The Design and Evolution of C++ (Addison-Wesley, 1994).

