
UK Issues List

Document Number:

Date:

Project:

Reply-To:

J16/97-0035

29 May 1997

Programming Language C++

Steve Rumsby

steve@maths.warwick.ac.uk

Compiled by

Steve Rumsby

steve@maths.warwick.ac.uk

Introduction

This document is a list of all problems found by the BSI C++ panel (IST/5/-/21) in the C++ ballot document N2356.

The issues and their descriptions have been contributed by many of the panel members � the author of this document is simply

the keeper of the database. The �Comments� section of each issue is a container for miscellaneous commentary and discussion of

the issue, and is not part of the issue itself.

WG21/N1073

WP Section: 17-27Issue Number: 654

Owner: Andy Sawyer

Summary: Library resource usage policy

Category:

Creation Date 07/03/97

Description: We would like better guarantees that library components release resources when appropriate.

For memory in particular, we request that all library components that allocate memory via an allocator

allocate() function be required to deallocate that memory via the corresponding deallocate() function. Further

we require that the points at which such deallocation occur be defined, and should be the "obvious" places

when memory is no longer required.

Related Issues:

Comments:

Severity: Major

WP Section: 20.4.5 [lib.auto.ptr]Issue Number: 629

Owner: Steve Rumsby

Summary: auto_ptr broken

Category:

Creation Date 18/10/96

Description: The copy semantics of auto_ptr are undesirable, and dangerous. Make the copy constructor and copy

assignment operator of auto_ptr private, and delete the conversion constructor and conversion assignment

operator templates. Alternatively, remove auto_ptr from the library.

Related Issues:

Comments:

Severity: Major

- 1 -29 May 1997 97-0035/N1073

WP Section: 23Issue Number: 669

Owner: Steve Rumsby

Summary:

Category:

Creation Date 07/04/97

Description: There are numerous unfortunate ambiguities involving template member functions, including construstors,

taking iterator ranges. These ambiguities occur when attempting to call a non-template function with

reasonable argument types that happen to be a better match for the template version. These ambiguities must

be removed.

For example, see this posting from Sanda Whitman to the library reflector:

I ran into a problem with vector constructors when using a compiler with member function template support.

According to CD2 vector has the following constructors:

 explicit vector(size_type n, const T& value = T(),

 const Allocator& = Allocator());

 template <class InputIterator>

 vector (InputIterator first, InputIterator last,

 const Allocator& = Allocator());

When I create a vector<int> v2(1,0) the compiler is matching on the member function vector (InputIterator

first, InputIterator last, ...). I had not expected this. In my environment size_t is an unsigned long so vector

(InputIterator first, InputIterator last ...) does seem the better match. Is this a problem in my compiler, or in

the library specification? I noticed a similar thing in basic_string but haven't checked any other containers yet.

Related Issues:

Comments:

Severity: Major

WP Section: 01.1 [intro.scope] ¶2Issue Number: 229

Owner: Derek Jones

Summary:

Category: Misc

Creation Date 27/06/95

Description: Delete the last sentence and Annex C.1.2. This is the first standard for C++, what happened prior to 1985 is

not relevant to this document.

Related Issues: Core issue

Comments:

Severity: Minor

WP Section: 01.8 [intro.exectution] ¶6,7Issue Number: 573

Owner: John Borthwick

Summary:

Category: Editorial

Creation Date 15/09/95

Description: Should the word "volatile" in these two paragraphs actually be the keyword "volatile", i.e. typeset in courier?

This would seem to be exactly the purpose for while "volatile" is intended.

Related Issues:

Comments:

Severity: Minor

- 2 -29 May 1997 97-0035/N1073

WP Section: 01.8 [intro.execution] ¶9Issue Number: 263

Owner: Derek Jones

Summary:

Category: Misc

Creation Date 03/07/95

Description: What is a "needed side-effect"? Should this be "observable side-effect", using "observable" as defined in

paragraph 6? Also, delete the parenthetical remark.

Related Issues: Core issue

Comments:

Severity: Minor

WP Section: 02.3 [lex.trigraph] ¶3Issue Number: 273

Owner: Derek Jones

Summary:

Category: Editorial

Creation Date 03/07/95

Description: [Note: no other trigraph sequence exists. Each ? that does not begin

 one of the trigraphs listed above is not changed.]

