
 Doc No: X3J16/97-0017R1
WG21/N1055R1
 Date: March 28th, 1997
 Project: Programming Language C++
 Ref Doc:
 Reply to: Josee Lajoie
 (josee@vnet.ibm.com)
 +========================+
 | Core WG List of Issues |
 +========================+

 This list only contains the issues we agreed to will appear on the US
ballot.
 As the committee receives comments from other National Bodies, the core
 issues extracted from these comments will be added to this "official" core
 list of issues. This list will eventually contain all the core issues the
 committee will address before DIS ballot.

 The status of the issues below is either "active" or "resolved". The
 active issues are those for which the committee does not have a proposed
 resolution yet. The resolved issues are the issues for which the committee
 agreed on a resolution at the Nashua meeting (March 97). These resolutions
 need to be approved at the London meeting (July 97). Many of the resolved
 issues have working paper text provided as part of the proposed
resolution.

 For reference purposes, the issues that were closed at the Nashua meeting
 with no further action required are listed at the end of this document.

 +-------+
 | Core1 |
 +-------+

 C Compatibility

 1.1 [intro.scope]:
 604: Should the C++ standard talk about features in C++ prior to 1985?
 Annex C:
 680: Annex C subclause C.1 is out of date
 743: Some anachronisms are missing from annex C
 Annex E:
 770: The title of Annex E needs to be made shorter

 Lexical Conventions

 2.3[lex.trigraph]:
 744: Is the description of trigraph processing wrong?

 Conformance model

 1.7 [intro.compliance]:
 602: Clarify the WP conformance model

 Name Look Up

 3.3.6 [basic.scope.class]:
 664: When does the reevaluation rule for class scope name lookup require
a
 diagnostic?
 3.4.2 [basic.lookup.koenig]:
 686: Where is a function name looked up if an argument type is
introduced
 with a using-declaration?

 790: What is the associated namespace if the argument has function type?
 791: Does a function declaration need to be visible at the point of the
 call for a function call to be well-formed?
 3.4.3 [basic.lookup.qual]:
 665: In X::~Y is Y looked up in the context of the current expression?
 7.3.3 [namespace.udecl]:
 801: Clarification of the interaction of partial specializations and
 using-declarations
 802: Clarification of conversion template instance names and
 using-declarations

 Linkage / ODR

 3.2 [basic.def.odr]:
 745: Does &inline_function yield the same result in all the translation
 units?
 789: When is a name used in a default argument considered "used"?
 7.5 [dcl.link]:
 729: Must extern "C" functions declared in a namespace and a global
extern
 "C" function have different signatures and return types?
 749: Can a declaration specify both a storage class and a linkage
 specification?
 750: To which declarator in a member function declaration does the
 extern "C" specifier apply?
 9.5 [class.union]:
 505: Must anonymous unions declared in unnamed namespaces also be
static?

 Initialization/Object/Memory Model

 3.6.2 [basic.start.init]:
 746: What is the order of initialization of a class static data member?
 747: The term "static initialization" needs to be defined
 5.2.4[expr.pseudo]:
 795: Should a pseudo-destructor call allow the object expression to have
a
 different cv-qualification from the type-name naming the
destructor?
 5.3.4 [expr.new]:
 669: semantics for new and delete expressions should be separated from
the
 requirements for operator new and delete
 690: Clarify the lookup of operator new in a new expression
 797: Is initialization performed if the nothrow operator new returns a
null
 pointer value?
 5.7 [expr.add]:
 798: What are the semantics of pointer +/- enum?
 5.9 [expr.rel]:
 721: Comparisons of pointer to class members need fine tuning
 799: An example illustrating comparisons of pointers to different types
and
 different cv-qualifications is needed
 5.19 [expr.const]:
 722: The definition of address constant expression needs fine tuning
 7.1.1 [dcl.stc]:
 800: Mistake in description of when an incomplete class can be used
 7.3.3 [namespace.udecl]:
 672: using-declarations and base class assignment operators
 8.5 [dcl.init]:
 751: Should { } be allowed around an initializer that is a string?
 9[class]:
 805: Can a zero-size class contain static members, member functions and

 nested types?
 10.1 [class.mi]:
 624: class with direct and indirect class of the same type: how can the
 base class members be referred to?
 12.1[class.ctor]:
 808: During the construction of a const object, what happens if the
object
 is modified, and a pointer to const type assumes that the object
 remains unchanged?
 12.2 [class.temporary]:
 777: Should it be mentionned in 12.2 that the exception object has a
 lifetime longer than the full-expression?
 12.4 [class.dtor]:
 753: Is 'new char[size]' aligned properly to hold an object of any type
T?
 809: It should be made clear that when the destructor for a derived
class
 implicitly calls the destructor for a base class, the virtual
function
 mechanism is not used
 12.6.2 [class.base.init]:
 810: When a class has a member and a base class with the same name what
 does a mem-initializer-id referring to this name designate, the
base
 or the member?
 12.8 [class.copy]:
 811: Can a base class copy assignment operator that is virtual be
overriden
 by an assignment operator declared in a derived class?

 +-------+
 | Core2 |
 +-------+

 Access

 11[access]:
 806: 11 para 1 does not cover all members that can refer to the private
 and protected members of a class
 11.8[class.access.nest]:
 807: Can local classes within member functions refer to the private
members
 of the member function's class?

 Types / Classes / Unions

 3.9.3 [basic.type.qualifier]:
 772: Wording needs to acknowledge there is no such thing as a const
 reference

 Default Arguments

 8.3.6 [dcl.fct.default]:
 730: When are default arguments for member functions of template classes
 semantically checked?
 803: The restrictions on default arguments in templates are not
 sufficiently complete

 Types Conversions / Function Overload Resolution
 --
 4.2 [conv.array]:
 773: When is the conversion array of const char to pointer to char
applied

 on a string literal?
 4.10 [conv.ptr]:
 793: Is it "null pointer constant" or "null-pointer constant"?
 5.2.9 [expr.static.cast]:
 774: Should the WP say that converting from void* to the original
pointer
 type yields a pointer value equal to original pointer?
 775: Is a conversion between a pointer to a struct and a pointer to the
 first member of the struct a static_cast?
 5.2.11 [expr.const.cast]:
 796: Can a const_cast cast _any_ type to its own type?
 7.2 [dcl.enum]
 683: What is the underlying type of an enumeration type if the value of
an
 enumerator uses the value of a previous enumerator?
 8.5.3[dcl.init.ref]:
 804: Can a reference bind directly to what a function call returns if
the
 function returns a reference?
 13.3.1[over.match.funcs]:
 778: How does the implicit argument match the implicit parameter of a
base
 class static member function?
 13.3.1.2[over.match.oper]:
 812: Is the built-in operator for , & -> used if overload resolution is
 ambiguous?
 13.6 [over.built]:
 682: operator ?: and operands of enumeration types
 734: ambiguity in "bool & ? void *& : classType&" where classType has an
 operator void*&
 756: most uses of built-in "?" with class operands are ambiguous

 Expressions

 5.2.2[expr.call]:
 794: Are recursive calls to main() allowed?

 +--------+
 | Core 3 |
 +--------+

 Templates

 3.5 [basic.link]:
 792: What are the rules used to determine whether expressions involving
 nontype template parameters are equivalent?
 13.3.3 [over.match.best]:
 813: The partial ordering rules for function templates are overly
 restrictive
 14 [temp]:
 780: The definition of 'template-declaration' is incomplete
 757: Can a template member function be overloaded?
 814: The semantics of the keyword "export" need to be clarified
 14.1 [temp.param]:
 781: Must default template-arguments be available only on the first
 template declaration?
 815: Does the type of a template nontype parameter of array/function
type
 decay?
 14.2[temp.names]:
 816: There is an ambiguity on ">" with expressions written as default
 arguments
 14.3 [temp.arg]:

 758: Can an array name be a template argument?
 759: Initializing a template reference parameter with an argument of a
 derived class type needs to be described
 760: Is a template argument that is a private nested type accessible in
 the template instantiation context?
 782: Can a value of enumeration type be used as a template non-type
 argument?
 14.5.1.1 [temp.mem.func]:
 761: Can the member function of a class template be virtual?
 14.5.3[temp.friend]:
 817: Clarification of the interaction of friend declarations and partial
 specializations
 818: Friends classes are not well covered in 14.5.3
 14.5.4[temp.class.spec]:
 819: Were are partial specialization allowed?
 820: Clarification of nontype dependency rules in partial
specializations
 821: The restrictions on partial specializations based on the dependency
of
 arguments on other arguments are too severe
 14.5.4.2[temp.class.order]:
 822: Clarification of ordering rules for nontype arguments in partial
 specializations
 823: Interaction of partial ordering with default arguments and ellipsis
 parameters
 824: In which contexts should partial ordering of function templates be
 performed?
 14.5.4.3[temp.class.spec.mfunc]:
 825: Clarification of rules for partial specializations of member class
 templates
 14.5.5.1[temp.arg]:
 762: How can function templates be overloaded?
 14.5.5.2 [temp.func.order]:
 763: Partial Specialization: the transformation also affects the
function
 return type
 14.6 [temp.res]:
 736: How can/must typename be used?
 764: undeclared name in template definition should be an error
 765: The syntax does not allow the keyword 'template' in
 'expr.template C<parm>::member'
 826: Does the "template" keyword apply to function and static data
member
 templates?
 14.6.1[temp.local]:
 766: How do template parameter names interfere with names in nested
 namespace definitions?
 827: C is not equivalent to C<T> when C is qualified
 14.6.2 [temp.dep]:
 784: The examples in 14.6.2 on dependent names need work
 828: In what contexts is the use of a qualifier to look in the current
 template a special case not subject to the usual dependent type
 restrictions?
 829: 14.6.2 para 5 should not only apply when a base class is a template
 parameter but also when it is a dependent type
 14.6.4 [temp.dep.res]:
 737: How can dependant names be used in member declarations that appear
 outside of the class template definition?
 14.6.4.1 [temp.point]:
 767: Where should the point of instantiation of class templates be
 discussed?
 830: Are the rules describing the point of instantiation of a function
 templates too complex?
 14.6.4.2[temp.dep.candidate]:

 831: Should candidate functions without external linkage in other
 translation units render a call ill-formed?
 14.6.5 [temp.inject]:
 832: Difference between the rules in 14.6.5 and 3.4.2 regarding friend
 function name look up
 14.7 [temp.spec]:
 833: The definition of "specialization" for member templates is missing
 14.7.1 [temp.inst]:
 834: Does "delete ap;", where ap's type is a template specialization,
 cause the template to be instantiated?
 835: Does the instantiation of a class template cause the instantiation
of
 the class static data members?
 14.7.2 [temp.explicit]:
 786: The description of explicit instantiation does not allow the
explicit
 instantiation of members of class templates (including member
 functions and static data members)
 836: What is the point of instantiation for a specialization to which an
 explicit instantiation directive applies?
 837: When can an empty template argument list "<>" be omitted?
 14.7.3 [temp.expl.spec]:
 787: Make it clear that a user must provide a definition for an
explicitly
 specialized template; if not, the program is ill-formed
 838: Does an explicit instantiation directive affect the compilation
model
 for the specified instance?
 839: The template compilation model rules render some explicit
 specialization declarations not visible during instantiation
 840: Does the prohibition on default arguments in the definition of a
 specialization prohibits them in the declarations of member
functions
 of a class specialization?
 14.8.1 [temp.arg.explicit]:
 841: Are explicit template arguments only allowed in function calls?
 14.8.2 [temp.deduct]:
 677: Should the text on argument deduction be moved to a subclause
 discussing both function templates and class template partial
 specializations?
 768: typename keyword missing in some examples
 842: Template argument deduction rules for template conversion functions
 are missing

