
A Proposal to Add Mathematical Special Functions
to the C++ Standard Library (version 2)

Document number: WG21/N1514 = J16/03-0097
Date: May 15, 2003
Revises: WG21/N1422 = J16/03-0004
Project: Programming Language C++
Reference: ISO/IEC IS 14882:2003(E)
Reply to: Walter E. Brown <wb@fnal.gov >

CEPA Dept., Computing Division
Fermi National Accelerator Laboratory
Batavia, IL 60510-0500

Contents

1. Background and Motivation 1

2. Impact On the C++ Standard 3

3. Design Decisions 3

4. Proposed Text 7

5. Relationship to Earlier Proposal 16

6. Acknowledgments 18

7. References 18

1. Background and Motivation

Why is this important? What kinds of problems does it address, and what kinds of
programmers is it intended to support? Is it based on existing practice?

A. Introduction

Compared to C++ [ISO:14882], C99 [ISO:9899] provides an extended <math.h> header and li-
brary. Among the additions introduced by C99 are selected mathematical functions from cate-
gories of particular interest to the numerical computing communities: exponential and logarith-
mic functions, circular and hyperbolic functions, and special functions.

In particular, C99 specifies the following traditional and extended functions of numerical
interest in <math.h> , each with variants to accomodate arguments of types float , double , and
long double :

• circular, a.k.a. trigonometric (§7.12.4): sin , cos , tan , asin , acos , atan and atan2 ;
• hyperbolic (§7.12.5): sinh , cosh , tanh , asinh , acosh , atanh ;
• exponential (§7.12.6): exp , exp2 , frexp , ldexp , expm1;
• logarithmic (§7.12.6): log10 , log2 , logb , ilogb , log1p ;
• power (§7.12.7): pow, sqrt , cbrt , hypot ; and
• special (§7.12.8): erf , erfc , tgamma, lgamma.

All these functions either (a) are already part of the C++ standard library, or (b) have already
been proposed [Plauger] and discussed [Dawes, Item 1] for incorporation into the forthcoming
C++ Library Technical Report [Josuttis]. We here propose to augment the C++ standard library
with additional functions from the above Special Functions category.

B. Prior Art and Suitability for Technical Report

Mathematical Special Functions have been extensively studied for well over a century. They
and their applications are routinely taught as parts of required courses of study in scientific,
engineering, and mathematical disciplines. Even a cursory bibliography includes such respected
works as [Abramowitz], [Hildebrand], [Jackson], [Lebedev], [Spanier], and [Whittaker].

There is also a significant history of implementation experience with these functions, as evi-
denced, for example, by section C of the Fortran-based SLATEC Common Mathematical Library
[SLATEC]. Today, Special Functions constitute important subsets of such well-respected add-on
libraries as the NAG C Library [NAG], the IMSL C Numerical Library [IMSL], and the GNU Scientific
Library [Galassi]. Further, some standard C libraries such as the SGI C library [SGI] and the
GNU C library [GNU C] also provide, as extensions, a few of the proposed Special Functions.

These functions are appropriate for this TR because they plug an obvious hole (“Filling Gaps,”
as [Austern] phrases it) in the existing standard library. While these functions are clearly numer-
ical in nature and will likely be most heavily used by the scientific and engineering communities,
other communities of programmers also have needs, ranging from frequent to intermittent, for
these functions.

This Special Functions proposal additionally falls into the “Standards Coordination and In-
frastructure” categories identified in [Austern] as targets for the TR, for this proposal is based
on an existing standard, Quantities and units — Part 11: Mathematical signs and symbols for use
in the physical sciences and technology [ISO:31-11]. We draw particular attention to the tables
constituting paragraphs 8 (“Exponential and logarithmic functions”), 9 (“Circular and hyperbolic
functions”), 10 (“Complex numbers”), and 14 (“Special functions”).

C. The Prospective User Community

Quantifying the scientific and mathematical programming community of users is a difficult task.
While some feel that the size of this specialized group is relatively small compared to the size of
the programming community as a whole, we would respectfully point out that this user commu-
nity is demonstrably sufficiently large to support at least two commercial vendors (IMSL, NAG), a
major public-domain project (GSL), as well as large, domain-specific libraries (e.g., kernlib) and
vendor-specific libraries, all of which incorporate significant Special Functions components.

Support for Special Functions has not waned in over 35 years, across a broad spectrum of
significant numeric programming languages. Further, continuing interest in this field is demon-
strated by an ongoing publication stream on these and related topics in journals (such as those
sponsored by ACM, IEEE, MAA, and SIAM) devoted to numeric computing.

D. Why Should Special Functions be Standardized?

The mathematics portion of the standard library (<math.h>) has been hardly touched since C’s
earliest days, over 30 years ago. It is arguably well past the time that enhancements in this area
ought be considered, as C99 has done. Mathematical Special Functions provide a very natural
route to such extension.

While a number of libraries (see above) do incorporate Special Functions, no one library’s
coverage appears complete. Combining libraries is generally infeasible; there is a lack of inter-
library consistency in naming conventions, calling sequences, and the like. In consequence,
users must often (re-)invent missing functionality. The result of such an ad hoc approach is
often characterized by a lack of generality in the context of a user’s specific problem to be solved,

2

as well as by insufficient attention to such details as corner cases, treatement of errors, and the
like.

The benefits of incorporating Special Functions into the C++ Standard Library include pre-
dictability of interface and behavior across a broad spectrum of implementations, leading to
improved portability and interoperability for applications that make use of these functions. In
addition, users obtain professional attention to issues affecting quality and reliability, important
details often overlooked by typical application programmers. This allows users to focus on their
problems rather than on issues related to infrastructure or platform dependency.

