n1057

Doc. No: X3J16/97-0019
WG21/N0157

Date: 11 March 1997

Project: Programming Language C++

Reply to: Matt Austern
austern@sgi.com

VECTORS AND EXCEPTIONS

The exception policy for the standard library is still an open issue.

What guarantees can we make on how library components behave when user
code throws exceptions, and what restrictions on user code do we need

to impose in order to provide those guarantees?

At this point, the only standard container that | have examined in
detail is vector<>. Based on a cursory examination, though, my guess
is that the situation with the other containers is similar.

Summary: we can achieve a fairly high degree of exception safety
for vector<T, Allocator>. Specifically, we can provide these
guarantees.

(1) Even if user code throws an exception, the vector will still
be in a state where it can be destroyed safely.

(2) Exceptions won't result in resource leaks. All of the vector's
elements that have been properly constructed will eventually
be destroyed.

(3) The vector will be in some sane state after an exception---
not necesarily a predictable or useful state, but it will
still be a vector. The program won't crash if you call any
of its member functions.

(4) vector<>::~vector() doesn't throw an exception.

These guarantees hold if we make the following restrictions on
vector<T, Allocator>'s template parameters.
(1) T's destructor doesn't throw an exception under any circumstances.
(2) No operations on T, including assignment, can ever put an
object of class T into a non-destructable state.
(3) Allocator::deallocate may not throw an exception.
(4) Objects of type Allocator::pointer, Allocator::const_pointer,
Allocator::size_type, and Allocator::difference_type may not
throw exceptions.

Additionally, we need a guarantee from uninitialized_copy,
uninitialize_fill, and uninitialized_fill_n. The guarantee we need
is in fact full rollback capability: if anything in one of
those algorithms throws an exception, then any objects that have
been constructed will be destroyed. These three algorithms can provide
that guarantee, provided that we also impose some restrictions on
their arguments.
(1) The template arguments that are iterators or integral
types can't throw exceptions upon valid iterator arithmetic
or dereference of a valid iterator.
(2) The value type's destructor can't throw an exception.

Here the detailed analysis follows. I'm using the SGI implementation
(of course), but | don't think that the details would be remarkably
different if | were looking at a different implementation.

Just as a guide, vector<> has three member variables: start,

finish, and end_of_storage. It has two important invariants:
(1) Either all three members are null, or else they are all valid

Page 1

n1057

pointers. In the latter case, start <= finish <= end_of storage.
(2) Every element in [start, finish) is a valid T, and the range
[finish, end_of storage) consists entirely of uninitialized storage.

I'm only looking at non-const member functions.
CONSTRUCTORS
1: vector() : start(0), finish(0), end_of_storage(0) {}

If pointers are of some user-defined type, then any of these three
null pointer constructors might throw an exception. This should
be harmless, however.

1: vector(size_type n, const T& value) {
2: start=data_allocator::allocate(n);
3: uninitialized_fill_n(start, n, value);

4: finish = start + n;

5: end_of_storage = finish;

6:}

The allocation in line 2 might fail. This is harmless, since
there isn't yet anything else to be destroyed.

The uninitialized_fill_n in line 3 is more interesting: it might fail

after some of the vector's elements have been constructed. If we

don't want resource leaks, then we need to destroy the
already-constructed elements. That means we have to keep track of
which elements have been constructed and which have not been. The
most reasonable place to do that is within uninitialized_fill_n: it

must guarantee that, if an exception is thrown anywhere within it, all
constructed objects must be destroyed.

The pointer assignments in lines 4 and 5, and the pointer arithmetic
in line 4, might fail if pointer is a user-defined type. If we

don't want resource leaks, we'll have to catch the exception thrown
by the pointer and destroy all of the already-constructed elements.
We might use code that goes something like this.

L:try{

2: finish = start + n;

3: end_of_storage = finish;

4:}

5: catch (...)