 Exception Handling

 15[except]:
 843: Are "recursive" exceptions allowed?
 15.1[except.throw]:
 844: Does a rethrow creates a new exception?
 845: If a string literal is thrown, what handler can catch it?
 846: Where does the search for a handler starts if a handler throws an
 exception?
 15.2 [except.dtor]:
 769: Are the base class dtors called if the derived dtor throws an
 exception?
 15.3 [except.handle]:
 788: Is it implementation defined whether the stack is unwound before
 calling terminate in all of the 8 situations described in 15.5.1?
 15.5.2[except.unexpected]:
 847: The description of "unexpected" in 18.6.2.2 differs from 15.5.2

 ==
===

 Chapter 1 - Introduction

 Work Group: Core
 Issue Number: 604
 Title: Should the C++ standard talk about features in C++ prior
to
 1985?
 Section: 1.1 [intro.scope]
 Status: resolved
 Description:
 UK issue 229:
 "Delete the last sentence of 1.1 and Annex C.1.2. This is the
first
 standard for C++, what happened prior to 1985 is not relevant to
 this document."
 Resolution:
 At the Nashua meeting, the C compatibility WG decided:
 "Delete references to C.1. Annex C.1 needs to be removed."
 Requestor: UK issue 229
 Owner: (C Compatibility)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 602
 Title: Clarify the WP conformance model
 Section: 1.3 [intro.compliance]
 Status: active
 Description:
 Part 1 (resolved):
 o Resolve the inconsistencies in the WP.

 Proposed Resolution:
 Subclause 1.3 should:
 - recognize that some syntactic errors do not require
diagnostics,
 either because they are explicitly so described or because
they
 are described as resulting in undefined behavior.
 - decouple the requirement to issue a diagnostic from the
various
 taxonomies (compile-time vs runtime errors, well-formed vs
 ill-formed programs) and simply require that violations of
 diagnosable rules result in a diagnostic.
 - decouple the requirement to accept and correctly execute
programs
 from the various taxonomies and simply require that
 implementations accept and correctly execute programs that
 contain no errors.

 The proposed wording is in Mike Miller's paper.

 Part 2 (active):
 o Refining the definition of "well-formed" and "ill-formed"

 Clarify that well-formed programs contain no compile-time or
 link-time errors.

 Mike Miller's paper proposes wording to address this issue.
 At the Nashua meeting, the core WG did not agree on whether this
 is a problem that needs to be resolved or whether Mike's
proposed
 resolution was acceptable.

 Resolution:
 Requestor: Mike Miller
 Owner: Josee Lajoie (Conformance Model)
 Emails:
 Papers:
 97-0023/N1061 Defining Conformance, Rev. 1 by Mike Miller
 .
. .
 ==
===
 Chapter 2 - Lexical Conventions

 Work Group: Core
 Issue Number: 744
 Title: Is the description of trigraph processing wrong?
 Section: 2.3[lex.trigraph]
 Status: resolved
 Description:
 2.3 para 4 says:
 "Trigraph replacement is done left to right, so that when two
 sequences which could represent trigraphs overlap, only the
 first sequence is replaced. [Example: The sequence "???="
 becomes "?=", not "?#". The sequence "?????????" becomes
 "???", not "?". -- end example]"

 [Clark Nelson, edit-778:]

 > A new paragraph was added after the September draft,
 > specifically [lex.trigraph]/4. The paragraph seems to be
 > trying to clarify some aspects of trigraph processing.
 >
 > Unfortunately, the entire paragraph seems to be based on a
 > false premise; to wit, that ??? is a trigraph which is
 > replaced by a single ?. However, ??? is not listed as a
 > trigraph sequence in the trigraph table, and according to
 > paragraph 3, there are no other trigraphs. If ??? were
 > a trigraph for ?, then paragraph 4 would be meaningful and,
 > arguably, necessary clarification. However, if (as I believe)
 > ??? is not a trigraph of any sort, then the new paragraph 4
 > is actually meaningless and/or just plain wrong, and should be
 > deleted.
 >
 > As a possibly related issue, in the C standard, the statements
 > of paragraph 3 are normative. Should the note-brackets around
 > that paragraph be removed from the working paper? If they were,
 > the confusion about ??? might have been a little less likely.
 Resolution:
 Do as Clark suggests:
 Paragraph 4 should be deleted and paragraph 3 should be made
 normative.
 Requestor: Clark Nelson
 Owner: Tom Plum (Lexical Conventions)
 Emails:
 Papers:
 .
. .
 ==
==
 Chapter 3 - Basic Concepts

 Work Group: Core
 Issue Number: 745
 Title: Does &inline_function yield the same result in all the
 translation units?

 Section: 3.2[basic.def.odr]
 Status: resolved
 Description:
 3.2 para 4 says:
 "An inline functions shall be declared in every translation unit
in
 which it is used."
 It is not clear from this statement whether taking the address
 of an inline function in different translation units must yield
 the same result.
 Resolution:
 Yes, taking the address of an inline function in different
 translation units must yield the same result.

 Add to the end of 7.1.2 para 4:
 "An inline function with external linkage shall have the same
address
 in all translation units."
 Requestor:
 Owner: Josee Lajoie (ODR)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 789
 Title: When is a name used in a default argument considered
"used"?
 Section: 3.2[basic.def.odr]
 Status: resolved
 Description:
 Resolution:
 [N1065 issue 3.32]
 The working paper should explicitly state that an entity which
 appears to be "used" in a default argument is actually used only
if
 the default argument itself is used.
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (ODR)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 664
 Title: When does the reevaluation rule for class scope name
lookup
 require a diagnostic?
 Section: 3.3.6 [basic.scope.class]
 Status: resolved
 Description:
 3.3.6 para 1 says:
 2) The name N used in a class S shall refer to the same
declaration
 when re-evaluated in its context and in the completed scope of
S.
 No diagnostic is required for a violation of this rule.
 3) If reordering member declarations in a class yields an
alternate
 valid program under (1) and (2), the program's behavior is
 ill-formed, no diagnostic is required.

 In the presence of rule 3) it is not clear why rule 2) is needed.
 The following example should be added following rule 2) to

 illustrate that rule 2) applies when a name is used in a
declaration
 and then redeclared by the same declaration.

 typedef int I; //1

 class D {
 typedef I I; //2
 };
 Resolution:
 The example above should be added to the WP, following rule 2) of
 3.3.6.
 Requestor: Steve Adamczyk
 Owner: Josee Lajoie (Name Lookup)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 686
 Title: Where is a function name looked up if an argument type is
 introduced with a using-declaration?
 Section: 3.4.2 [basic.lookup.koenig]
 Status: resolved
 Description:
 basic.lookup.koenig says:

 When an unqualified name is used as the postfix-expression in a
 function call (_expr.call_), other namespaces not considered
during
 the usual unqualified look up (_basic.lookup.unqual_) may be
 searched; this search depends on the types of the arguments.

 For each argument type T in the function call, there may be a set
of
 zero or more associated namespaces to be considered; such
namespaces
 are determined in the following way:
 [...]
 - If T is a class type, its associated namespaces are the
namespaces
 in which the class and its direct and indirect base classes are
 defined.
 [...]
 Typedef names used to specify the types do not contribute to this
 set.

 This text is not very clear as to what happens if the type was
 introduced with a using-declaration:

 namespace N1 {
 struct T { };
 void f(T);
 };

 namespace N2 {
 using N1::T;

 void f(T);
 };

 void foo() {
 N2::T t;

 f(t); // which f?
 }
 Resolution:
 The function called is N1::f.
 The sentence in 3.4.2 paragraph 2:
 "Typedef names used to specify the types do not contribute to
this
 set."
 should be augmented to say that:
 "Typedef names and using-declarations used to specify the types
do
 not contribute to this set."
 Requestor: Andrew Koenig
 Owner: Josee Lajoie (Name Lookup)
 Emails: core-7041
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 790
 Title: What is the associated namespace if the argument has
function
 type?
 Section: 3.4.2 [basic.lookup.koenig]
 Status: resolved
 Description:
 3.4.2[basic.lookup.koenig] para 2:
 "For each argument type T in the function call, there is a set of
 zero or more associated namespaces to be considered. The set of
 namespaces is determined entirely by the types of the arguments."

 The list does not cover arguments of function types.
 An argument can have function type if the parameter has type
 reference to function.
 Resolution:
 3.4.2[basic.lookup.koenig] para 2, fifth bullet
 change:
 "If T is a pointer to function type, ..."
 to:
 "If T is a function type, ..."
 Requestor:
 Owner: Josee Lajoie (Name Lookup)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 791
 Title: Does a function declaration need to be visible at the
 point of the call for a function call to be well-formed?
 Section: 3.4.2 [basic.lookup.koenig]
 Status: resolved
 Description:
 There should be an example to illustrate that a function name does
 not have to be known at the point of the call for the function
call
 to be well-formed. i.e. parsing must not assume for:
 name()
 that 'name' is visible in the scope of the call for this
expression
 to be interpreted as a function call.

 namespace NS {
 class T{ };

 void f(T);
 }
 NS::T parm;
 int main() {
 f(parm); //ok, calls NS::f
 }
 Resolution:
 Add the suggested example.
 Requestor:
 Owner: Josee Lajoie (Name Lookup)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 665
 Title: In X::~Y is Y looked up in the context of the current
 expression?
 Section: 3.4.3 [basic.lookup.qual]
 Status: resolved
 Description:
 In an expression like

 p->X::~X();

 where is the "X" that follows the "~" looked up?

 3.4.5 [basic.lookup.classref] says that in an unqualified name,
the
 name after the ~ is looked up in the current context and in the
class
 of p. But it doesn't say anything special about the qualified
case.
 This implies that it is looked up in the scope of X only. If this
is
 true, it seems to me that is a problem because it doesn't work
when X
 is a typedef, as in:

 struct A {
 ~A();
 };

 typedef A AB;

 int main()
 {
 AB *p;
 p->AB::~AB();
 }

 This suggests that the name after ~ should always be looked up
 in the current context, even for the qualified name case.