Finally, we believe that adoption of this proposal would send a clear message to the vari-
ous numeric computing communities that, contrary to significant popular belief within these
communities, C++ is an eminently suitable programming language for their problem domain,
too. General availability of the functions herein proposed would greatly enhance and promote
C++ usage among computing communities in the scientific, engineering, and mathematical dis-
ciplines.

2. Impact On the C++ Standard

What does it depend on, and what depends on it? Is it a pure extension, or does it
require changes to standard components? Does it require core language changes?

This proposal is a pure extension. It does not require any changes in the core language. It
does not require changes to any standard classes or functions. It does not require changes to
any of the standard requirement tables. All the proposed functions are mathematically well-
understood, all have proven their utility in practice over a considerable period of time, and all
have been previously implemented in C and C++.

This proposal does not depend on any other C++ library extensions. This proposal potentially
overlaps slightly with another proposal [Plauger] that would incorporate the bulk of C99’s library
additions into C++. However, the potential commonality between the two proposals is limited to a
rather tiny part of <math.h> that is essentially identical in the two proposals; see §5. for details.

3. Design Decisions

Why did you choose the specific design that you did? What alternatives did you consider,
and what are the tradeoffs? What are the consequences of your choice, for users and
implementors? What decisions are left up to implementors? If there are any similar
libraries in use, how do their design decisions compare to yours?

A. How to Package the Additional Declarations?

Following the precedent set by C99, this proposal recommends that declarations for all the pro-
posed Special Functions be incorporated into <math.h> and thence extended into <cmath> in the
obvious way.

An alternative design would present these additional declarations in a new header. Obvious
names for this header, e.g., <special_functions.h> , seem unwieldy, and no suitably descrip-
tive shorter names have come to mind. Further, it seems likely that implemention of some of
the Special Functions can make advantageous use of extant functionality in <math.h> and so it
seemed reasonable to avoid the separation.

B. Which Special Functions to Incorporate?

Because the set of mathematical functions that can be considered Special Functions is potentially
unbounded, we considered several options in selecting our list of candidates (see Table 1) for
standardization.

3

Function name [ISO:31-11] [Abramowitz] [ISO:9899]

bessel_I 14.4 §9.6.3, etc.
bessel_J 14.1 §9.1.10, etc.
bessel_K 14.4 §9.6.4, etc.
bessel_j 14.5 §10.1.1, etc.
beta 14.20 §6.2
ei 14.21 §5.1.2, etc.
ellint_E 14.17 §17.2.9, etc.
ellint_E2 14.17 §17.2.9, etc.
ellint_F 14.16 §17.2.6, etc., with sin2α = k2

ellint_K 14.16 §17.3.1, etc.
ellint_P 14.18 §17.7.1, etc.
ellint_P2 14.18 §17.7.2, etc.
erf 14.22 §7.1.1, etc. §7.12.8.1
erfc 14.22 §7.1.2, etc. §7.12.8.2
hermite 14.11 §13.6.17 and -.18, etc.
hyperg_1F1 14.15 §13.1.2, etc.
hyperg_2F1 14.14 §15.1.1, etc.
laguerre_0 14.12 §13.6.9, etc.
laguerre_m 14.13 §13.6.9, etc.
legendre_Pl 14.8 §8.6.18, etc.
legendre_Plm 14.9 §8.6.6, etc.
neumann_N 14.2 §9.1.2, etc.
neumann_n 14.6 §10.1.1, etc.
riemann_zeta 14.23 §23.2.1 and §23.2.6, etc.
sph_legendre_Plm 14.10 §8.1.1 footnote 2, etc.
tgamma 14.19 §6.1.1, etc. §7.12.8.4

Table 1: Summary of proposed Special Functions

This proposal recommends adoption of the list of Special Functions specified in [ISO:31-11,
paragraph 14]. This list has already received international scrutiny and endorsement via the
standardization process. Further consultations with respected scientific colleagues have con-
firmed that these Special Functions would, if incorporated into the C++ standard library, consti-
tute a significant contribution to the numeric community.

A second possibility was the adoption of all the Special Functions listed in the (exhaustive!)
Handbook of Mathematical Functions [Abramowitz], the generally-accepted standard reference for
this domain. However, a careful inspection of this work’s extensive contents strongly suggests
that its scope may be overly broad. More importantly, many of the listed functions appear to be
very difficult to implement. (Indeed, a colleague suggested, not entirely in jest, that several Ph.D.
dissertations could result from such efforts!)

We considered, third, adopting a list taken from an existing library in this domain. For
example, the Special Functions portion of the GNU Scientific Library [Galassi] seemed to present
a reasonable set for consideration. Indeed, these functions largely constitute a superset of the
list recommended above, and are all clearly implementable. However, we felt it advantageous to
require only the functions in the above list, in order to allow implementers the freedom to add
value by providing additional functions.

A final possibility was the construction of an ad hoc list of Special Functions. We rejected this
as the least defensible of the alternatives since, other than a feel for general utility, there are no
obvious criteria for accepting some functions and rejecting others,

C. Function Templates or Overloaded Functions?

It is possible to declare the desired additional <cmath> functionality in either of two ways: as
(specialized) function templates or as families of overloaded functions. We recommend overload-
ing.

4

This recommendation is based in significant part on arguments favoring consistency of form
with the existing contents of the affected headers: There are no templates today in <math.h> or
in <cmath> . Further, we are unaware of any current Special Functions implementation that is
based on template technology.

Additional reasons take into account the possible future extension of the new functions to
additional headers (such as, for example, <complex>). To do so in the presence of function
templates would raise such issues as the location of the primary template and the concomitant
need to coordinate multiple cooperating headers. We prefer to avoid such entanglements.