6: destroy(start, start + n);

7: data_allocator::deallocate(start, start + n);
8: throw,

9}

There's a problem with that, though. The call to destroy in line 6

uses just the same operations that we are worried about in lines 2 and
3. (And it actually uses one more operation than that: it has to
dereference the pointers that it is passed as arguments.) Conclusion:
we can't recover from an exception thrown in the course of pointer
arithmetic, assignment, and dereference. User-defined pointer types
should not be permitted to throw exceptions.

One other interesting point about user-defined pointer types.

If there is an exception, we want to deallocate vector's storage if
and only if the allocation succeeded. There are two ways to

do this. First, have a separate try block around the call
data_allocator::allocate(n). Second, initialize start to be a null
pointer. In that case, we will know in the catch block that

the allocation succeeded if and only if start is non-null. The latter

Page 2

n1057

scheme is simpler, and it also fits better with handling zero-sized
vectors. This implies that user-defined pointer types must support
null pointers.

1: vector(size_type n) {

2. start=data_allocator::allocate(n);
3: uninitialized_fill_n(start, n, T();

4: finish = start + n;

5. end_of storage = finish;

6:}

This constructor raises no new issues.

1: vector(const vector<T, Alloc>& X) {

2: start=data_allocator::allocate(x.end() - x.begin());
3: finish = uninitialized_copy(x.begin(), x.end(), start);
4. end_of storage =finish;

5:1

The same analysis as above applies: uninitialized_copy must have the
same properties as uninitialized_fill_n.

1: vector(const_iterator first, const_iterator last) {
2: size_typen=0;

3: distance(first, last, n);

4. start = data_allocator::allocate(n);

5: finish = uninitialized_copy(first, last, start);

6: end_of_storage = finish;

7}

DESTRUCTOR

1: ~vector() {

2: destroy(start, finish);
3: deallocate();

4:}
5:
6: void deallocate() {

7. if (start) data_allocator::deallocate(start, end_of storage - start);
81

The only way to be sure that there are no resource leaks, and that
vector<>::~vector() doesn't throw any exceptions, is if every
operation in the destructor is guaranteed to succeed. This means
that the call to destroy() and the call to deallocate() must succeed.
The destroy() algorithm iterates through a range (in this case,
a range of pointers), calling the destructor for each element *i.
Deallocate() uses the vector's allocator to deallocate storage. This
implies the following restrictions.
(1) User-defined pointer types may not throw exceptions when a
pointer in a valid range is incremented.
(2) A valid pointer may not throw an exception when it is
dereferenced.
(3) An allocator's deallocation function may not throw an exception.

BASIC ACCESSOR FUNCTIONS

1: iterator begin() { return start; }

2: iterator end() { return finish; }

3: reference operator{|(size_type n) { return *(begin() + n); }
4: reference front() { return *begin(); }

5: reference back() { return *(end() - 1); }

Page 3

n1057

At first sight, these member functions raise no new issues. In fact,
however, they do. These functions give the user access to the
vector's elements; if the user performs an operation on a vector
element that puts that element in an inconsistent (non-destructable)
state, then the vector itself will also be in an inconsistent state.

Consider, for example, *(V.begin()) = x. If the assignment fails
halfway through, and the first element in V is in an inconsistent
state, then attempting to destroy V could cause a crash.

Note that the only vector<> member function in this line is

begin(), and that the potential danger occurs after begin()

has already returned. That means that there is no way for
vector<> to protect against it with a try block. The only way to
ensure that it doesn't happen is to impose another requirement on
the type T. No operation on T, including assignment, may put an
object of type T into an inconsistent state.

1: reverse_iterator rbegin() { return reverse_iterator(end()); }
2: reverse_iterator rend() { return reverse_iterator(begin()); }

No new issues. Reverse_iterator's constructor simply invokes the
pointer's copy constructor.