This is a normative statement and should not be a note.

Related Issues:

Comments:

Severity: Minor

WP Section: 03.03.05 [basic.scope.namespace], ¶1Issue Number: 673

Owner: Lois Goldthwaite

Summary:

Category: Example bug

Creation Date 09/04/97

Description: In the example, within function

 int g(char a) { return k+a; }

Should �k� be �l� ?

Related Issues:

Comments:

Severity: Minor

WP Section: 05 [expr] ¶4Issue Number: 421

Owner: Derek Jones

Summary:

Category: Editorial

Creation Date 01/08/95

Description: In the example, change "undefined" to "unspecified".

Related Issues:

Comments:

Severity: Minor

- 3 -29 May 1997 97-0035/N1073

WP Section: 05.2.1 [expr.sub]Issue Number: 89

Owner: Sean Corfield

Summary:

Category: Editorial

Creation Date 24/09/94

Description: "One of the expressions ... and the other must be of enumeration or integral type."

Since enumeration types convert to integral types isn't this overspecified? In fact, shouldn't it be "convertible

to an integral type" to allow the following:

 struct X { operator int(); };

 X x;

 char buf[];

 buf[x];

(the same applies to "must have the type 'pointer to T'" -- this should be "convertible to a pointer to object

type")

Related Issues:

Comments: Josée: "enumeration or integral type" is overspecified. I think "expression that can be converted

to a pointer to T" should also be included.

Severity: Minor

WP Section: 05.3.3 [expr.sizeof] ¶6Issue Number: 488

Owner: Derek Jones

Summary:

Category: Editorial

Creation Date 01/08/95

Description: Replace this paragraph with:

 The result is a constant with type size_t, as defined in the standard header <cstddef>

Related Issues:

Comments:

Severity: Minor

WP Section: 05.3.4 [expr.new] ¶3Issue Number: 493

Owner: Derek Jones

Summary:

Category: Editorial

Creation Date 01/08/95

Description: This requirement is very poorly worded. The following example all contain parentheses, but some are regarded

as being well formed. Reword the requirement more precisely.

Related Issues:

Comments:

Severity: Minor

WP Section: 06.4 [stmt.select], ¶1Issue Number: 632

Owner: Kevlin Henney

Summary: Declarations in conditions

Category:

Creation Date 18/10/96

Description: What's the point of preventing legit declarations that choose not to (or cannot) use the '=' syntax? Eg.

 if(file some_file("filename")) // op bool returns true on opening

 {

 ...

 }

This constraint seems to be in error given that it offers complete support for the concepts that it intends to

support.

Related Issues:

Comments:

Severity: Minor

- 4 -29 May 1997 97-0035/N1073

WP Section: 07.3.2 [namespace.alias] ¶3Issue Number: 114

Owner: Sean Corfield

Summary:

Category: Editorial

Creation Date 03/11/94

Description: Change

 in that declarative region to refer to the namespace to which it already refers.

to

 in that declarative region to refer only to the namespace to which it already refers.

The old wording only says what is possible, and not what isn't possible.

Related Issues:

Comments:

Severity: Minor

WP Section: 16.2 [cpp.include], ¶4Issue Number: 612

Owner: Richard De Morgan

Summary:

Category: Typo

Creation Date 26/02/96

Description: Change:

 .)If

to:

 .) If

Related Issues:

Comments:

Severity: Minor

WP Section: 17 [lib.library]Issue Number: 682

Owner: Lois Goldthwaite

Summary:

Category: Editorial

Creation Date 09/04/97

Description: Throughout this chapter, there are references both to the "C++ Standard library" and the "C++ Standard

Library". 17.3.4.7 [lib.derivation] even manages to use both forms in the same sentence. We believe one usage

or the other should be used consistently. We prefer "C++ Standard library".

Related Issues:

Comments:

Severity: Minor

WP Section: 17.1 [lib.definitions]Issue Number: 648

Owner: Alan Stokes

Summary:

Category: Editorial

Creation Date 28/02/97

Description: In [lib.definitions], at the end of the definition of 'reserved functions' there is a missing para break before

"Clause intro.defs ...".