D. Exceptions or Error Codes?

Most of the proposed functions must advise their callers of domain and/or range errors. In the
context of C++, this would arguably be best done by throwing appropriate exceptions.

However, no standard functions in <cmath> today throw exceptions. Rather, mimicking the
behavior of the functions in <math.h> , each sets a global errno variable to a suitable code (i.e.,
EDOMor ERANGE) defined in <cerrno> .

We recommend that this existing behavior be preserved with respect to the proposed new
functions. Not only is this a matter of consistency, but it preserves the possibility that a compat-
ible version of this proposal might be incorporated into a future revision of C99.

As a consequence of this recommendation, we have assumed that general provisions (such as
those provided in C99’s §7.12.1) would be available to govern overall treatment of domain and
range errors. In addition, we have carefully identified, for each proposed function, the conditions,
if any, under which argument values give rise to domain errors. However, we have not provided
similar specifications for range errors, since we have found that a general statement (e.g., “a
range error occurs if the mathematical result of the function cannot be represented in an object
of the specified type, due to extreme magnitude” [ISO:9899, §7.12.1/3]) will suffice to cover our
situations. Such a general statement can be incorporated by reference, and we believe that
[Plauger] is very likely to do so.

E. Traditional or Extended Error Codes?

Having recommended, in the previous subsection, the continued use of error codes, a further
question arises: Are the existing EDOM, ERANGEerror codes sufficient to the needs of the proposed
Special Functions?

We note that several current implementations of some of the proposed Special Functions do
define their own codes to supplement the codes mandated by the standard. They incorporate
codes for such situations as overflow, underflow, loss of precision, singularities, and the like,
and make these codes accessible via additional global variables analogous to errno , or via other
means.

Nothing in this proposal should be construed as preventing implementors from such optional
extensions. However, this proposal recommends against requiring such behavior. We base this
recommendation on consistency with current standards. In particular, we again call attention to
[ISO:9899, §7.12.1].

F. Traditional or Descriptive Function Names?

In selecting names for the proposed new functions, we were moved to retain their traditional
(mathematical) names. For example, we kept the names of a few functions which are customarily
denoted using Greek letters (spelled out, of course: beta , zeta [but tgamma for compatibility
with C99]). We also kept the function names erf and erfc because they are both traditional and
descriptive, as well as for compatibility with C99.

In the remaining (majority of) cases, the traditional mathematical names are mostly single
letters (e.g., J and N). We judged such names to be too brief and insufficiently descriptive for

5

programming purposes. Also, such one-character names are frequently reserved by coding stan-
dards to signify local variables. For these reasons, we recommend against use of the traditional
names. Instead, we chose such names as bessel_J and neumann_N, combining a descriptive
prefix with a traditional suffix.

We note in passing that this policy resulted in a few pairs of our names that differ only in the
case of a single character (e.g., bessel_J and bessel_j). In each instance, this is an artifact of
the traditional mathematical naming convention that we preserved on the basis of prior art as
the accepted canonical mathematical nomenclature. While some coding standards recommend
or require avoidance of multiple identifiers that differ only in case, we believe it appropriate in
the present context to embrace case-sensitivity in distinguishing otherwise-identical names.

Other naming conventions are, of course possible. For example, bessel_J could be named
cyl_bessel or some other variant on “cylindrical Bessel function.” However, we observed that
other libraries have made choices similar to ours. For example, where we recommend bessel_J ,
the GNU scientific library uses the identifier gsl_sf_bessel_J0 and the NAG C library uses the
identifier nag_bessel_j0 . We believe such similarity among independently-developed prior art
validates our choices.

G. Real- or Complex-valued Domains and Results?

Many of the proposed Special Functions have definitions over some or all of the complex plane
as well as over some or all of the real numbers. Further, some of these functions can produce
complex results, even over real-valued arguments. The present proposal restricts itself by con-
sidering only real-valued arguments and (correspondingly) real-valued results.

Our investigation of the alternative led us to realize that the complex landscape for the Special
Functions is figuratively dotted with land mines. In coming to our recommendation, we gave
weight to the statement from a respected colleague that “Several Ph.D. dissertations would [or
could] result from efforts to implement this set of functions over the complex domain.” This led
us to take the position that there is insufficient prior art in this area to serve as a basis for
standardization, and that such standardization would be therefore premature. While we could
perhaps consider standardizing some subset of the Special Functions over the complex domain,
we far prefer to treat this set of Special Functions as a unit.

We further ruled out (via domain errors, for example) the possibility that these Special Func-
tions could return complex results. In making this recommendation, we followed the past prac-
tice of C++ and of C99: functions taking real arguments always return real results; only functions
taking complex arguments return complex results. Perhaps the best example of this is the sqrt
function: it always returns a value whose type is identical to its parameter’s type. To do oth-
erwise opens the door to a number of small, but bothersome technical issues. As one example,
which header (<cmath> or <complex>) would declare such a function whose domain and range
types are different?

Finally, none of our colleagues or reviewers has presented any compelling need or rationale for
the extension to the complex domain or range. While there would certainly be some segments of
the user community that could take advantage of such functionality (and we certainly don’t mean
to prohibit vendors from providing such as extensions), there seems to be insufficient demand to
require such at present.

Because we have thus restricted ourselves to functions taking real-valued arguments and
producing real-valued results, this proposal will make special provision for three of the Spe-
cial Functions in the ISO standard’s list: the cylindrical Hankel functions (also known as the
cylindrical Bessel functions of the third kind), the spherical Hankel functions (also known as
the spherical Bessel functions of the third kind), and the spherical harmonics functions. Such
special treatment is needed because these functions are inherently complex-valued, even for
real-valued arguments:

• We have entirely omitted both the cylindrical and the spherical Hankel functions from our
list of candidates for standardization. Other functions in the list can be used to obtain the

6

real and imaginary parts of the Hankel functions’ results without loss of either precision or
performance. Since these can be trivially composed, the Hankel functions’ omission poses
no significant burden on a user.