ASSIGNMENT OPERATOR

1: template <class T, class Alloc>

2: vector<T, Alloc>& vector<T, Alloc>::operator=(const vector<T, Alloc>& x) {
3. if (&x ==this) return *this;

4: if (x.size() > capacity()) {

destroy(start, finish);

deallocate();

start = data_allocator::allocate(x.end() - x.begin());

end_of storage = uninitialized_copy(x.begin(), x.end(), start);
9: }elseif (size() >= x.size()) {

10: vector<T, Alloc>::iterator i = copy(x.begin(), x.end(), begin());
11: destroy(j, finish);

12: }else{

13: copy(x.begin(), x.begin() + size(), begin());

14: uninitialized_copy(x.begin() + size(), x.end(), begin() + size());
15: }

16: finish = begin() + x.size();

17: return *this;

18:}

The clause from lines 4 through 8 raises no new issues. The operations
in lines 7 and 8 can potentially fail. If line 7 fails, it's

necessary to assign values to start, finish, and end_of_storage such
that the vector's destructor will succeed. (The two obvious choices

are null pointers, or, by exchanging lines 7-8 and 5-6, the old

contents of the vector.) If line 8 fails, it's necessary to do that and

also to deallocate the storage that was allocated in line 7. This is

all straightforward.

The clause in lines 10 and 11 also raises no new issues. Copy does
nothing but iterator operations (in this case, pointer operations) and
assignment. We already know that pointer operations are not permitted
to throw exceptions. Any of the assignments in copy() might throw
exceptions, but that's harmless. (It's harmless because we already
know that an assignment operation involving objects of type T may not
leave either of the objects in an inconsistent state.) In the event

of a failure in line 10, finish should not be updated.

Page 4

n1057

Clause in lines 13 and 14 also raises no new issues. If anything
in line 13 or 14 throws an exception, finish should not be updated.

SWAP

1: void swap(vector<T, Alloc>& X) {

2: :swap(star, x.start);

3: :swap(finish, x finish);

4. :swap(end_of storage, x.end_of_storage);
5:1

No new issues, but a very clean proof (if any proof is still needed)

that user-defined pointer types should not be permitted to throw
exceptions upon assignment. Suppose that VV1's members (start, finish,
end_of_storage) are initially (s1, f1, el1), and V2's are initially

(s2, 12, €2). Suppose that line 2 succeeds, and that the first pointer
assignment in line 3 succeeds, and the second fails. In that case,

V1 will be left in the state (s2, 2, e1) and V2 in the state

(s1, 2, €2). The value f1 has been lost, and there is no way to

recover it. Without it, there is no way that V2 can be destroyed.

RESERVE

1: void reserve(size_type n){
2: if (capacity() < n) {

3: constsize_type old_size = size();

4: const iterator tmp = data_allocator::allocate(n);
5: uninitialized_copy(begin(), end(), tmp);

6: destroy(start, finish);

7: deallocate();

8. start=tmp;

9

;. finish=tmp + old_size;

10: end_of storage = start +n;
11: }

12:}

No new issues. The operations in lines 2-3 and 6-10 can't fail. The
operations in lines 4-5 can; a failure in line 4 requires no cleanup
work, and a failure in line 5 merely leaves us with a block of raw
storage that must be deallocated.

INSERTION

1: void push_back(const T& x) {

if (finish '= end_of storage) {
construct(finish, x);
++inish;

}else
insert_aux(end(), x);

NoOOARWN
—

The clause in lines 3 and 4 raise no new issues. Line 3 could throw
an exception, but this does not affect the validity of the vector.

Line 4 is yet another example of why it would be very bad to permit
pointers to throw exceptions.

Lines 6 does nothing but call insert_aux, so we'll look at that
separately.

1: iterator insert(iterator position, const T& X) {

2: size_type n = position - begin();

3: if (finish I=end_of storage && position == end()) {
4: construct(finish, x);

5: ++Hfinish;

Page 5

n1057

6. }else

7. insert_aux(position, x);
8: return begin() + n;

9

Line 2 can't throw an exception. Lines 4 and 5 are equivalent to
push_back, which we discussed above. Line 7 simply calls
insert_aux, which we've already postponed. Line 8 can't throw
an exception, and will never be executed if anything else throws
an exception.