 The look up for a destructor name for a class type should follow
 the look up of a pseudo-destructor-name (3.4.3).
 Resolution:
 Replace 3.4.3 [basic.lookup.qual] paragraph 5, before the example,
 with:
 "If a pseudo-destructor-name (5.2.4) contains a
 nested-name-specifier, the type-names are looked up as types in
 the scope designated by the nested-name-specifier."
 (this covers the case of the pseudo-destructor-name)

 and add:
 "In a qualified-id of the form:
 ::opt nested-name-specifier ~class-name
 where the nested-name-specifier designates a namespace scope,
and
 in a qualified-id of the form:
 ::opt nested-name-specifier class-name::~class-name
 the class-names are looked up as types in the scope designated
by
 the nested-name-specifier."

 and clarify in 3.4.3.1[class.qual] that the qualified name look up
 for class members described in this subclause does not apply to
the
 look up of a destructor name.
 Requestor: John Spicer
 Owner: Josee Lajoie (Name Look Up)
 Emails:
 Papers
 .
. .
 Work Group: Core
 Issue Number: 792
 Title: What are the rules used to determine whether expressions
 involving nontype template parameters are equivalent?
 Section: 3.5 [basic.link]
 Status: active
 Description:
 [N1053 issue 6.46]
 There must be rules for determining when two template
declarations/
 definitions refer to the same template. For template type
parameters
 this is obvious, but when nontype parameters are used the
 equivalence may involve unevaluated expressions. There must be
some
 way to determine if two such expressions are equivalent.
 The approach recommended in N1053 should be adopted.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 746
 Title: What is the order of initialization of a class static data
 member?
 Section: 3.6.2[basic.start.init]
 Status: resolved
 Description:
 > On comp.std.c++, jlilley@empathy.com (John Lilley) writes:
 > The order of construction is determined by the placement of
 > the *definitions* of the static members, not the
 > declarations within the containing class. Within a single
 > translation unit (source file), the static members are
 > constructed in the order of definition (DWP s3.6.2.1).

 Perhaps it is an oversight, rather than a deliberate omission,
 but section 3.6.2/1 in the Nov 96 working paper refers to
 "objects of namespace scope with static storage duration"; it
 does not mention objects of _class scope_ with static storage
 duration (i.e. static members).

 As far as I can tell, the current wording of the draft leaves
 the order of initialization of static members unspecified.
 Resolution:
 The wording in 3.6.2 para 1 should be changed to say instead:
 "Objects defined in namespace scope..."
 Requestor: Fergus Henderson
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 747
 Title: The term "static initialization" needs to be defined
 Section: 3.6.2[basic.start.init]
 Status: resolved
 Description:
 para 2 says:
 "An implementation is permitted to perform the initialization
 of an object of namespace scope with static storage duration
 as a static initialization..."

 The term 'static initialization' and 'dynamic initialization' need
 to be defined.
 Resolution:
 'static initialization' designates both zero-initialization and
 initialization with constant expressions.
 'dynamic initialization' designates initializations that are not
 static initializations.
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 772
 Title: Wording needs to acknowledge there is no such thing as a
 const reference
 Section: 3.9.3[basic.type.qualifier]
 Status: resolved
 Description:
 3.9.3/3 says:
 "Each non-function, non-static, non-mutable member of a
 const-qualified class object is const-qualified, ..."

 This is clearly wrong, since there is no such thing as a
 const-qualified reference (as opposed to a reference to
 const-qualified type.)

 "non-reference" should be added to the list in 3.9.3/3.

 7.1.1/8 says:
 "The mutable specifier can be applied only to names of class
 data members (9.2) and cannot be applied to names declared const
 or static."

 References are implicitly const, because a reference may not
 be changed to refer to another object after initialization.

 The omission of "reference" in the restrictions in 7.1.1
 appears to be an almost-editorial oversight.

 Resolution:
 Clarify the WP as Bill suggests.
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Types)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 4 - Standard Conversions

 Work Group: Core
 Issue Number: 773
 Title: When is the conversion array of const char to pointer to
 char applied on a string literal?
 Section: 4.2 [conv.array]
 Status: resolved
 Description:
 Is the following legal?

 char* pc = "abc" + 1;

 When the string "abc" is converted from an array of const char
 to a pointer, before the '+ 1' is applied, which conversion
 takes place, the one that yields 'const char*' or the one that
 yields 'char *'? How is it decided which array-to-pointer
 conversion is applied?

 Of course there is more than just the + operator that can cause
 this question to come up. For example,

 ("abc")
 &*"abc"

 Also, when a throw expression is a string literal, will
 catch (char *) { }
 catch it?
 Resolution:
 At the Nashua meeting, it was decided that the deprecated standard
 conversion from string to char* is only applied when there is an
 explicit target type of type char*.
 Requestor:
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 793
 Title: Is it "null pointer constant" or "null-pointer constant"?
 Section: 4.10 [conv.ptr]
 Status: resolved
 Description:
 Resolution:
 It is "null pointer constant".
 18.1 para 4 needs to be modified.
 Requestor: ANSI CD2 Public Comment 28
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .

 ==
===
 Chapter 5 - Expressions

 Work Group: Core
 Issue Number: 794
 Title: Are recursive calls to main() allowed?
 Section: 5.2.2[expr.call]
 Status: resolved
 Description:
 para 9 says:
 "Recursive calls are permitted."

 To match what 3.6.1 says regarding main(), this sentence should
say:
 "Recursive calls are permitted, except to the function named
 main (3.6.1, [basic.start.main])."
 Resolution:
 Add the suggested wording.
 Requestor: ANSI CD2 Public Comment 36
 Owner: Steve Adamczyk (Expressions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 795
 Title: Should a pseudo-destructor call allow the object
expression
 to have a different cv-qualification from the type-name
 naming the destructor?
 Section: 5.2.4[expr.pseudo]
 Status: resolved
 Description:
 5.2.4[expr.pseudo] para 2 says:
 "The left hand side of the dot operator shall be of scalar type.
 The left hand side of the arrow operator shall be of pointer to
 scalar type. This scalar type is the object type. The type
 designated by the pseudo-destructor-name shall be the same as
 the object type."

 const int* pci;
 typedef int I;
 pci->~I(); //ill-formed

 Should a pseudo-destructor call allow the object expression to
have
 a different cv-qualification from the type-name naming the
 destructor?
 Resolution:
 Yes, the pseudo-destructor call should allow the object expression
to
 have a different cv-qualification from the type-name naming the
 destructor.

 The last sentence quoted above should say:
 "The cv-unqualified versions of the object type and of the type
 designated by the pseudo-destructor-name shall be the same
 type."
 Requestor:
 Owner: Josee Lajoie(Object Model)
 Emails:
 Papers:
 .

. .
 Work Group: Core
 Issue Number: 774
 Title: Should the WP say that converting from void* to original
 pointer type yields a pointer value equal to original
 pointer?
 Section: 5.2.9[expr.static.cast]
 Status: resolved
 Description:
 [Steve Clamage:]
 The C standard says explicitly that any data pointer can be
 converted to void* without loss of information, and that you
 can convert the void* back to the original type and the result
 will compare equal to the original pointer.

 I don't find the second part of that statement for static_cast.
 I think we need that guarantee, so that we know for any type T:
 T* t1 = ...;
 void* p = t1;
 assert(static_cast<T*>(p) == t1); // cannot fail

 [Josee:]
 5.2.9 paragraph 6 says the following:
 "The inverse of any standard conversion sequence (_conv_),
 other than the lvalue-to-rvalue (_conv.lval_),
 array-to-pointer (_conv.array_), function-to-pointer
 (_conv.func_), and boolean (_conv.bool_) conversions, can be
 performed explicitly using static_cast subject to the
 restriction that the explicit conversion does not cast away
 constness (_expr.const.cast_)"

 A conversion from a data pointer to a void* is a standard
 conversion so the wording above allows the conversion from a
 void* to a data pointer.

 Should additional wording be added to say that the result
 will compare equal to the original pointer?
 Resolution:
 Make it clear that static_cast of pointer to object type to void*
 and back again gives the original pointer value.
 Requestor: Steve Clamage
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 775
 Title: Is a conversion between a pointer to a struct and a
 pointer to the first member of the struct a static_cast?
 Section: 5.2.9[expr.static.cast]
 Status: resolved
 Description:
 From comp.std.c++:
 In article 1@jake.esu.edu, jpotter@falcon.lhup.edu
 (John E. Potter) writes:
 >Steve Clamage (Stephen.Clamage@Eng.Sun.COM) wrote:
 >: Second counter-example, much stronger:
 >: struct S { int i; ... };
 >: S s;
 >: int* ip = static_cast<int*>(&s); // convert struct* to int*
 >: *ip = 2;
 >: The rules of C and C++ state explicitly that '&s' can be
 >: converted to a pointer to its first element, and therefore

 >: modifying 's' via 'ip' is completely valid.
 >
 > Yes, 9.2/17 assures that &s suitably cast to int* must work.
 >
 > But 5.2.9 [expr.static.cast] does not list pointer to POD
 > conversion to pointer to first member as one of the valid
 > conversions.

 Should the conversion in 9.2/17 be a static_cast or a
 reinterpret_cast?

 In the C standard, the section on casts does not explicitly
 mention that the conversion between a pointer to struct and a
 pointer to the first element of the struct is a valid
 conversion.
 Resolution:
 At the Nashua meeting, the core WG decided that the static_cast
 from a pointer to struct to a pointer to the first member of the
 struct should remain invalid. A reinterpret_cast should be used
 instead.
 Question:
 Wording is probably needed in the reinterpret_cast subclause to
 indicate that such a reinterpret_cast is well-defined?
 Requestor: Steve Clamage
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 796
 Title: Can a const_cast cast _any_ type to its own type?
 Section: 5.2.11 [expr.const.cast]
 Status: resolved
 Description:
 para 2 says:
 "Any expression may be cast to its own type using a const_cast
 operator."

 Can this be applied to types not normally valid as const_cast
 operands?
 Resolution:
 It should be made clear that casting an operand to its own type
 using a const_cast is ok as long as the type is valid for an
 operand of a const_cast. (i.e. pointer, pointer-to-member or
 reference).

 [Josee: Shouldn't this restriction also be applied to
 reinterpret_cast? Para 2 of 5.2.10 also allows any operand to be
 cast to its own type using a reinterpret_cast.]
 Requestor:
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 669
 Title: semantics for new and delete expressions should be
 separated from the requirements for operator new and
 delete
 Section: 5.3.4 [expr.new], 5.3.5 [expr.delete]
 Status: active
 Description:

 Erwin Unruh wrote a paper (96-0011/N0829) that suggested that the
 semantics for the new expression and the delete expression be
 reworked so that they would only describe which operator new (or
 operator delete) they call. The restrictions on the behavior of
the
 allocation and deallocation functions called should be moved to
the
 library section.

 Subclause 5.3.4[expr.new] and 5.3.5[expr.delete] still has some
 troublesome passages.

 5.3.4 New

 o Paragraph 8, last sentence says:
 "The pointer returned by the new-expression is non-null and
 distinct from the pointer to any other object."

 The part of this sentence that says "and distinct from the pointer
 to any other object" should be deleted. This is really a
 requirement on the library operator new. Maybe a note should be
 added to say: "If the library allocation function is called, the
 pointer returned is distinct from the pointer to any other
 object."

 o Paragraph 13, first sentence says:
 "The allocation function shall either return null or a pointer
 to a block of storage in which space for the object shall have
 been reserved."