• Instead of the spherical harmonics, we opted to provide the closely-related and real-valued
spherical associated Legendre functions. We chose to provide these because they can triv-
ially be used to produce the real and imaginary parts of the spherical harmonics, and
because a user could not otherwise obtain the spherical harmonics without loss of preci-
sion.

H. Which Conventions?

Among the functions in this proposal, there are several for which multiple sign and normalization
conventions exist. As examples, we note that [ISO:31-11] and [Abramowitz] differ:

• In sign convention for associated Legendre functions, and
• In normalization convention for Laguerre polynomials.

Because the choices do not easily co-exist, we have opted to resolve any such ambiguities by ap-
pealing to a common source, the aforementioned standard Handbook of Mathematical Functions
[Abramowitz].

I. Relationship to LIA?

It has been suggested that the functions constituting the subject of this proposal be reviewed
within the framework of one or more parts of the International Standard for Language Inde-
pendent Arithmetic [ISO:10967-1, ISO:10967-2, ISO:10967-3]. While we applaud the motivation
underlying the suggestion, we recommend against such a perspective, believing it to be prema-
ture and not yet feasible.

As of this writing, only LIA Part 1 has been formally adopted as an International Standard:
LIA Part 2 is a Final Draft, while LIA Part 3 is only a Committee Draft. Further, LIA Part 1
does not speak to the subject of the present proposal, while Parts 2 and 3 restrict themselves
to coverage of “elementary” numerical functions such as those already part of the C++ standard
library. Thus, none of the LIA documents addresses (or even mentions) any of the functions
comprising the present proposal.

Finally, we note that the C++ standards body has to date not adopted any “conformity state-
ment” regarding the LIA “binding standard” to be used by a conforming C++ implementation.
In the absence of such guidance, it is unclear how to apply to C++ the principles (let alone the
details) of the LIA documents.

In our view, the present situation is best summarized as constituting a lack of prior art: C++
has not determined how LIA is to apply to an implementation and, in any event, none of the
functions comprising the present proposal are in the scope of the LIA documents as currently
drafted. For these reasons, we believe there is today an insufficient basis on which to evaluate
the present proposal with respect to LIA.

4. Proposed Text

Note: the wording presented in these subsections describes the contents of the <cmath> header.
The changes to describe analogous contents in <math.h> are straightforward and consist pri-
marily of function renaming to avoid overloading.

7

A. To be inserted into Table 80 (Clause 26)
bessel_I ellint_E hermite legendre_Pl
bessel_J ellint_E2 hyperg_1F1 neumann_N
bessel_K ellint_F hyperg_2F1 neumann_n
bessel_j ellint_K laguerre_0 riemann_zeta
beta ellint_P2 laguerre_m sph_legendre_Plm
ei ellint_P legendre_Plm

B. New section to be added to Clause 26

26.x.1 Synopsis

// (26.x.2) cylindrical Bessel functions (of the first kind):
double bessel_J(double nu, double x);
float bessel_J(float nu, float x);
long double bessel_J(long double nu, long double x);

// (26.x.3) cylindrical Neumann functions;
// cylindrical Bessel functions of the second kind:
double neumann_N(double nu, double x);
float neumann_N(float nu, float x);
long double neumann_N(long double nu, long double x);

// (26.x.4.1) regular modified cylindrical Bessel functions:
double bessel_I(double nu, double x);
float bessel_I(float nu, float x);
long double bessel_I(long double nu, long double x);

// (26.x.4.2) irregular modified cylindrical Bessel functions:
double bessel_K(double nu, double x);
float bessel_K(float nu, float x);
long double bessel_K(long double nu, long double x);

// (26.x.5) spherical Bessel functions (of the first kind):
double bessel_j(unsigned n, double x);
float bessel_j(unsigned n, float x);
long double bessel_j(unsigned n, long double x);

// (26.x.6) spherical Neumann functions;
// spherical Bessel functions of the second kind:
double neumann_n(unsigned n, double x);
float neumann_n(unsigned n, float x);
long double neumann_n(unsigned n, long double x);

// (26.x.7) Legendre polynomials:
double legendre_Pl(unsigned l, double x)
float legendre_Pl(unsigned l, float x)
long double legendre_Pl(unsigned l, long double x)

// (26.x.8) associated Legendre functions:
double legendre_Plm(unsigned l, unsigned m, double x)
float legendre_Plm(unsigned l, unsigned m, float x)
long double legendre_Plm(unsigned l, unsigned m, long double x)

8

// (26.x.9) spherical associated Legendre functions
double sph_legendre_Plm(unsigned l, unsigned m, double theta)
float sph_legendre_Plm(unsigned l, unsigned m, float theta)
long double sph_legendre_Plm(unsigned l, unsigned m, long double theta)

// (26.x.10) Hermite polynomials:
double hermite(unsigned n, double x);
float hermite(unsigned n, float x);
long double hermite(unsigned n, long double x);

// (26.x.11) Laguerre polynomials:
double laguerre_0(unsigned n, double x);
float laguerre_0(unsigned n, float x);
long double laguerre_0(unsigned n, long double x);

// (26.x.12) associated Laguerre polynomials:
double laguerre_m(unsigned n, unsigned m, double x);
float laguerre_m(unsigned n, unsigned m, float x);
long double laguerre_m(unsigned n, unsigned m, long double x);