Related Issues:

Comments:

Severity: Minor

WP Section: 17.2.2.1.3.3, ¶1Issue Number: 684

Owner: Lois Goldthwaite

Summary:

Category: Editorial

Creation Date 09/04/97

Description: A reference to (_basic.fundmental_) should be spelled basic.fundamental (3.9.1)

Related Issues:

Comments:

Severity: Minor

- 5 -29 May 1997 97-0035/N1073

WP Section: 17.3.1.2 [lib.headers], ¶4Issue Number: 658

Owner: Alan Stokes

Summary:

Category:

Creation Date 07/04/97

Description: In [lib.headers], para 4 gives a general rule for each header which begins with a c. However the rule is

probably not intended to apply to header complex, and it's not clear it doesn't (except that C doesn't have a

header omplex.h).

Related Issues:

Comments:

Severity: Minor

WP Section: 17.3.1.3 [lib.compliance], ¶2Issue Number: 649

Owner: Alan Stokes

Summary:

Category:

Creation Date 28/02/97

Description: In [lib.compliance] para 2 "has has" should be just "has".

Related Issues:

Comments:

Severity: Minor

WP Section: 18.4.1.1[lib.new.delete.single], ¶3,7Issue Number: 696

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: 3 Required behavior: Return a pointer to dynamically allocated storage

 (3.7.3), or else throw a bad_alloc exception.

If this is a requirement on user-supplied versions it is too restrictive. It precludes, for example, a version that

manages memory

from a static array. Change to "Return a non-null pointer to suitably aligned storage (3.7.3), or else throw a

bad_alloc exception."

Note: 3.7.3 does not use the term "dynamically allocated storage".

 7 Required behavior: Return a pointer to dynamically allocated storage

 (3.7.3), or else return a null pointer. This nothrow version of operator

 new returns a pointer obtained as if acquired from the ordinary version.

 This requirement is binding on a replacement version of this function.

Similarly, change to "Return a pointer to suitably aligned storage (3.7.3), or else return a null pointer."

Should "This requirement is..." be present on para 3 above? I think so.

Related Issues:

Comments:

Severity: Minor

- 6 -29 May 1997 97-0035/N1073

WP Section: 18.4.2.1 [lib.bad.alloc], ¶2-4Issue Number: 697

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: 2 Effects: Constructs an object of class bad_alloc.

 3 Effects: Copies an object of class bad_alloc.

 4 Notes: The result of calling what() on the newly constructed object is

 implementation-defined.

Reorder paras 3 and 4 (so the note applies to the construction, not the copy operations).

Related Issues:

Comments:

Severity: Minor

WP Section: 18.5.1 [lib.type.info]Issue Number: 664

Owner: Alan Stokes

Summary:

Category:

Creation Date 07/04/97

Description: The result of name() may be a NTBS, but may not. So you can't portably use it. So what's the point? Surely it's

not unreasonable to require it to be an NTBS - an implementation can always return the null string if it's not

feeling friendly. The returned string should at least be null-terminated. The return from "what()" gives this

guarantee - why not "name()"?

Related Issues: 665

Comments:

Severity: Minor

WP Section: 18.5.2 [lib.bad.cast], ¶2-4Issue Number: 699

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: 2 Effects: Constructs an object of class bad_cast.

 3 Effects: Copies an object of class bad_cast.

 4 Notes: The result of calling what() on the newly constructed object is

 implementation-defined.

Swap paras 3 and 4.

Related Issues:

Comments:

Severity: Minor

- 7 -29 May 1997 97-0035/N1073

WP Section: 18.5.2 [lib.bad.exception], ¶2-4Issue Number: 701

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: 2 Effects: Constructs an object of class bad_exception.

 3 Effects: Copies an object of class bad_exception.

 4 Notes: The result of calling what() on the newly constructed object is

 implementation-defined.

Swap paras 3 and 4.

Related Issues:

Comments:

Severity: Minor

WP Section: 18.5.2 [lib.bad.typeid], ¶2-4Issue Number: 700

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: 2 Effects: Constructs an object of class bad_typeid.

 3 Effects: Copies an object of class bad_typeid.

 4 Notes: The result of calling what() on the newly constructed object is

 implementation-defined.

Swap paras 3 and 4.