1: template <class T, class Alloc>

2: void vector<T, Alloc>::insert(iterator position, size_type n, const T& X) {
3. if (n==0) return;

4: if (end_of_storage - finish >=n) {

5: if (end() - position > n) {

6: uninitialized_copy(end() - n, end(), end());

7: copy_backward(position, end() - n, end());

8: fill(position, position + n, X);

9: telse{

10: uninitialized_copy(position, end(), position + n);
11: fill(position, end(), X);

12: uninitialized_fill_n(end(), n - (end() - position), X);

13}

14: finish +=n;

15: }else{

16: constsize_type old_size = size();

17: constsize_typelen=old_size + max(old_size, n);

18: const iterator tmp = data_allocator::allocate(len);

19: uninitialized_copy(begin(), position, tmp);

20: uninitialized_fill_n(tmp + (position - begin()), n, X);

21: uninitialized_copy(position, end(), tmp + (position - begin() + n));
22: destroy(begin(), end());

23: deallocate();

24: end_of storage =tmp +len;

25: finish =tmp + old_size + n;

26: start =tmp;

The first clause (n == 0) is trivial.

The second clause (no reallocation is necessary, and all insertions go
into previously initialized elements) presents no problems. Itis
harmless for line 6 to throw an exception, provided that
uninitialized_copy adheres to the cleanup requirement that we've
already discussed. Itis almost harmless for lines 7 or 8 to throw an
exception: if T adheres to the requirement that "t1 = t2" never puts
t1 into an inconsistent state, then no vector elements will be
corrupted. The problem is that if there is an exception in lines 7 or
8, then line 6 will have created initialized elements that are outside
the range [start, finish). Either we have to have a try block here to
destroy those elements, or else we have to move the "finish +=n"
immediately after line 6.

The third clause (no reallocation is necesary, and some insertions go
into uninitialized elements) is similar to the second, but slightly

more complicated. Again, itis harmless for line 10 to throw an
exception. Ifline 11 or 12 throws an exception, then, again, there
will be initialized elements outside [start, finish). The simplest

way to deal with this problem is to increment finish once after

line 10, and a second time after line 12.

The fourth clause (reallocation is necessary) is reasonable simple.

Page 6

n1057

It is harmless for line 18 to throw an exception. If any of lines

19 through 21 throw an exception, then we must (1) destroy any elements
that were created in the previous lines; and (2) deallocate the

storage allocated in line 18. None of the lines from 22 through 26

can throw exceptions.

1: template <class T, class Alloc>
2: void vector<T, Alloc>::insert(iterator position,
3 const_iterator first,
4. const_iterator last) {
5: if (first == last) return;
6: size typen=0;
7. distance(first, last, n);
8: if (end_of_storage - finish >=n) {
9: if(end() - position > n) {
0: uninitialized_copy(end() - n, end(), end());
11: copy_backward(position, end() - n, end());
12: copyf(first, last, position);
13: }else{
14: uninitialized_copy(position, end(), position + n);
15: copyf(first, first + (end() - position), position);
16: uninitialized_copy(first + (end() - position), last, end());

17: }

18: finish +=n;

19: }else{

20: constsize_type old_size = size();

21: constsize_type len =old_size + max(old_size, n);

22: const iterator tmp = data_allocator::allocate(len);

23: uninitialized_copy(begin(), position, tmp);

24: uninitialized_copy(first, last, tmp + (position - begin()));

25: uninitialized_copy(position, end(), tmp + (position - begin() + n));
26: destroy(begin(), end());

27: deallocate();

28: end_of storage =tmp +len;

29: finish =tmp + old_size + n;

30: start =tmp;

This version of insert raises no new issues. The only difference is
that it uses copy/uninitialized_copy instead of fillluninitialized_fill,
and the analysis is identical.