 This sentence should be moved to the note that follows. Again,
 this is a requirement that applies to the semantics of the library
 operator new and should not be in the normative text for 5.3.4.

 Also paragraph 13 should be moved after paragraph 10, which
 discusses allocation functions.

 o Paragraph 16 says:
 "The allocation function can indicate failure by throwing a
 bad_alloc exception (_except_, _lib.bad.alloc_). In this case
 no initialization is done."

 This should be changed to:
 "If the allocation function exits by throwing an exception, no
 initialization is done."

 o Paragraph 21 says:
 "The way the object was allocated determines how it is freed:
 if it is allocated by ::new, then it is freed by ::delete,
 and if it is an array, it is freed by delete[] or ::delete[]
 as appropriate."

 This should be deleted. Name lookup in 5.3.4 and 5.3.5 indicate
 which operator new and delete is called.

 5.3.5 Delete

 o Paragraph 2, the last few sentences say:
 "In the first alternative (delete object), the value of the
 operand of delete shall be a pointer to a non-array object
 created by a new-expression, or a pointer to a sub-object
 (_intro.object_) representing a base class of such an object
 (_class.derived_). If not, the behavior is undefined. In the
 second alternative (delete array), the value of the operand of

 delete shall be a pointer to the first element of an array
 created by a new-expression. If not, the behavior is
undefined.
 [Note: this means that the syntax of the delete-expression must
 match the type of the object allocated by new, not the syntax
of
 the new-expression.]"

 The requirements that the object (or array) must be created by a
 new-expression should be removed. If a user operator delete is
 called, and this operator does nothing, then all is fine.

 o Paragraph 7 says:
 "To free the storage pointed to, the delete-expression will call
a
 deallocation function (_basic.stc.dynamic.deallocation_)."

 "To free the storage pointed to," should be removed. Again,
whether
 the storage is freed depends on which operator delete is called. A
 user operator delete may not free the storage.
 Resolution:
 Requestor: Erwin Unruh
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 690
 Title: Clarify the lookup of operator new in a new expression
 Section: 5.3.4 [expr.new]
 Status: resolved
 Description:
 5.3.4 should describe the lookup of operator new in a new
expression.

 Here is an interesting example:

 struct C {
 operator void* new(size_t);
 operator void* new[](size_t);
 };

 ... new C[N1][N2]; // which operator new is called?
 Resolution:
 5.3.4 [expr.new] para 10 should indicate that if the object
created
 is of class type or if the array created is an array of classes,
 operator new is looked up as specified in 12.5.
 Requestor:
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 797
 Title: Is initialization performed if the nothrow operator new
 returns a null pointer value?
 Section: 5.3.4 [expr.new]
 Status: resolved
 Description:
 5.3.4 para 16 says:

 "The allocation function can indicate failure by throwing a
bad_alloc
 exception (_except_, _lib.bad.alloc_). In this case no
 initialization is done."

 If nothrow operator new is called and returns NULL, initialization
 should not be done (and the deallocation function should not be
 called).
 Resolution:
 At the Nashua meeting, the committee members seemed to favor this
 resolution:

 "If the library nothrow operator new (or its user-defined
 replacement) returns a null pointer value, no initialization is
 done."
 Requestor: ANSI CD2 Public Comment 28
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 798
 Title: What are the semantics of pointer +/- enum?
 Section: 5.7 [expr.add]
 Status: resolved
 Description:
 Resolution:
 Para 1 should make it clear that, in pointer +/- enum, the enum
 is treated as an integral type that is the underlying type of
 the enum.
 Requestor:
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 721
 Title: Comparisons of pointer to class members need fine tuning
 Section: 5.9 [expr.rel]
 Status: resolved
 Description:
 5.9/2 says:
 "If two pointers point to nonstatic data members of the same
 object, the pointer to the later declared member compares
 greater provided the two members are not separated by an
 access-specifier label (11.1) and provided their class is not
 a union."

 The "point to" provision probably should also cover "point
 within".
 Resolution:
 The WP should be clarified to also cover "point within".
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 799
 Title: An example illustrating comparisons of pointers to
different

 types and different cv-qualifications is needed
 Section: 5.9 [expr.rel]
 Status: resolved
 Description:
 Para 2 says:
 "Pointer conversions and qualification conversions are performed
on
 pointer operands to bring them to their composite pointer type.
...
 Otherwise, the composite pointer type is a pointer type similar
 (4.4) to the type of one of the operands, with cv-qualification
 signature (4.4) that is the union of the cv-qualification
 signatures of the operand types."

 This could be clarified by adding an example.
 Resolution:
 In Nashua, the core WG agreed, an example would be helpful.
 Requestor: ANSI CD2 Public Comment 23
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 722
 Title: The definition of address constant expression needs fine
 tuning
 Section: 5.19 [expr.const]
 Status: resolved
 Description:
 5.19/4 address constant expressions
 This needs work. For example, the phrase "The subscription
 operator ... can be used" does not describe how it may be
 used; presumably the subscript must be an integral constant
 expression.

 The same goes for 5.19/5.
 Resolution:
 The following text should be added to paragraph 4 and 5:
 "If the subscript operator is used, one of its operands shall be
an
 integral constant expression."
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (Initialization)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 6 - Statements

 ==
===
 Chapter 7 - Declarations

 Work Group: Core
 Issue Number: 800
 Title: Mistake in description of when an incomplete class can be
 used
 Section: 7.1.1[dcl.stc]
 Status: resolved
 Description:
 7.1.1 para 8 says:

 "The name of a declared but undefined class [...] cannot be used
 before the class has been defined."

 This should say: "can be used in ways that do not require a
complete
 class type (3.2)".
 Resolution:
 Do as suggested above.
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 683
 Title: What is the underlying type of an enumeration type if the
 value of an enumerator uses the value of a previous
 enumerator?
 Section: 7.2 [dcl.enum]
 Status: resolved
 Description:
 There is a small omission in the description of the
 constant-expression which is used to set an enumerator's value,
e.g.

 enum A { a, b = a + 2); // expression "a + 2"

 The type of "a" in "a+2" presumably follows the usual expression
 rules. But these rules say, in 4.5/2:

 An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
can
 be converted to an rvalue of the first of the following types
that
 can represent all the values of its underlying type: int,
 unsigned int, long, or unsigned long.

 So the evaluation of "a+2" depends on the underlying type of "A",
 which in turn depends on the value of "b", which depends on the
value
 of "a+2".

 Although this is unlikely to affect real programs in practice, we
 should fix the definition. There are cases where it matters,
e.g.:

 // Assume an environment where "int" is 16 bits, just for
 // convenience (The same problem occurs when "int" is larger.
 // Think of systems where "int" is 32 bits and "long" is 64
 // bits.)

 enum A { a = 1, b = a-2, c = 32768U };

 If we assume the underlying type will be "int", then b is -1 and
the
 actual underlying type is "long".

 If we assume the underlying type will be "unsigned int", then b is
 65535 and the actual underlying type is "unsigned int".

 The answer may seem obvious, but consider:

 enum A { a = 1U, b = a-2, c = -1 };

 The underlying type will clearly be signed. Does "b" have the
value
 "-1" or is the code ill-formed?

 There seem to be several possible solutions to this problem:

 1) When an enumerator is used in the defining expression of a
 subsequent enumerator in the same enumeration, its type is the
 type of its defining expression (where the default defining
 expression is "previous-enumerator + 1" except the first one,
 where it is "0").

 2) Give enumerations an "interim" underlying type which is
 recomputed after each enumerator, and use that underlying type
 in subsequent defining expressions.

 3) Require that enumerator computation be done with an infinite
 number of bits - assuming that the "as if" rule makes this
 practical.

 4) Say that if the value of a definining expression depends on
the
 underlying type of the enumeration, the program is ill-formed.

 Bill Gibbons' preference is (1).
 Bill doesn't think it matters much what the answer is, but the
should
 be described by the working paper.

 A related problem occurs with the implicit "next value" rule:

 enum B { a = 32767, b };

 Is the code well-formed? If so, what is the underlying type?
Why?
 This example would be fixed if solution (3) was adopted.
 Resolution:
 At the Nashua meeting, the core WG decided that option (1) should
be
 implemented. i.e. When an enumerator constant is used before the
 closing "}" of its enumeration, it should have the type of the
 initializing expression.
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Type Conversions)
 Emails: core-6989
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 672
 Title: using-declarations and base class assignment operators
 Section: 7.3.3 [namespace.udecl]
 Status: resolved
 Description:
 7.3.3 should indicate what happens if a using-declaration refers
to
 a base class assignment operator and the type of this assignment
 operator corresponds to the type of the derived class copy
assignment
 operator.

 struct B;

 struct A {
 & operator=(const B&);
 };
 struct B : A {
 // introduces B's copy-assignment operator
 using A::operator=;
 };
 Resolution:
 At the Nashua meeting, members of the core WG wanted the implicit
 copy assignment operator for class B to still be generated.

 Add at the end of 7.3.3[namespace.udecl] paragraph 4:
 "If an assignment operator brought from a base class into a
derived
 class scope has the signature of a copy assignment operator for
the
 derived class (12.8), the using-declaration will not by itself
 suppress the implicit declaration of the derived class
 copy-assignment operator, and if the implicitly-declared operator
 has the same parameter type as an assignment operator brought in
by
 a using-declaration, that assignment operator from the base class
 will be hidden or overridden by the implicitly-declared operator,
as
 described below."

 Add in 12.8 paragraph 10, after the first sentence:
 "A using-declaration (7.3.3) that brings in from a base class an
 assignment operator with one of the parameter types of a copy
 assignment operator is not considered an explicit declaration of
a
 copy assignment operator, and if the base class assignment
operator
 has the same parameter type as the implicitly-declared copy
 assignment operator, the operator from the using-declaration will
be
 hidden by the implicitly-declared operator."
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 801
 Title: Clarification of the interaction of partial
specializations
 and using-declarations
 Section: 7.3.3 [namespace.udecl]
 Status: resolved
 Description:
 [N1053 issue 6.58]
 Resolution:
 Using declarations only affect the visibility of declarations
 occurring before the using declaration itself; they do not affect
the
 visibility of subsequent declarations with the same name.
However,
 partial specializations of class templates are found by looking up
 the primary class template and then considering all partial
 specializations of that template. So if a using declaration names
a
 class template, subsequent partial specializations are effectively
 visible because the primary template is visible. The working

paper
 should make this clear, and should include an example.
 Resolution:
 Requestor: John Spicer
 Owner: Josee Lajoie (Name Look Up)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 802
 Title: Clarification of conversion template instance names and
 using-declarations
 Section: 7.3.3 [namespace.udecl]
 Status: resolved
 Description:
 [N1053 issue 8.11]
 Resolution:
 It should be made clear that a using-declaration (in a derived
class)
 may not refer to an instance of a conversion function member
template
 (in a base class).
 Resolution:
 Requestor: John Spicer
 Owner: Josee Lajoie (Name Look Up)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 729
 Title: Must extern "C" functions declared in a namespace and
 a global extern "C" function have different signatures and
 return types?
 Section: 7.5 [dcl.link]
 Status: resolved
 Description:
 3.5[basic.link] para 10 says:
 "After all adjustments of types [...], the types specified by all
 declarations of a name in a given namespace shall be identical
 [...]."