// (26.x.13) hypergeometric functions:
double hyperg_2F1(double a, double b, double c, double x) ;
float hyperg_2F1(float a, float b, float c, float x) ;
long double hyperg_2F1(long double a, long double b, long double c, long double x) ;

// (26.x.14) confluent hypergeometric functions:
double hyperg_1F1(double a, double c, double x) ;
float hyperg_1F1(float a, float c, float x) ;
long double hyperg_1F1(long double a, long double c, long double x) ;

// (26.x.15.1) (incomplete) elliptic integral of the first kind:
double ellint_F(double k, double phi);
float ellint_F(float k, float phi);
long double ellint_F(long double k, long double phi);

// (26.x.15.2) (complete) elliptic integral of the first kind:
double ellint_K(double k);
float ellint_K(float k);
long double ellint_K(long double k);

// (26.x.16.1) (incomplete) elliptic integral of the second kind:
double ellint_E(double k, double phi);
float ellint_E(float k, float phi);
long double ellint_E(long double k, long double phi);

// (26.x.16.2) (complete) elliptic integral of the second kind:
double ellint_E2(double k);
float ellint_E2(float k);
long double ellint_E2(long double k);

// (26.x.17.1) (incomplete) elliptic integral of the third kind:
double ellint_P(double k, double n, double phi);
float ellint_P(float k, float n, float phi);
long double ellint_P(long double k, long double n, long double phi);

9

// (26.x.17.2) (complete) elliptic integral of the third kind:
double ellint_P2(double k, double n);
float ellint_P2(float k, float n);
long double ellint_P2(long double k, long double n);

// (26.x.19) beta function:
double beta(double x, double y);
float beta(float x, float y);
long double beta(long double x, long double y);

// (26.x.20) exponential integral:
double ei(double);
float ei(float);
long double ei(long double);

// (26.x.22) Riemann zeta function:
double riemann_zeta(double);
float riemann_zeta(float);
long double riemann_zeta(long double);

26.x.2 cylindrical Bessel functions (of the first kind)

double bessel_J(double nu, double x);
float bessel_J(float nu, float x);
long double bessel_J(long double nu, long double x);

1. Effects: The bessel_J functions compute the cylindrical Bessel functions of the first kind
of their respective arguments nu and x . A domain error may occur if x is less than zero.

2. Returns: The bessel_J functions return

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k! Γ(ν + k + 1)
.

26.x.3 cylindrical Neumann functions; cylindrical Bessel functions of the second kind

double neumann_N(double nu, double x);
float neumann_N(float nu, float x);
long double neumann_N(long double nu, long double x);

1. Effects: The neumann_N functions compute the cylindrical Neumann functions, also known
as the cylindrical Bessel functions of the second kind, of their respective arguments nu and x . A
domain error may occur if x is less than zero.

2. Returns: The neumann_N functions return

Nν(x) =

Jν(x) cos νπ − J−ν(x)

sin νπ
for non-integral ν

lim
µ→ν

Jµ(x) cos µπ − J−µ(x)
sinµπ

for integral ν

.

10

26.x.4.1 regular modified cylindrical Bessel functions

double bessel_I(double nu, double x);
float bessel_I(float nu, float x);
long double bessel_I(long double nu, long double x);

1. Effects: The bessel_I functions compute the regular modified cylindrical Bessel functions
of their respective arguments nu and x . A domain error may occur if x is less than zero.

2. Returns: The bessel_I functions return

Iν(x) = i−νJν(ix) =
∞∑

k=0

(x/2)ν+2k

k! Γ(ν + k + 1)
.

26.x.4.2 irregular modified cylindrical Bessel functions

double bessel_K(double nu, double x);
float bessel_K(float nu, float x);
long double bessel_K(long double nu, long double x);

1. Effects: The bessel_K functions compute the irregular modified cylindrical Bessel functions
of their respective arguments nu and x . A domain error may occur if x is less than zero.

2. Returns: The bessel_K functions return

Kν(x) = (π/2)iν+1(Jν(ix) + iNν(ix)) =

π

2
I−ν(x)− Iν(x)

sin νπ
for non-integral ν

π

2
lim
µ→ν

I−µ(x)− Iµ(x)
sinµπ

for integral ν

.

26.x.5 spherical Bessel functions (of the first kind)

double bessel_j(unsigned n, double x);
float bessel_j(unsigned n, float x);
long double bessel_j(unsigned n, long double x);

1. Effects: The bessel_j functions compute the spherical Bessel functions of the first kind of
their respective arguments n and x . A domain error may occur if x is less than zero.

2. Returns: The bessel_j functions return

jn(x) = (π/2x)1/2Jn+1/2(x) .

26.x.6 spherical Neumann functions; spherical Bessel functions of the second kind

double neumann_n(unsigned n, double x);
float neumann_n(unsigned n, float x);
long double neumann_n(unsigned n, long double x);

1. Effects: The neumann_n functions compute the spherical Neumann functions, also known
as the spherical Bessel functions of the second kind, of their respective arguments n and x . A
domain error may occur if x is less than zero.

11

2. Returns: The neumann_n functions return

nn(x) = (π/2x)1/2Nn+1/2(x) .

26.x.7 Legendre polynomials

double legendre_Pl(unsigned l, double x)
float legendre_Pl(unsigned l, float x)
long double legendre_Pl(unsigned l, long double x)

1. Effects: The legendre_Pl functions compute the Legendre polynomials of their respective
arguments l and x . A domain error may occur if the magnitude of x is greater than one.

2. Returns: The legendre_Pl functions return

Pl(x) =
1

2l l!
dl

dxl
(x2 − 1)l .