Related Issues:

Comments:

Severity: Minor

WP Section: 18.6.1 [lib.exception]Issue Number: 665

Owner: Alan Stokes

Summary:

Category:

Creation Date 07/04/97

Description: The result of what() is "An implementation-defined NTBS", but ".. may be a NTBS, ...". These two seem to

contradict each other. what() should certainly return an NTBS.

Related Issues: 664

Comments:

Severity: Minor

WP Section: 20.1.5 [lib.allocator.requirements]Issue Number: 692

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: The Table 32 footnote currently reads:

 204) It is intended that a::allocate be an efficient means of allocating

 a single object of type T, even when sizeof(T) is small. That is, there

 is no need for a container to maintain its own ��free list��.

This should read either "... a.allocate ..." or "... X::allocate�"

Related Issues:

Comments:

Severity: Minor

- 8 -29 May 1997 97-0035/N1073

WP Section: 20.1.5 [lib.allocator.requirements], Table 32Issue Number: 675

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: Should x.construct() and x.destroy() refer to �a� instead of �x�?

Related Issues:

Comments:

Severity: Minor

WP Section: 20.3.2Issue Number: 641

Owner: Kevlin Henney

Summary:

Category:

Creation Date 27/02/97

Description: We have negate for -x, but what about identity for +x? For completeness, identity is an important functional

concept.

Part of the motivation is, as mentioned, completeness and another is that it provides an ideal default template

parameter that developers can use, e.g. for providing a filter operation on some other kind of

container/process/whatever.

I have since discovered that SGI's implementation of STL has an identity type that does exactly this. In

contacting Matt Austern he wondered whether it was worth raising as a comment on CD2.

Compose is also missing?

Related Issues:

Comments:

Severity: Minor

WP Section: 20.3.3 [lib.comparisons], ¶1Issue Number: 676

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: "In all cases, type T is convertible to type bool."

I�m not sure I understand what this means in context. Does this imply that only integral types can be used with

these function objects? That doesn�t seem logical. Delete the sentence.

Related Issues:

Comments:

Severity: Minor

WP Section: 20.3.5 [lib.negators]Issue Number: 693

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: template <class Predicate>

 class unary_negate : public unary_function<Predicate::argument_type,bool>

 ...

 template <class Predicate>

 class binary_negate : public binary_function<Predicate::first_argument_type,

Predicate::second_argument_type, bool>

 ...

I *think* both of these require 'typename Predicate::...argument_type'

Related Issues:

Comments:

Severity: Minor

- 9 -29 May 1997 97-0035/N1073

WP Section: 20.3.6.1 [lib.binder.1st]Issue Number: 694

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: template <class Operation>

 class binder1st : public unary_function<Operation::second_argument_type, Operation::result_type>

 ...

 Operation::first_argument_type value;

 ...

Should be 'typename Operation::...'

Related Issues:

Comments:

Severity: Minor

WP Section: 20.3.6.3 [lib.binder.2nd]Issue Number: 695

Owner: Sean Corfield

Summary:

Category:

Creation Date 09/04/97

Description: template <class Operation>

 class binder2nd : public

 unary_function<Operation::first_argument_type, Operation::result_type>

 ...

 Operation::second_argument_type value;

 ...

Should be 'typename Operation::...'

Related Issues:

Comments:

Severity: Minor

WP Section: 20.4.4.3 [lib.uninitialized.fill.n]Issue Number: 704

Owner: Steve Rumsby

Summary:

Category:

Creation Date 09/04/97

Description: Change From:

 while (n--)

 new (static_cast<void*>(&*result++))

 typename iterator_traits<ForwardIterator>::value_type(*first++);

To:

 while (n--)

 new (static_cast<void*>(&*first++))

 typename iterator_traits<ForwardIterator>::value_type(x);

Related Issues:

Comments:

Severity: Minor

WP Section: 21.3.4 [lib.string.access]Issue Number: 639

Owner: Sean Corfield

Summary: Sub-optimal lifetime of reference returned from operator[]

Category: Clarification

Creation Date 27/02/97

Description: Invalidating the reference from operator[]() on any non-const member function call is clearly broken since s[i]

= s[j]; is undefined.