 Because this says "of a name in a given namespace", it does not
cover
 the following properly:

 extern "C" int f(int);
 namespace NS {
 extern "C" void f(int); // ill-formed? undefined behavior?
 }

 because the "C" function is declared in difference namespaces.
 Resolution:
 Amend 3.5[basic.link]p10 to read:
 "After all adjustments of types (during which typedefs
 (_dcl.typedef_) are replaced by their definitions), the types
 specified by all declarations referring to a given object or
 function shall be identical, except that declarations for an
array
 object can specify array types that differ by the presence or
 absence of a major array bound (_dcl.array_). A violation of this
 rule on type identity does not require a diagnostic."

 Amend the first two sentences of 7.5[dcl.link]p6 to read:
 "At most one object or function with a particular name can have C
 linkage. Two declarations for an object or function with C
language
 linkage with the same object or function name (ignoring the
 namespace names that qualify it) that appear in different
namespace
 scopes refer to the same entity."
 Requestor:
 Owner: Josee Lajoie (extern "C")
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 749
 Title: Can a declaration specify both a storage class and a
 linkage specification?
 Section: 7.5[dcl.link]
 Status: resolved
 Description:
 What is the meaning of:

 extern "C" static void f();

 Is this still illegal?
 Or does it declare a function with C language linkage that is
 local to the translation unit?

 Mike Anderson proposes the following:
 (1) either the WP should indicate that using a storage class in
 a declaration with a linkage specification with no braces
 is disallowed; or else,

 (2) it should indicate at least that the semantics are
 equivalent whether or not the braces are present and
 possibly do a bit more to specify what the semantics are.

 [Josee:]
 7.5 para 7 says:
 "the form of the linkage-specification directly containing a
 single declaration is treated as an extern specifier for the
 purpose of determining whether the contained declaration is a
 definition.

 extern "C" int i; // declaration
 "

 I believe this implies that the declaration above is
 equivalent to:

 extern static void f();

 and that Mike's solution (1) is the correct one.
 Resolution:
 Add to 7.5[dcl.link] at the end of paragraph 7:
 "A linkage-specification directly containing a single declaration
 shall not specify a storage class. [For example:
 extern "C" static void f(); // error
 -- end example]
 "
 Requestor: Mike Anderson
 Owner: Josee Lajoie (extern "C")
 Emails:

 Papers:
 .
. .
 Work Group: Core
 Issue Number: 750
 Title: To which declarator in a member function declaration does
 the extern "C" specifier apply?
 Section: 7.5[dcl.link]
 Status: resolved
 Description:
 [Mike Miller in core-7322]:
 > What is the meaning of 7.5p4, "A non-C++ language linkage is
 > ignored ... for the function type of class member function
 > declarators" with respect to parameters of member functions?
 > For instance,
 >
 > extern "C" {
 > struct S {
 > void f(void(*)());
 > };
 > }
 >
 > Does S::f take a "C" function or a "C++" function? The
 > example in the text deals with related issues but not this
 > specific one, and the normative text could be read either way,
 > depending on whether you understand "function type of class
 > member function declarators" in a shallow or deep sense.

 [Mike Anderson in core-7323:]
 I believe it was intended to be understood in a shallow sense
 (and that S::f takes a "C" function). The words were crafted
 to make the rule apply only to certain function types (namely,
 those of member function declarators) and not to any other
 function types such as the types of function parameters.

 Would it be sufficient to expand the example to make this
 clear, or does the normative text need to modified? I think
 another example would be enough.

 [Mike Miller in core-7325:]
 Assuming that we do intend the "shallow" interpretation, I
 think the normative words there are wrong; the type of S::f is
 different ("function taking pointer to C function...") from
 what it would be if it were not inside extern C ("function
 taking pointer to C++ function..."), i.e., the non-C++ linkage
 is *not* ignored in determining the function type. IMHO, it
 should be rewritten to read something like, "The language
 linkage of member names and member function types is C++,
 regardless of the linkage specification in which the class may
 be defined." (An example is also a good idea.)
 Resolution:
 It should be made clear that the sentence quoted in 7.5 para 4
 applies to the member function in a shallow sense.

 The sentence should be rewritten to read something like, "The
 language linkage of member names and member function types is C++,
 regardless of the linkage specification in which the class may be
 defined."
 (An example is also needed.)
 Requestor: Mike Miller
 Owner: Josee Lajoie (extern "C")
 Emails:
 Papers:
 .

. .
 ==
===
 Chapter 8 - Declarators

 Work Group: Core
 Issue Number: 730
 Title: When are default arguments for member functions of
 template classes semantically checked?
 Section: 8.3.6 [dcl.fct.default]
 Status: active
 Description:
 para 5:
 "The names in the expression are bound and the semantic
 constraints are checked at the point of declaration."

 template<class T> class Cont {
 // ...
 public:
 Cont(const T& default_element = T());
 // ...
 };

 class Y {
 public:
 Y(int);
 // ... no Y() ...
 };

 Cont<Y> y1; // error: no Y() (that's fine)
 Cont<Y> y2(Y(99)); // use 99 as default value

 However, is the last declaration legal?
 When is the checking of the T() for Cont<Y> done?

 The current WP implies that it is checked when C<Y> is first
 instantiated.

 If this is the case, all of the standard containers are badly
 broken - it is not possible to have container with elements of
 a type without a default constructor.

 Bjarne's Proposed Resolution:

 The default argument resolution from Stockholm broke the
 library and should be revised. I suspect that treating a
 default argument like the return type for an operator->() and
 the definition of a template member function is the right way
 (check if and when the default argument is used) and for the
 same reason: For ordinary classes it makes sense to check
 when you see the class, for templates that is seriously
 constraining.

 Mike Miller's Proposed Resolution:

 The semantic constraints on a default argument should be
 checked on use, not on declaration, for normal functions as
 well as template functions. C++ has a number of cases where
 you can declare things that you cannot use because of
 unresolvable ambiguities, but we have chosen to diagnose them
 on use, not on declaration. The rationale for this choice is
 that diagnosis on declaration prevents composing classes from
 disparate sources, even though the composition might be
 useful in ways that do not stumble over the ambiguity.

 Mike thinks default arguments are a similar situation -- the
 function is completely usable as long as you don't rely on
 the problematic portion of the declaration. While templates
 are the most likely context in which this issue might arise,
 I believe there are probably others in non-template
 situations.

 Mike would support a reconsideration of the "immediate
 diagnosis" part of the Stockholm resolution, preferably
 altogether, although applying the revision just to templates
 would still be an improvement.
 Resolution:
 Requestor: Bjarne Stroustrup
 Owner: Steve Adamczyk (Default Arguments)
 Emails:
 Papers:
 97-0024R1/N1062R1
 A Discussion of the Default Argument Instantiation by Erwin Unruh
 .
. .
 Work Group: Core
 Issue Number: 803
 Title: The restrictions on default arguments in templates are not
 sufficiently complete
 Section: 8.3.6 [dcl.fct.default]
 Status: active
 Description:
 [N1065 issue 3.35]
 The restrictions (in 8.3.6 para 4 and 8.3.6 para 6) on default
 arguments in templates are not sufficiently complete; for example,
 they do not specifically mention member functions of class
templates
 and member templates.
 Resolution:
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Default Arguments)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 751
 Title: Should { } be allowed around an initializer that is a
string?
 Section: 8.5[dcl.init]
 Status: resolved
 Description:
 The current WP disallows:
 const char a[3] = {"asdf"};
 However, this is allowed in C.

 8.5 paragraph 13 says:
 "If T is a scalar type, then ...
 T x = { a };
 is equivalent to
 T x = a;
 "

 An array is not a scalar type.

 If the committee decides to leave things the way they are, this
 difference between C and C++ should be listed in appendix C.
 Resolution:

 Redundant { } should be allowed around string initializers.

 In 8.5.2[dcl.init.string] paragraph 1, after each occurence of
 "can be initialized by a string literal" insert "optionally
 enclosed in braces".
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 804
 Title: Can a reference bind directly to what a function call
returns
 if the function returns a reference?
 Section: 8.5.3[dcl.init.ref]
 Status: resolved
 Description:
 struct A {};
 struct B {
 operator A&();
 };
 B f();
 A &r1 = f(); // Should this be allowed?

 The WP does not allow the previous statement.
 However, many compilers give no error on the above statement.

 const A &r2 = f(); // should a copy always be made?

 This last case is valid according to the WP, but the
implementation
 is required to copy the result of the conversion function to a
 temporary, and bind the reference to that. This extra copy is also
 not existing practice.
 Resolution:
 The WP should allow the first initialization.
 The WP should not require that a temporary be created for the
second
 statement.
 See Steve Adamczyk's paper 97-0012/N1050 for proposed wording.
 Requestor: Steve Adamczyk
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 9 - Classes

 Work Group: Core
 Issue Number: 805
 Title: Can a zero-size class contain static members, member
 functions and nested types?
 Section: 9[class]
 Status: resolved
 Description:
 9[class] para 3 says:
 "A class with an empty sequence of members and base class objects
is
 an empty class. Complete objects and member subobjects of an
empty

 class type shall have nonzero size.1)
 1) That is, a base class subobject of an empty class type may
have
 zero size.
 "

 struct SS {
 typedef int I;
 static int C;
 void f();
 };

 SS does not have an empty sequence of members. Why can't it have a
 zero-size?
 Resolution:
 The definition of empty class is not needed.
 9 para 3, the first two sentences and the footnote should be
replaced
 with:
 "Complete objects and member subobjects of class type shall have
 nonzero size.
 Footnote: base class subobjects are not so constrained."
 Requestor: Nathan Myers
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 505
 Title: Must anonymous unions declared in unnamed namespaces also
be
 declared static?
 Section: 9.5 [class.union] Unions
 Status: resolved
 Description:
 9.5p3 says:
 "Anonymous unions declared at namespace scope shall be declared
 static."
 Must anonymous unions declared in unnamed namespaces also be
declared
 static?
 If the use of static is deprecated, this doesn't make much sense.
 Resolution:
 An alternative should be to declare the anonymous unions as
members
 of an unnamed namespace. When the static keyword is removed,
 it will not be possible to declare anonymous unions in namespace
 scope unless the anonymous unions are declared in an unnamed
 namespace.

 Replace the sentence above with the following:
 "Anonymous unions declared in a named namespace or in the global
 namespace shall be declared static."
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (Linkage)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 10 - Derived classes

 Work Group: Core
 Issue Number: 624
 Title: class with direct and indirect class of the same type: how
 can the base class members be referred to?
 Sections: 10.1 [class.mi] Multiple base classes
 Status: resolved
 Description:
 para 3 says:
 "[Note: a class can be an indirect base class more than once and
can
 be a direct and indirect base class.]"
 The WP should describe how base class members can be referred to,
 how conversion to the base class type is performed, how
 initialization of these base class subobjects takes place.
 Resolution:
 A note will be added to the WP to clarify the restrictions on
 accessing members of the direct base class.