26.x.8 associated Legendre functions

double legendre_Plm(unsigned l, unsigned m, double x)
float legendre_Plm(unsigned l, unsigned m, float x)
long double legendre_Plm(unsigned l, unsigned m, long double x)

1. Effects: The legendre_Plm functions compute the associated Legendre functions of their
respective arguments l , m, and x . A domain error occurs if m is greater than l . A domain error
may occur if if the magnitude of x is greater than one.

2. Returns: The legendre_Plm functions return

Pm
l (x) = (1− x2)m/2 dm

dxm
Pl(x) .

26.x.9 spherical associated Legendre functions

double sph_legendre_Plm(unsigned l, unsigned m, double theta)
float sph_legendre_Plm(unsigned l, unsigned m, float theta)
long double sph_legendre_Plm(unsigned l, unsigned m, long double theta)

1. Effects: The sph_legendre_Plm functions compute spherical associated Legendre functions
of their respective arguments l , m, and theta . A domain error occurs if mis greater than l .

2. Returns: The sph_legendre_Plm functions return

(−1)m

[
(2l + 1)

4π

(l −m)!
(l + m)!

]1/2

Pm
l (cos θ) .

26.x.10 Hermite polynomials

double hermite(unsigned n, double x);
float hermite(unsigned n, float x);
long double hermite(unsigned n, long double x);

12

1. Effects: The hermite functions compute the Hermite polynomials of their respective argu-
ments n and x .

2. Returns: The hermite functions return

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

26.x.11 Laguerre polynomials

double laguerre_0(unsigned n, double x);
float laguerre_0(unsigned n, float x);
long double laguerre_0(unsigned n, long double x);

1. Effects: The laguerre_0 functions compute the Laguerre polynomials of their respective
arguments n and x .

2. Returns: The laguerre_0 functions return

Ln(x) = ex dn

dxn
(xne−x) .

26.x.12 associated Laguerre polynomials

double laguerre_m(unsigned n, unsigned m, double x);
float laguerre_m(unsigned n, unsigned m, float x);
long double laguerre_m(unsigned n, unsigned m, long double x);

1. Effects: The laguerre_m functions compute the associated Laguerre polynomials of their
respective arguments n, m, and x .

2. Returns: The laguerre_m functions return

Lm
n (x) = ex dm

dxm
Ln(x) .

26.x.13 hypergeometric functions

double hyperg_2F1(double a, double b, double c, double x) ;
float hyperg_2F1(float a, float b, float c, float x) ;
long double hyperg_2F1(long double a, long double b, long double c, long double x) ;

1. Effects: The hyperg_2F1 compute the hypergeometric functions of their respective argu-
ments a, b, c , and x . A domain error may occur if x is greater than or equal to one.

2. Returns: The hyperg_2F1 functions return

F(a, b; c;x) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a + n) Γ(b + n)
Γ(c + n)

xn

n!
.

26.x.14 confluent hypergeometric functions

double hyperg_1F1(double a, double c, double x) ;
float hyperg_1F1(float a, float c, float x) ;
long double hyperg_1F1(long double a, long double c, long double x) ;

13

1. Effects: The hyperg_1F1 functions compute the confluent hypergeometric functions of their
respective arguments a, c , and x . A domain error occurs (a) if c is a negative integer, or (b) if c is
zero.

2. Returns: The hyperg_1F1 functions return

F(a; c;x) =
Γ(c)
Γ(a)

∞∑
n=0

Γ(a + n)
Γ(c + n)

xn

n!
.

26.x.15.1 (incomplete) elliptic integral of the first kind

double ellint_F(double k, double phi);
float ellint_F(float k, float phi);
long double ellint_F(long double k, long double phi);

1. Effects: The ellint_F functions compute the incomplete elliptic integral of the first kind of
their respective arguments k and phi . A domain error may occur if the magnitude of k is greater
than one.

2. Returns: The ellint_F functions return

F(k, φ) =
∫ φ

0

dθ√
1− k2sin2θ

.

26.x.15.2 (complete) elliptic integral of the first kind

double ellint_K(double k);
float ellint_K(float k);
long double ellint_K(long double k);

1. Effects: The ellint_K functions compute the complete elliptic integral of the first kind of
their respective arguments k . A domain error occurs if the magnitude of k is greater than one.

2. Returns: The ellint_K functions return

K(k) =
∫ π/2

0

dθ√
1− k2sin2θ

.

26.x.16.1 (incomplete) elliptic integral of the second kind

double ellint_E(double k, double phi);
float ellint_E(float k, float phi);
long double ellint_E(long double k, long double phi);

1. Effects: The ellint_E functions compute the incomplete elliptic integral of the second kind
of their respective arguments k and phi . A domain error may occur if the magnitude of k is
greater than one.

2. Returns: The ellint_E functions return

E(k, φ) =
∫ φ

0

√
1− k2 sin2 θ dθ .

14

26.x.16.2 (complete) elliptic integral of the second kind

double ellint_E2(double k);
float ellint_E2(float k);
long double ellint_E2(long double k);

1. Effects: The ellint_E2 functions compute the complete elliptic integral of the second kind
of their respective arguments k . A domain error occurs if the magnitude of k is greater than one.

2. Returns: The ellint_E2 functions return

E(k, π/2) =
∫ π/2

0

√
1− k2 sin2 θ dθ .

26.x.17.1 (incomplete) elliptic integral of the third kind

double ellint_P(double k, double n, double phi);
float ellint_P(float k, float n, float phi);
long double ellint_P(long double k, long double n, long double phi);

1. Effects: The ellint_P functions compute the incomplete elliptic integral of the third kind
of their respective arguments k , n, and phi . A domain error may occur if the magnitude of k is
greater than one.

2. Returns: The ellint_P functions return

Π(n, k, φ) =
∫ φ

0

dθ

(1− n sin2θ)
√

1− k2sin2θ
.