1: template <class T, class Alloc>
2: void vector<T, Alloc>::iinsert_aux(iterator position, const T& X) {
3: if (finish I=end_of storage) {
construct(finish, *(finish - 1));
T x_copy =X;
copy_backward(position, finish - 1, finish);
*position = x_copy;
. ++Hinish;
9: }else{
: constsize_type old_size = size();
11: constsize_typelen=old_size '=0?2*old_size: 1;
12: const iterator tmp = data_allocator::allocate(len);
13: uninitialized_copy(begin(), position, tmp);
14: construct(tmp + (position - begin()), X);
15: uninitialized_copy(position, end(), tmp + (position - begin()) + 1);
16: destroy(begin(), end());
17: deallocate();
18: end_of storage =tmp +len;
19: finish =tmp + old_size + 1,
20: start =tmp;

N A

Page 7

n1057

22:}

This is also essentially the same as the previous version of insert,
except simpler. In the clause in lines 4 through 8, all we have to
make sure of is that line 8 is moved immediately after line 4. After
that, it's harmless for any of the next lines to throw exceptions.

Similarly, in the second clause, we only have to worry about lines 13
through 15. Again, all we have to do is make sure that (1) if any of
them throw exceptions, we deallocate the storage allocated in line
12; and (2) if line 14 or 15 throws an exception, we destroy the
elements constructed in line 13 and/or 14.

ERASURE

1: void pop_back() {

2: finish;

3 destroy(finish);
4:}

5: void erase(iterator position) {

6: if (position + 1 = end())

7: copy(position + 1, end(), position);
8: -finish;

9: destroy(finish);

10:}

11: void erase(iterator first, iterator last) {
12: vector<T, Alloc>::iterator i = copy(last, end(), first);
13: destroy(j, finish);

14: finish = finish - (last - first);

15:}

16: void clear() { erase(begin(), end()); }

No problems. The only operations that can throw exceptions are the
ones in lines 7 and 12, and in neither place could an exception cause

RESIZE

1: void resize(size_type new_size, const T& x) {
2: if (new_size < size())

3: erase(begin() + new_size, end());

4: else

5: insert(end(), new_size - size(), x);

7: void resize(size_type new_size) { resize(new_size, T()); }

No new issues. This is nothing but insert() or erase(), and both have
already been dealt with.

UNINITIALIZED_* algorithms.

We need a strong guarantee: if any operation in them throws an
exception, then previously constructed elements will be destroyed.
Fortunately, this guarantee is possible.

1: template <class Inputlterator, class Forwardlterator>

2: Forwarditerator uninitialized_copy(Inputlterator first, Inputlterator last,
3 Forwardlterator result) {

4: while (first I= last) construct(&*result++, *first++);

5. return result;

6:}

7

8: template <class Forwardlterator, class T>

Page 8

n1057

9: void uninitialized_fill(Forwardlterator first, Forwardlterator last,

10: const T& X) {

11: while (first != last) construct(&*first++, X);
12:}

13:

14: template <class Forwardlterator, class Size, class T>

15: Forwardlterator uninitialized_fill_n(Forwardlterator first, Size n,
16: const T& X) {

17: while (n--) construct(&*first++, X);

18: return first;

19:}

The only operations here are iterator arithmetic, iterator
dereference, and construction. Construction can certainly fail. So
what we need to do is keep track of the range of fully constructed
elements. (Initially the range is [first, first); after successful
completion, itis [first, last).) If any of the constructors fail, we

call destroy() on the range of constructed elements.

Note that this method assumes that destroy() can't possibly fail.

Since destroy() also uses iterator arithmetic and dereference, this
means that the uninitialized_* algorithms can provide the necessary
guarantee iff we impose a restriction on their arguments: incrementing
or dereferencing a valid iterator may not throw an exception. (Note
that this restriction applies only to these three algorithms, not to

the entire library.) Also, as usual, the destructor can't throw

an exception.

In the case of vector<>, we already have that restriction. The

iterators are pointers, and, for other reasons, we already know that
valid pointer arithmetic may not result in exceptions.

Page 9