 Add after the 2nd sentence of paragraph 3:
 "There are limited things that can be done with such a class.
 The non-static data members and member functions of the direct
 base class cannot be referred to in the scope of the derived
 class. However, static members, enumerations and types can be
 unambiguously referred to."
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 11 - Member Access Control

 Work Group: Core
 Issue Number: 806
 Title: 11 para 1 does not cover all members that can refer to
the
 private and protected members of a class
 Section: 11[access]
 Status: resolved
 Description:
 11[access] para 1 only lists a subset of the members that can
refer
 to the private and protected members of a class.

 "A member of a class can be
 --private; that is, its name can be used only by member
functions,
 static data members, and friends of the class in which it is
 declared.
 --protected; that is, its name can be used only by member
functions,
 static data members, and friends of the class in which it is
 declared and by member functions, static data members, and
friends
 of classes derived from this class (see _class.protected_).
 "

 The description should be made more general.
 Resolution:
 The first two bullets should be replaced with:
 "-- private; that is, its name can be used only by members and
 friends of the class in which it is declared.

 -- protected; that is, its name can be used only by members and
 friends of the class in which it is declared and by members
 and friends of classes derived from this class (see 11.5)."
 Requestor:
 Owner: Steve Adamczyk (Access)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 807
 Title: Can local classes within member functions refer to the
 private members of the member function's class?
 Section: 11.8[class.access.nest]
 Status: resolved
 Description:
 11.8 para 1 says:
 "The members of a nested class have no special access to members
of
 an enclosing class, ..."

 Is the following example well-formed?
 class A {
 public:
 void B();
 private:
 enum X { X1, X2, X3 };
 };
 void A::B() {
 struct Z { X x; int i; };
 }

 Can local classes within member functions refer to the private
 members of the member function's class?
 Resolution:
 Clarify that a local class has the same access to a containing
 class as does the containing function (i.e. the local class is
 not a nested class).
 Requestor: ANSI CD2 Public Comment 16
 Owner: Steve Adamczyk (Access)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 12 - Special Member functions

 Work Group: Core
 Issue Number: 808
 Title: During the construction of a const object, what happens if
 the object is modified, and a pointer to const type
assumes
 that the object remains unchanged?
 Section: 12.1[class.ctor]
 Status: active
 Description:
 During the construction of a const/volatile object, the
constructor
 and, functions called by the constructor, can modify the object
 under construction. Does this mean that the implementation cannot
use
 optimization techniques (like assume that a const object does not
 change during the execution of a function) for functions called by

 constructors?

 struct C;
 void no_opt(C*);

 struct C {
 int c;
 C() : c(0) { no_opt(this); }
 };

 const C cobj;

 void no_opt(C *cptr)
 {
 int i = cobj.c * 100;
 cptr->c = 1; // must the implementation assume that
 // cobj is modified by this assignment?
 cout << cobj.c * 100 << '\n';
 }
 Resolution:
 Requestor: Randy Meyers
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 777
 Title: Should it be mentionned in 12.2 that the exception object
has
 a lifetime longer than the full-expression?
 Section: 12.2[class.temporary]
 Status: resolved
 Description:
 12.2 paragraph 4 says:
 "There are two contexts in which temporaries are destroyed at a
 different point than the end of the full-expression."

 Should this also discuss the exception object created when an
 exception is thrown? The exception object created in the
 run-time may be perceived as a temporary but its lifetime is
 longer than the full-expression.
 Resolution:
 It should be made clear that the exception object is not a
 temporary affected by the rules in this subclause.
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 753
 Title: Is 'new char[size]' aligned properly to hold an object
 of any type T?
 Section: 12.4[class.dtor]
 Status: resolved
 Description:
 [Fergus Henderson in core-7251:]

 > The following example in a note in 12.4/13 is not strictly
 > conforming C++ according to the rules defined elsewhere in the
 > draft. I think it should be changed.
 >

 > "13[Note: explicit calls of destructors are rarely needed. One
 > use of such calls is for objects placed at specific addresses
 > using a new- expression with the placement option. Such use
 > of explicit placement and destruction of objects can be
 > necessary to cope with dedicated hardware resources and for
 > writing memory management facilities. For example,
 > void* operator new(size_t, void* p) { return p; }
 > struct X {
 > // ...
 > X(int);
 > ~X();
 > };
 > void f(X* p);
 >
 > void g() // rare, specialized use:
 > {
 > char* buf = new char[sizeof(X)];
 > X* p = new(buf) X(222); // use buf[] and initialize
 > f(p);
 > p->X::~X(); // cleanup
 > }
 > --end note]
 > "
 >
 > The lines
 >
 > char* buf = new char[sizeof(X)];
 > X* p = new(buf) X(222); // use buf[] and initialize
 >
 > are not strictly conforming, because there is no guarantee
 > that `buf' will be sufficiently aligned to hold an object of
 > type `X'. 5.3.4[expr.new]/12 includes some examples which
 > show that this is not guaranteed. I think the first of those
 > lines should be changed to
 >
 > char* bug = ::operator new(sizeof(X));
 >
 > For stylistic reasons, it might also be a good idea to change
 > the line
 >
 > p->X::~X(); // cleanup
 >
 > to just
 >
 > p->~X();

 [Mike Miller in core-7257:]

 > Yes, you're right -- there's no requirement that the "array
 > allocation overhead" is a multiple of the maximum alignment
 > requirement, so the example you cited is not guaranteed to
 > work by the current WP text.
 >
 > However, there's a reason this example is in the WP, and it's
 > because this is a very common idiom. I don't see a compelling
 > reason to break it.
 >
 > I can see three possibilities for accommodating the use of
 > "new char[xx]" to get a suitably-aligned buffer space for other
 > objects:
 > 1) require that the "array allocation overhead" be an
 > integral multiple of the maximum alignment requirement, and
 > that it be required to be a contiguous region between the
 > pointer returned by operator new[] and the pointer to the

 > first element of the array.
 > 2) Allow "array allocation overhead" only for arrays of class
 > types (my understanding of the reason for the overhead is
 > to allow the correct invocation of destructors).
 > 3) Make char and unsigned char a special case, like they are
 > in many other ways, such that allocating an array of char
 > or unsigned char is guaranteed to have an "array allocation
 > overhead" of zero.
 > I guess I don't have a strong preference among the three,
 > although 2 and 3 seem a bit more straightforward and
 > correspond more to the rest of the language.
 >
 > This is obviously not a make-or-break issue; people will
 > continue to write "new char[xx]" and it will continue to work,
 > whether we bless it or not. But it's not hard to change the
 > WP to allow it, and it would bring us a little closer to
 > reality to recognize this particular practice.
 Resolution:
 The WP should be changed to allow "new char[xx]" to get a
 suitably-aligned buffer space for other objects:

 5.3.4 paragraph 9
 replace:
 "When the allocation function is called, the first argument
shall
 be the amount of space requested (which shall be no less than
the
 size of the object being created and which may be greater than
the
 size of the object being created only if the object is an
array)."
 with:
 "When the allocation function is called, the first argument
shall
 be the amount of space requested. If the object being created
is
 not an array, the size requested by the new expression to
 operator new shall be the size of the object. If the object is
an
 array, the size requested by the new expression to operator new
 may be larger than the size of the object. For arrays of char
 and unsigned char, the difference between the result of the new
 expression and the address returned by the allocation function
 shall be an integral multiple of the most stringent alignment
 requirement (3.9) of any object type whose size is no greater
than
 the size of the array being created. [Note: since allocation
 functions are assumed to return pointers to storage that is
 appropriately aligned for objects of any type, this constraint
on
 array allocation overhead permits the common idiom of
allocating
 character arrays into which objects of other types will later
be
 placed.]

 Also the first line of the example above should be deleted. The
 library placement new is not replaceable.
 Requestor: Fergus Henderson
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .

 Work Group: Core
 Issue Number: 809
 Title: It should be made clear that when the destructor for a
 derived class implicitly calls the destructor for a base
 class, the virtual function mechanism is not used
 Section: 12.4[class.dtor]
 Status: resolved
 Description:
 12.4[class.dtor]:
 Make it clear that a derived class destructor implicitly calls a
base
 class destructor such that the virtual function mechanism is never
 used.
 Resolution:
 After the first sentence of paragraph 6, add the following
sentence:
 "All destructors are called as if they were referenced with a
 qualified-id, i.e. ignoring any possible virtual overriding
 destructors in more-derived classes."
 Requestor: Anthony Scian
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 810
 Title: When a class has a member and a base class with the same
name
 what does a mem-initializer-id referring to this name
 designate, the base or the member?
 Section: 12.6.2 [class.base.init]
 Status: resolved
 Description:
 A note should indicate that when a class has a base and a member
 with the same name, a mem-initializer-id designates the class
member
 and it is not possible to refer to the base class in a
 mem-initializer-id.
 Resolution:
 Add the following note after the first sentence of para 2 in
 12.6.2[class.base.init]:
 "[Note: if a class has a member with the same name as one or its
 direct or virtual base, a mem-initializer-id for a constructor
of
 this class naming the member or base class and composed of a
single
 identifier references the class member. A mem-initializer-id
for
 the hidden base class may be specified using a qualified name.]"
 Requestor: CD2 Public Comment 20 4)
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 811
 Title: Can a base class copy assignment operator that is virtual
be
 overriden by an assignment operator declared in a derived
 class?
 Section: 12.8[class.copy]
 Status: resolved

 Description:
 struct B {
 virtual B& operator=(const B&);
 };
 struct D : B {
 B& operator=(const B&);
 };

 If D's copy assignment operator is implicitly defined, does it
call
 B's copy assignment operator such that the virtual function
 mechanism is not used:
 B::operator=(...)
 or such that the virtual function mechanism is used:
 ((B*)(this))->operator=(...)
 to initialize its base class?
 Resolution:
 The virtual mechanism is not used.

 Replace the first bullet of 12.8[class.copy], para 13, with:
 "-- if the subobject is of class type, the copy assignment
operator
 is used (as if by explicit qualification, i.e., ignoring any
 possible virtual overriding functions in more derived
classes);"
 Requestor: Anthony Scian
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 13 - Overloading

 Work Group: Core
 Issue Number: 778
 Title: How does the implicit argument match the implicit
parameter
 of a base class static member function?
 Section: 13.3.1[over.match.funcs]
 Status: resolved
 Description:
 13.3.1 para 4 says the following:

 "For static member functions, the implicit object parameter is
 considered to match any object (since if the function is
 selected, the object is discarded)."

 This implies that the following:
 struct S {
 S(int) { }
 void f(int) { }
 static void f(const S&) { }
 void foo() { f(1); } // call f(1) is _not_ ambiguous
 };

 struct D : public S {
 void bar() { f(1); } // call f(1) is ambiguous
 };

 I [Josee] find this a bit surprising.
 An example above should be added to the WP.