26.x.17.2 (complete) elliptic integral of the third kind

double ellint_P2(double k, double n);
float ellint_P2(float k, float n);
long double ellint_P2(long double k, long double n);

1. Effects: The ellint_P2 functions compute the complete elliptic integral of the third kind of
their respective arguments k and n. A domain error occurs if the magnitude of k is greater than
one.

2. Returns: The ellint_P2 functions return

Π(n, k, π/2) =
∫ π/2

0

dθ

(1− n sin2θ)
√

1− k2sin2θ
.

paragraph26.x.19 beta function

double beta(double x, double y);
float beta(float x, float y);
long double beta(long double x, long double y);

1. Effects: The beta functions compute the beta function of their respective arguments x and
y . A domain error may occur (a) if either x or y is a negative integer, or (b) if either x or y is zero.

15

2. Returns: The beta functions return

B(x, y) =
Γ(x) Γ(y)
Γ(x + y)

.

26.x.20 exponential integral

double ei(double x);
float ei(float x);
long double ei(long double x);

1. Effects: The ei functions compute the exponential integral of their respective arguments x .

2. Returns: The ei functions return

Ei(x) = −
∫ ∞
−x

e−t

t
dt .

26.x.22 Riemann zeta function

double riemann_zeta(double x);
float riemann_zeta(float x);
long double riemann_zeta(long double x);

1. Effects: The riemann_zeta functions compute the Riemann zeta function of their respective
arguments x . A domain error occurs if x is equal to one.

2. Returns: The riemann_zeta functions return

ζ(x) =

∞∑
k=1

k−x for x > 1

2xπx−1 sin(
πx

2
) Γ(1− x) ζ(1− x) for x < 1

.

5. Relationship to Earlier Proposal

We noted in §2. that there is a small potential overlap between this proposal (which is based on
[ISO:31-11]) and an earlier proposal (which is based on [ISO:9899]. However, no competition
is intended between the two proposals. Indeed, we have coordinated efforts to ensure that no
incompatibilities result.

In particular, this section describes three functions (erf , erfc , and tgamma) originating in
the C99 library and previously proposed for C++ standardization as part of [Plauger]. They are
mentioned in the present proposal for two reasons, however: (1) these functions are traditionally
characterized as mathematical Special Functions, and (2) they form part of [ISO:31-11], on which
our proposal is based.

We emphasize that these functions are here described solely in the interest of completeness
so that the full spectrum of envisioned mathematical Special Functions may be viewed together.
For purposes of the C++ standardization effort, these functions should be considered part of the
[Plauger] proposal. The language in the remainder of this section should therefore be considered
solely for informative purposes.

16

A. To be inserted into Table 80 (Clause 26)

erf
erfc
tgamma

B. New section to be added to Clause 26

26.x.1 Synopsis

// (26.x.18) gamma function:
double tgamma(double);
float tgamma(float);
long double tgamma(long double);

// (26.x.21.1) error function:
double erf(double);
float erf(float);
long double erf(long double);

// (26.x.21.2) complementary error function:
double erfc(double);
float erfc(float);
long double erfc(long double);

26.x.18 gamma function

double tgamma(double x);
float tgamma(float x);
long double tgamma(long double x);

1. Effects: The tgamma functions compute the gamma function of their respective arguments
x . A domain error occurs (a) if x is a negative integer, or (b) if x is zero.

2. Returns: The tgamma functions return

Γ(x) =
∫ ∞

0

tx−1e−tdt .

26.x.21.1 error function

double erf(double x);
float erf(float x);
long double erf(long double x);

1. Effects: The erf functions compute the error function of their respective arguments x .

2. Returns: The erf functions return

erf x =
2√
π

∫ x

0

e−t2dt .

17

26.x.21.2 complementary error function

double erfc(double x);
float erfc(float x);
long double erfc(long double x);

1. Effects: The erfc functions compute the complementary error function of their respective
arguments x .

2. Returns: The erfc functions return

erfc x = 1− erf x =
2√
π

∫ ∞
x

e−t2dt .

6. Acknowledgments

It is a pleasure to acknowledge the significant contributions provided by a number of colleagues
at Fermilab: James Amundson, Mark Fischler, Jeffrey Kallenbach, Leo Michelotti, and Marc
Paterno. Their active participation has materially improved this proposal, and their inspiration
and support are deeply appreciated.

We extend special thanks to our Fermilab colleague John Marraffino for his extensive involve-
ment with all aspects of this proposal’s development and refinement. We are likewise especially
grateful to Marc Paterno for his significant contributions to version 2.

We have also received valuable input and feedback from Matt Austern, Beman Dawes, Gabriel
Dos Reis, J. Michael Gibbs, P. J. Plauger, and Fred J. Tydeman. We are grateful to them and to
our outside reviewers for their careful consideration of earlier versions of this document: Their
thoughtful comments and suggestions inspired several refinements and enhancements to this
proposal.

Finally, we appreciate the support of the Fermi National Accelerator Laboratory’s Computing
Division, sponsors of our participation in the C++ standards effort. Thank you, one and all.

7. References

[Abramowitz] Abramowitz, Milton, and Irene A. Stegun (eds.): Handbook of Mathematical Func-
tions with Formulas, Graphs and Mathematical Tables, volume 55 of National Bu-
reau of Standards Applied Mathematics Series. U. S. Government Printing Office,
Washington, DC: 1964. Reprinted with corrections, Dover Publications: 1972.
http://members.fortunecity.com/aands .

[Austern] Austern, Matt: Notes on Standard Library Extensions. WG21/N1314 (same as
J16/01-0028): 17 May 2001.