Related Issues:

Comments:

Severity: Minor

- 10 -29 May 1997 97-0035/N1073

WP Section: 21.3.5.2 [lib.string::append]Issue Number: 671

Owner: Andy Sawyer

Summary:

Category:

Creation Date 07/04/97

Description: basic_string::append(charT) - any chance of aliasing this as basic_string::push_back(charT), thus enabling

the use of

back_insert_iterators on basic_strings? As far as I can see, append() satisfies all the requirements of

push_back, thus enabling the use of back_insert_iterator/back_inserter with strings. FWIW, this came out of a

conversation I was having earlier today with a colleague who needed this functionality in a real-world

application - whilst it is fairly trivial to specialise

back_insert_iterator for basic_string, it would be nice not to have to.

It's worth noting that this does not add any additional functionality to basic_string, merely improves the

'cohesiveness' of the standard library - i.e. makes it feel less like it was designed by a committee...:-)

Related Issues:

Comments:

Severity: Minor

WP Section: 23.1 [lib.container.requirements], Table 66Issue Number: 677

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: Should "distance type" be "difference type"?

Related Issues:

Comments:

Severity: Minor

WP Section: 23.1.2 Table 70Issue Number: 680

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: a.clear() means erase(s.begin, s.end))

Shouldn�t this be "erase(a.begin(), a.end())"?

Related Issues:

Comments:

Severity: Minor

WP Section: 23.1.2 [lib.associative.reqmts], ¶2Issue Number: 678

Owner: Lois Goldthwaite

Summary:

Category: Editorial

Creation Date 09/04/97

Description: Change:

 Each associative containers...

to:

 Each associative container...

Related Issues:

Comments:

Severity: Minor

WP Section: 23.1.2, ¶7Issue Number: 679

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: Add "c is a function object or function pointer"?

Related Issues:

Comments:

Severity: Minor

- 11 -29 May 1997 97-0035/N1073

WP Section: 23.3.1 [lib.map]Issue Number: 691

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: Change:

 typedef Allocator::pointer pointer;

 typedef Allocator::const_pointer const_pointer;

to:

 typedef typename Allocator::pointer pointer;

 typedef typename Allocator::const_pointer const_pointer;

Related Issues:

Comments:

Severity: Minor

WP Section: 23.3.4 [lib.multiset], ¶2Issue Number: 681

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: "a_eu" should be "a_eq".

Related Issues:

Comments:

Severity: Minor

WP Section: 24.4.1.1 [lib.reverse.iterator]Issue Number: 642

Owner: Kevlin Henney

Summary:

Category:

Creation Date 27/02/97

Description: I don't know if this problem has been picked up yet, but in [lib.reverse.iterator] in the November WP the

changes made to have reverse_iterator derive from iterator are not complete:

template <class Iterator>

class reverse_iterator :

 public iterator<

 iterator_traits<Iterator>::iterator_category,

 iterator_traits<Iterator>::value_type,

 iterator_traits<Iterator>::difference_type,

 iterator_traits<Iterator>::pointer,

 iterator_traits<Iterator>::reference>

{

 ...

 reverse_iterator operator+ (Distance n) const;

 reverse_iterator& operator+=(Distance n);

 reverse_iterator operator (Distance n) const;

 reverse_iterator& operator=(Distance n);

 Reference operator[](Distance n) const;

};

The argument type for the members listed above needs to be changed to difference_type. and the return type of

operator[]() needs to be changes to reference.

Might this be considered an editorial change?

Related Issues:

Comments:

Severity: Minor

- 12 -29 May 1997 97-0035/N1073

WP Section: 25 [lib.algorithms], ¶8Issue Number: 688

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: Two references to "pred" should be "binary_pred"; two references to "first" should be "first1"

Related Issues:

Comments:

Severity: Minor

WP Section: 25 [lib.algorithms], ¶8,9Issue Number: 687

Owner: Lois Goldthwaite

Summary:

Category:

Creation Date 09/04/97

Description: 7 The function object pred _is assumed not_ to

 apply any non­constant function through the dereferenced iterator.

 8 binary_pred _shall not_ apply any non­constant function

 through the dereferenced iterators.

Why the difference between "is assumed not" and "shall not"?