 Or, is this behavior really intended?
 If not, the wording in 13.3.1 should say that the implicit
 object argument is not always an exact match for the implicit
 parameter, and that the conversion described in 13.3.3.1.4
 (i.e. the raking of an initialization for a reference to a base
 class type initialized with a derived class object is Conversion
 Rank) also applies to the implicit object argument of a static
 member function.
 Resolution:
 At the Nashua meeting, the core WG agree that 13.3.3 should
indicate
 that the "conversion sequence" on the implicit object parameter
for a
 static member function is no better, no worse than other
conversion
 sequences (and therefore is never the deciding factor in selecting
 one function over another).
 Requestor:
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 812
 Title: Is the built-in operator for , & -> used if overload
 resolution is ambiguous?
 Section: 13.3.1.2[over.match.oper]
 Status: resolved
 Description:
 13.3.1.2 para 9 says:
 "If the operator is operator , , the unary operator &, or the
 operator ->, and overload is unsuccessful, then the operator is
 assumed to be the built-in operator and interpreted according to
 clause 5".

 What does 'unsuccessful' mean?
 Is the built-in operator used if overload resolution is ambiguous?
 Resolution:
 "unsuccessful" means "no viable functions are found" and does not
 include ambiguity.
 Requestor: ANSI CD2 Public Comment 13
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 813
 Title: The partial ordering rules for function templates are
overly
 restrictive
 Section: 13.3.3 [over.match.best]
 Status: active
 Description:
 [N1065 issue 1.15]
 13.3.3 para 1:
 "-- F1 and F2 are template functions with the same signature, and
 the function template for F1 is more specialized than the
 template for F2 according to the partial ordering rules
 described in 14.5.5.2, ..."

 The partial ordering rules for function templates are overly
 restrictive: they require that two functions being compared have

 identical signatures. This restriction could be relaxed to just
 require that the functions have identical parameter types for
 overloading purposes.
 Resolution:
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 682
 Title: operator ?: and operands of enumeration types
 Section: 13.6 [over.built]
 Status: active
 Description:
 The type of a conditional expression choosing between two enums of
 the same type was changed in the May WP from that enum type to the
 integral type it promotes to, breaking code. I propose changing
 paragraph 27 of 13.6 [over.built] from

 27 For every type T, where T is a pointer or pointer-to-member
type,
 there exist candidate operator functions of the form
 T operator?(bool, T, T);

 to

 27 For every type T, where T is an enumeration, pointer or
 pointer-to-member type, there exist candidate operator
functions
 of the form
 T operator?(bool, T, T);

 Should the following testcase be ambiguous?

 const char c;
 enum E { a } e;
 bool b;

 main ()
 {
 return b ? c : e;
 }

 The builtin candidates are:
 operator ?(bool, const char &, const char &)
 operator ?(bool, int, int)
 Resolution:
 Requestor: Jason Merrill
 Owner: Steve Adamczyk (Type Conversions)
 Emails: core-6983, core-6987
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 734
 Title: ambiguity in "bool & ? void *& : classType&" where
 classType has an operator void*&
 Section: 13.6 [over.built]
 Status: active
 Description:
 This testcase is ambiguous under the current rules:

 void *p;

 struct A {
 operator void*& () { return p; };
 };

 bool b;
 A a;

 main ()
 {
 void *q = b ? p : a;
 }

 The implementation of the current rules results in:
 Ambiguous overload for `bool & ? void *& : A &'
 candidates are: operator ?:(bool, void *&, void *&) <builtin>
 operator ?:(bool, void *, void *) <builtin>
 because there is no lvalue->rvalue conversion to disambiguate
 for non-class operands.
 Resolution:
 Requestor: Jason Merrill
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 756
 Title: most uses of built-in "?" with class operands are
 ambiguous
 Section: 13.6[over.built]
 Status: active
 Description:
 The pseudo-prototype for the "?" operator in [over.built] makes
 most uses of "?" with a class operand ambiguous.

 Consider

 struct A {};
 struct B {
 operator A();
 };
 void f() {
 A a;
 B b;
 1 ? a : b;
 }

 The pseudo-prototype generates the following (and more, but these
 are enough to demonstrate the ambiguity):

 bool ? A : A
 bool ? const A : const A

 These are indistinguishable in overload resolution, in the same
 way that

 void g(A);
 void g(const A);

 are indistinguishable. As [over.best.ics] para 6 says, in a
 copy-initialization, "Any difference in top-level cv-qualification
 is subsumed by the initialization itself and does not constitute a

 conversion."
 Resolution:
 Requestor: Steve Adamczyk
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 14 - Templates

 Work Group: Core
 Issue Number: 780
 Title: The definition of 'template-declaration' is incomplete
 Section: 14 [temp]
 Status: resolved
 Description:
 14p1 states:
 "The declaration in a template-declaration shall declare or
 define a function or a class, define a static data member of a
 class template, define a member function or a member class of a
 class template, or define a member template of a class. ..."

 But what about...

 template <class T>
 class A {
 class B {
 static int x;
 };
 };
 template <class T>
 int A<T>::B::x = 0; // not one of allowed forms

 How can we define a static data member of a class nested within a
 class template?
 Resolution:
 The list of possible forms of a template-declaration does not
 include corresponding definitions of class members where the class
 is nested within a class template, nor does it include definitions
 of member templates (whether in non-template classes, template
 classes or classes nested within one of these).
 Requestor: Neal Gafter
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 757
 Title: Can a template member function be overloaded?
 Section: 14[temp]
 Status: resolved
 Description:
 14 paragraph 5 says:
 "The name of a class template shall not be declared to refer to
 any other template, class, function, object, enumeration,
 enumerator, namespace, or type in the same scope
 (_basic.scope_). Except that a function template can be
 overloaded either by (non-template) functions with the same
 name or by other function templates with the same name
 (_temp.over_), a template name declared in namespace scope
 shall be unique in that namespace."

 This paragraph forgets to say that (except for overloading) the
 name of a function template in class scope must not be the same
 as the name of any other class member.
 Resolution:
 The restriction that a function template name must be unique
 within a namespace scope (except for overloading) should also
 apply to member function templates, i.e. it should apply to class
 scope as well.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 814
 Title: The semantics of the keyword "export" need to be clarified
 Section: 14[temp]
 Status: active
 Description:
 The semantics, use and intent of the keyword "export" need to be
 clarified.
 Resolution:
 Requestor: ANSI CD2 Public Comment 29
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 781
 Title: Must default template-arguments be provided only on the
 first template declaration?
 Section: 14.1 [temp.param]
 Status: resolved
 Description:
 14.1 paragraph 8 says the following:
 "The set of default template-arguments available for use with a
 template in a translation unit shall be provided by the first
 declaration of the template in that translation unit."

 This should be clarified to say:
 "shall be provided only by the first declaration"
 because the following interpretation:
 "shall be provided by the first and possibly following
 declarations"
 is also possible.
 Resolution:
 The working paper should be clarified to state that default
 template-arguments may be specified only on the first declaration
 of a template in a translation unit.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 815
 Title: Does the type of a template nontype parameter of
 array/function type decay?
 Section: 14.1[temp.parm]
 Status: active

 Description:
 [N1053 issue 6.54]:
 "Array/function decay in template parameter lists."

 The implicit "decay" of array and function types to pointer
 types in parameter lists should also apply to nontype template
 parameters.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 816
 Title: There is an ambiguity on ">" with expressions written as
 default arguments
 Section: 14.2[temp.names]
 Status: resolved
 Description:
 The working paper has rules for handling a ">" within an
expression
 in a template-id (14.2 para 3). A similar ambiguity occurs with
 expressions written as default arguments for nontype template
 parameters in the parameter list of a template. The same solution
 should apply.
 Resolution:
 Requestor: Randy Meyers
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 758
 Title: Can an array name be a template argument?
 Section: 14.3[temp.arg]
 Status: resolved
 Description:
 14.3[temp.arg] para 3 says:
 "A template-argument for a non-type non-reference template-
parameter
 shall be ... the address of an object or a function with
external
 linkage ... The address of an object or function shall be
expressed
 as &f, plain f (for function only) ..."

 It is followed by the following example:
 char p[] = "Vivisectionist";
 X<int,p> x2; // & is not used
 i.e. the array name is not preceded with the & operator.

 What was probably intended is the following:
 "The address of an object or function shall be expressed as
 '&e' except when 'e' is a function or an array in which case
 it can be expressed as 'e'."
 Resolution:
 The allowed forms for a template-argument corresponding to a
 non-type non-reference template-parameter do not account for the
 above implicit conversions; i.e. the "&" prior to an array name
 or function name in these cases should be optional if the values
 decay to pointers in the absence of "&".

 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 759
 Title: Initializing a template reference parameter with an
 argument of a derived class type needs to be described
 Section: 14.3[temp.arg]
 Status: active
 Description:
 14.3[temp.arg], paragraph 6:

 "Standard conversions (_conv_) are applied to an expression
 used as a template-argument for a non-type template-parameter
 to bring it to the type of its corresponding
 template-parameter.
 [Example:
 struct Base { /* ... */ };
 struct Derived : Base { /* ... */ };
 template<Base& b> struct Y { /* ... */ };
 Derived d;
 Y<d> yd; // derived to base conversion
 -- end example]
 "
 Since binding an object of a derived class type to a reference
 to a base class type is not a standard conversion anymore, this
 text needs work.
 Resolution:
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 760
 Title: Is a template argument that is a private nested type
 accessible in the template instantiation context?
 Section: 14.3[temp.arg]
 Status: resolved
 Description:
 Sean Corfield in core-7317:
 Is the private nested class accessible in the instantiation
 context?

 class Outer {
 //...
 private:
 class Inner {
 //...
 };
 list< Inner > data;
 };

 Since Outer::Inner is inaccessible outside the scope of Outer
 and its friends, one can imagine that instantiations would fail.
 A quick trial on the local compiler agrees (HP's Cfront -- not
 much of a yardstick).

 14.3 [temp.arg] says:
 10For a template-argument of class type, the template

 definition has no special access rights to the inaccessible
 members of the template argument type. The name of a
 template-argument shall be accessible at the point where it is
 used as a template-argument.

 All that says is that inaccessible *members* can't be accessed.
 Is it *really* intending to say that if a template argument is
 accessible "at the point where it is used as a
 template-argument" then any & all uses of the corresponding
 template parameter are accessible within the template body?

 // Outer::Inner as before
 template<typename T>
 void A<T>::f() {
 T t; // same as Outer::Inner t but Outer::Inner is not
 // accessible
 }

 I believe we intend that to be well-formed but I just don't
 think the WP is quite clear enough about it (and certainly some
 compilers disagree).
 Resolution:
 It may be desirable to make it more clear (perhaps with an
example)
 that access checking is done by name, so that if a name is
accessible
 then it may be used in a template-id, and in the resulting
 instantiation there is no restriction on access to the
corresponding
 template-parameter name itself.
 Requestor: Sean Corfield
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 782
 Title: Can a value of enumeration type be used as a template
 non-type argument?
 Section: 14.3 [temp.arg]
 Status: resolved
 Description:
 14.3 para 3 says:
 "A template-argument for a non-type non-reference
 template-parameter shall be an integral constant-expression of
 integral type ..."