[Dawes] Dawes, Beman: Library Technical Report Proposals and Issues List (Revision 4).
WG21/N1397 (same as J16/02-0055): 2002.

[Galassi] Galassi, Mark, et al.: The GNU Scientific Library. 2002. http://www.gnu.org/
software/gsl/gsl.html .

[GNU C] GNU C Library Steering Committee The GNU C Library. http://www.gnu.org/
manual/glibc-2.0.6/html_node/libc_toc.html .

[Hildebrand] Hildebrand, Francis B.: Advanced Calculus for Applications, Second Edition.
Prentice-Hall, Inc., 1976. ISBN 0-13-011189-9.

18

http://members.fortunecity.com/aands
http://www.gnu.org/software/gsl/gsl.html
http://www.gnu.org/software/gsl/gsl.html
http://www.gnu.org/manual/glibc-2.0.6/html_node/libc_toc.html
http://www.gnu.org/manual/glibc-2.0.6/html_node/libc_toc.html

[IMSL] Visual Numerics, Inc.: IMSL C Numerical Library Version 5.0. Unpublished. http:
//www.vni.com/products/imsl/docs/cmath.pdf .

[ISO:31-11] International Standards Organization: Quantities and units — Part 11: Mathe-
matical signs and symbols for use in the physical sciences and technology. Inter-
national Standard ISO 31-11:1992. In Quantities and units, Third edition. ISBN
92-67-10185-4.

[ISO:9899] International Standards Organization: Programming Languages — C, Second edi-
tion. International Standard ISO/IEC 9899:1999.

[ISO:10967-1] International Standards Organization: Information technology — Language inde-
pendent arithmetic — Part 1: Integer and floating point arithmetic. International
Standard ISO/IEC 10967-1:1994.

[ISO:10967-2] International Standards Organization: Information technology — Language inde-
pendent arithmetic — Part 2: Elementary numerical functions. Draft International
Standard ISO/IEC FDIS 10967-2:2000.

[ISO:10967-3] International Standards Organization: Information technology — Language inde-
pendent arithmetic — Part 3: Complex integer and floating point arithmetic and
complex elementary numerical functions. Draft International Standard ISO/IEC
CD 10967-3.1:2002.

[ISO:14882] International Standards Organization: Programming Languages — C++ . Interna-
tional Standard ISO/IEC 14882:1998.

[Jackson] Jackson, John David: Classical Electrodynamics, Second Edition. John Wiley &
Sons, 1975. ISBN 0-471-43132-X.

[Josuttis] Josuttis, Nicolai: A New Work Item Proposal: Technical Report for Library Issues.
WG21/N1283 (same as J16/00-0060): 26 October 2000.

[Lebedev] Lebedev, N. N., and Richard A. Silverman (trans.): Special Functions & Their Ap-
plications, Revised English Edition. Dover Publications, Inc., 1972. ISBN 0-486-
60624-4.

[NAG] The Numerical Algorithms Group: The NAG C Library Manual, Mark 7. The Numer-
ical Algorithms Group, Ltd., Oxford, UK: 2002. http://www.nag.com/numeric/
CL/manual/html/CLlibrarymanual.asp .

[Plauger] Plauger, P. J.: Proposed C99 Library Additions to C++ (Revised). WG21/N1372
(same as J16/02-0030): 2002. http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2002/n1372.txt .

[SGI] Silicon Graphics, Inc.: Introduction to mathematical library functions. 2002. http:
//techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=
man&fname=/usr/share/catman/p_man/cat3/standard/math.z&srch=math .

[SLATEC] Fong, Kirby W., et al.: Guide to the SLATEC Common Mathematical Library. July
1993. http://www.netlib.org/slatec/guide .

[Spanier] Spanier, Jerome and Keith B. Oldham: An Atlas of Functions. Hemisphere Pub-
lishing Corp., 1987. ISBN 0-89116-573-8.

[Whittaker] Whittaker, E. T. and G. N. Watson: A Course of Modern Analysis, Fourth Edition
Reprinted. Cambridge University Press, 1958.

19

http://www.vni.com/products/imsl/docs/cmath.pdf
http://www.vni.com/products/imsl/docs/cmath.pdf
http://www.nag.com/numeric/CL/manual/html/CLlibrarymanual.asp
http://www.nag.com/numeric/CL/manual/html/CLlibrarymanual.asp
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1372.txt
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1372.txt
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=man&fname=/usr/share/catman/p_man/cat3/standard/math.z&srch=math
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=man&fname=/usr/share/catman/p_man/cat3/standard/math.z&srch=math
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=man&fname=/usr/share/catman/p_man/cat3/standard/math.z&srch=math
http://www.netlib.org/slatec/guide

Summary of changes in version 2

In addition to numerous minor editorial and stylistic improvements, changes due to the follow-
ing actions distinguish the present version 2 of this proposal from its predecessor document,
WG21/N1422 = J16/03-0004:

• Add discussion re error handling in §3.D.
• Add discussion re function naming in §3.F.
• Consolidate function references via new table in §3.B.
• Improve normative text describing conditions leading to domain errors.
• Adjust bessel_j and neumann_n function signatures to correspond better with current

practice.
• Replace sph_Y function with sph_legendre_Plm , and add rationale for this in §3.G.
• Rename zeta function as riemann_zeta .
• Remove from normative text all mention of range errors, and add rationale for this in §3.D.
• Number the Effects and Returns paragraphs in §4.B. and in §5.B.
• Extend acknowledgments in §6.
• Cite additional sources, and provide the new references in §7.

20

	1. Background and Motivation
	2. Impact On the C++ Standard
	3. Design Decisions
	4. Proposed Text
	5. Relationship to Earlier Proposal
	6. Acknowledgments
	7. References