Related Issues:

Comments:

Severity: Minor

WP Section: 25 [lib.algorithms], ¶9Issue Number: 689

Owner: Lois Goldthwaite

Summary:

Category: Editorial

Creation Date 09/04/97

Description: Change:

 In these cases the semantics of a+n is the same is that of ...

To:

 In these cases the semantics of a+n is the same as that of ...

Related Issues:

Comments:

Severity: Minor

WP Section: 25 [lib.algorithms], ¶9Issue Number: 702

Owner: Andy Sawyer

Summary:

Category:

Creation Date 09/04/97

Description: Clause 25 [lib.algorithms], Para 9 contains the following:

..

 {

 Distance n;

 distance(a, b, n);

 return n;

 }

but distance (24.3.4 [lib.iterator.operators]) no longer takes three parameters (thanks to iterator_traits). Should

this now be:

 return distance(a,b)

Related Issues:

Comments:

Severity: Minor

- 13 -29 May 1997 97-0035/N1073

WP Section: 26.2.2 [lib.complex]Issue Number: 613

Owner: Andy Sawyer

Summary:

Category: Editorial

Creation Date 26/02/96

Description: The declaration of class complex is missing a closing brace & semi-colon. (It's actually the namespace std

that's missing it)

Related Issues:

Comments:

Severity: Minor

WP Section: 26.3.1 [lib.valarray.synopsis]Issue Number: 706

Owner: Steve Rumsby

Summary:

Category: Editorial

Creation Date 09/04/97

Description: Change From: "- for every functions taking a const"

To: "- for every function taking a const"

Related Issues:

Comments:

Severity: Minor

WP Section: 26.3.9.2 [lib.indirect.array.assign]Issue Number: 705

Owner: Steve Rumsby

Summary:

Category:

Creation Date 09/04/97

Description: Change From: "array[indirect] = b;"

To: "a[indirect] = b;"

Related Issues:

Comments:

Severity: Minor

WP Section: 27Issue Number: 633

Owner: Kevlin Henney

Summary:

Category:

Creation Date 18/10/96

Description: [lib.ifstream] 27.8.1.5 Template class basic_ifstream

[lib.ofstream] 27.8.1.8 Template class basic_ofstream

[lib.fstream] 27.8.1.11 Template class basic_fstream

Both of these define is_open to be a non-const function that returns rdbuf()->is_open(). Why are they non-

const? The filebuf is_open is const, and logically the stream query should also be const.

Related Issues:

Comments:

Severity: Minor

WP Section: 27.4.2 [lib.ios.base]Issue Number: 634

Owner: Kevlin Henney

Summary: The destructor for ios_base is non-virtual.

Category:

Creation Date 17/01/97

Description: The destructor for ios_base is non-virtual. The issue here is not one of deletion safety but of polymorphism:

ios_base is a non-polymorphic base class, and thus dynamic_cast cannnot be used w/ it. The problem arises if

developers wish to use the event_callback mechanism safely: it is not possible to get from the ios_base&

argument to the correct derived class if needed for a callback.

Solution: Make the dtor virtual.

Related Issues:

Comments:

Severity: Minor

- 14 -29 May 1997 97-0035/N1073

WP Section: 27.4.2.1.1 [lib.ios::failure]Issue Number: 635

Owner: Kevlin Henney

Summary:

Category:

Creation Date 17/01/97

Description: The problem I posted a while back with the exception classes having the postcondition what() == msg.c_str()

has been fixed for <stdexcept> classes, but I (and indeed the library group) missed the change required for

ios_base::failure. To refresh memories, the expression uses pointer equality rather than content equality. In the

case of ios_base::failure the problem is made worse by referring to a string member function that does not exist

(str() is used instead of c_str())!

Solution: Change "what() == msg.str()" to "strcmp(what(), msg.c_str()) == 0".

Related Issues: Library issue 27-001

Comments:

Severity: Minor

WP Section: 27.4.2.7 [lib.ios.base.cons]Issue Number: 636

Owner: Kevlin Henney

Summary:

Category:

Creation Date 17/01/97

Description: Change:

 The ios_base members are have an indeterminate value after construction.

to:

 The ios_base members have indeterminate values after construction.

Related Issues:

Comments:

Severity: Minor

- 15 -29 May 1997 97-0035/N1073