 Values of enum types should also be allowed as non-type
 template arguments. The sentence above should be changed to:

 "A template-argument for a non-type non-reference
 template-parameter shall be an integral constant-expression of
 integral or enumeration type ..."
 Resolution:
 The working paper should make it clear that a constant-expression
 used as a template-argument for a non-type non-reference
 template-parameter may also have enumeration type.
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .

 Work Group: Core
 Issue Number: 761
 Title: Can the member function of a class template be virtual?
 Section: 14.5.1.1[temp.mem.func]
 Status: resolved
 Description:
 14.5.1.1 paragraph 3 says:
 "A member function of a class template is implicitly a member
 function template with the template-parameters of its class
 template as its template-parameters."
 14.5.2 paragraph 3 says:
 "A member function template shall not be virtual."

 This seems to imply that virtual member functions in a class
 template are ill-formed.
 template <class T> struct AA {
 virtual void f(); // this is an error
 };

 It should be clarified to say that the following is an error.
 template <class T> struct AA {
 template <class C> virtual void f(C); // this is an error
 };

 We should get rid of the wording in 14.5.1.1 that says that a
 member function of a class template is a member function
 template with the template parameters of its class. This
 sentence is confusing.
 Resolution:
 The term "member function template" is not used clearly here. It
is
 not intended to mean "member template of function type", but
rather
 "member function of a class template which, because the enclosing
 class is a template, behaves somewhat like a template itself".

 This distinction should be made more clear. There may be similar
 wording problems with respect to member templates elsewhere in the
 working paper.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 817
 Title: Clarification of the interaction of friend declarations
and
 partial specializations
 Section: 14.5.3[temp.friend]
 Status: resolved
 Description:
 [N1053 issue 6.50]
 Resolution:
 It should be made clear that friend declarations are not allowed
to
 declare partial specializations, and that a template friend
 declaration specifies that all instances of that template,
 regardless of whether implicitly generated and regardless of
whether
 partially or completely (explicitly) specialized, are friends of
the
 class containing the template friend declaration.

 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 818
 Title: Friends classes are not well covered in 14.5.3
 Section: 14.5.3[temp.friend]
 Status: resolved
 Description:
 Resolution:
 Para 4:
 The phrase "the corresponding member function" is incorrect; the
 friend might be a class. So the word "function" should be
deleted.
 Requestor: ANSI CD2 Public Comment 12
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 819
 Title: Were are partial specialization allowed?
 Section: 14.5.4[temp.class.spec]
 Status: active
 Description:
 [N1053 issue 6.49 and issue 6.53 item 3]
 It is not clear whether a partial specialization must be declared
in
 the class or namespace of which it is a member. There are cases
for
 member templates where such a rule would prevent specialization
 entirely. The restrictions, if any, should be explicitly stated
in
 the working paper.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 820
 Title: Clarification of nontype dependency rules in partial
 specializations
 Section: 14.5.4[temp.class.spec]
 Status: active
 Description:
 [N1053 issue 6.51]
 The restrictions in 14.5.4 [temp.class.spec] item 2 makes a large
 class of partial specializations ill-formed for no apparent
reason.
 The restriction should probably be relaxed, possibly by restoring
 the less restrictive wording from a previous version of the
working
 paper.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)

 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 821
 Title: The restrictions on partial specializations based on the
 dependency of arguments on other arguments are too severe
 Section: 14.5.4[temp.class.spec]
 Status: active
 Description:
 Editorial Box 6:
 14.5.4 para 5:
 The restrictions on partial specializations based on the
dependency
 of arguments on other arguments are too severe. The restrictions
 should be relaxed where possible.
 Resolution:
 Requestor: Editorial Box 6
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 822
 Title: Clarification of ordering rules for nontype arguments in
 partial specializations
 Section: 14.5.4.2[temp.class.order]
 Status: active
 Description:
 [N1053 issue 6.52]
 The partial ordering rules for class template partial
specializations
 are too restrictive with respect to nontype template parameters.
The
 rules should be reformulated to allow additional obviously correct
 orderings.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 823
 Title: Interaction of partial ordering with default arguments and
 ellipsis parameters
 Section: 14.5.4.2[temp.class.order]
 Status: active
 Description:
 [N1053 issue 6.55]
 The working paper does not give clear rules for the handling of
 default arguments and ellipsis parameters when determining the
 partial ordering of function templates.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core

 Issue Number: 824
 Title: In which contexts should partial ordering of function
 templates be performed?
 Section: 14.5.4.2[temp.class.order]
 Status: active
 Description:
 [N1053 issue 6.56]
 In addition to overload resolution, there are additional contexts
in
 which partial ordering of function templates could be used to
resolve
 ambiguities between function template instances with identical
 function parameters (and possibly identical template arguments)
but
 generated from different partial specializations:

 * Taking the address of a template function instance

 * Matching a declaration of an instance with a particular partial
 specialization (for friend declarations, explicit specialization
 and explicit instantiation)

 * Selecting a placement delete function that matches a placement
new
 operation.

 It might be useful to apply the partial ordering rules in these
 contexts.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 825
 Title: Clarification of rules for partial specializations of
member
 class templates
 Section: 14.5.4.3[temp.class.spec.mfunc]
 Status: active
 Description:
 [N1053 issue 6.53 items 1 & 2]
 When a member template of a class template is partially
specialized,
 the partial specializations should apply to all instances
generated
 from the enclosing class template.

 When the primary template is specialized for a given instance of
the
 enclosing class, none of the partial specializations of the
original
 primary template should be carried over.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 762

 Title: How can function templates be overloaded?
 Section: 14.5.5.1[temp.arg]
 Status: resolved
 Description:
 14.5.5.1 para 4 says:
 "The signature of a function template consists of its function
 signature, its return type and its template parameter list.
 The names of the template parameters are significant only for
 establishing the relationship between the template parameters
 and the rest of the signature."

 I think an example showing that two function templates that have
 the same function parameter list are valid overloads would make
 it clear that such thing is allowed. For example:

 template<class T> void f();
 template<int I> void f(); // valid overload
 Resolution:
 An example and/or text should be added to make it clear that two
 distinct function templates may have identical function parameter
 lists and that they overload, even if overload resolution alone
 cannot distinguish them.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 763
 Title: Partial Specialization: the transformation also affects
 the function return type
 Section: 14.5.5.2[temp.func.order]
 Status: active
 Description:
 14.5.5.2 [temp.func.order] paragraph 2 says:
 "The transformation used is:
 -- For each type template parameter, synthesize a unique type
 and substitute that for each occurrence of that parameter
 in the function parameter list.
 -- For each non-type template parameter, synthesize a unique
 value of the appropriate type and substitute that for each
 occurrence of that parameter in the function parameter
 list."

 These bullets should say:
 "... in the function parameter list _and return type_".

 because 14.5.2 para 5 says:
 "If more than one conversion template can produce the required
 type the partial ordering rules (14.5.5.2) are used to select
 the "most specialized" version that can produce the required
 type."

 But conversion functions don't have parameters, only return types.
 Resolution:
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 736

 Title: How can/must typename be used?
 Section: 14.6 [temp.res]
 Status: active
 Description:
 Is typename required in situations where we know only type names
 can be used?

 What if typename is used preceding a template dependent name that
 is not qualified? Is typename ignored, or is this ill-formed?

 template <class T> class C {
 typename C<T> ...
 };

 What if typename is used preceding an non-dependant name? Is
 typename ignored, or is this ill-formed?

 class A { };
 template <class T> class C {
 typename A ...
 };
 Resolution:
 Requestor:
 Owner: Bill Gibbons/John Spicer (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 764
 Title: undeclared name in template definition should be an error
 Section: 14.6[temp.names]
 Status: resolved
 Description:
 The example in 14.6 paragraph 1 has the following lines:

 T::A* a7;// T::A is not a type name:
 // multiply T::A by a7
 B* a8; // B is not a type name:
 // multiply B by a8; ill-formed,
 // no visible declaration of B

 The first line is also ill-formed because a7 is not declared.
 Resolution:
 In the example, the line "T::A* a7;" is ill-formed because "a7" is
 not dependent and has not been declared. The example should make
 this clear.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 765
 Title: The syntax does not allow the keyword 'template' in
 'expr.template C<parm>::member'
 Section: 14.6[temp.names]
 Status: active
 Description:
 In 14.2[temp.names], paragraph 4 says:

 "When the name of a member template specialization appears
 after . or -> in a postfix-expression, or after :: in a

 qualified-id that explicitly depends on a template-argument
 (_temp.dep_), the member template name must be prefixed by the
 keyword template. Otherwise the name is assumed to name a
 non-template."

 The grammar in 14.6 paragraph 2 does not seem to take this into
 account:

 elaborated-type-specifier:
 . . .
 typename ::(opt) nested-name-specifier identifier
 typename ::(opt) nested-name-specifier identifier
 < template-argument-list >

 shouldn't this say?

 elaborated-type-specifier:
 . . .
 typename ::(opt) nested-name-specifier template(opt) identifier
 typename ::(opt) nested-name-specifier template(opt) identifier
 < template-argument-list >

 Or is the template keyword supposed to be allowed in the middle of
a
 nested-name-specifier? In which case, something like this is
needed:

 qualified-id:
 nested-name-specifier template(opt) unqualified-id

 nested-name-specifier:
 class-or-namespace-name :: template-nested-name-specifier(opt)

 template-nested-name-specifier:
 template(opt) nested-name-specifier
 Resolution:
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 826
 Title: Does the "template" keyword apply to function and static
data
 member templates?
 Section: 14.6[temp.names]
 Status: active
 Description:
 [N1065 issue 1.18]
 Does the "template" keyword (as applied to a dependent qualified
 name) apply to function and static data member templates, or just
to
 class templates?
 Resolution:
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 766

 Title: How do template parameter names interfere with names in
 nested namespace definitions?
 Section: 14.6.1[temp.local]
 Status: resolved
 Description:
 14.6.1[temp.local] paragraph 6 says:
 "In the definition of a member of a class template that
 appears outside of the class template definition, the name
 of a member of this template hides the name of a
 template-parameter.
 [Example:
 template<class T> struct A {
 struct B { /* ... */ };
 void f();
 };

 template<class B> void A::f()
 {
 B b; // A's B, not the template parameter
 }
 -- end example]
 "

 This does not cover namespaces very well.
 For example, what happens when a template parameter names
 conflicts with the name of a namespace member.

 namespace N {
 struct B { /* ... */ };
 template<class T> void f(T);
 }
 template<class B> void N::f(B)
 {
 B b; // A's B or the template parameter?
 }

 John Spicer's proposed resolution:
 You should get the same result whether the function is
 defined in the class (or namespace) or outside of it.
 The "B" in N::f gets the template parameter B, not the
 namespace member B.
 Resolution:
 The working paper should make it clear that although class
template
 members may hide template-parameter names, there is no such hiding
 with namespace members since the namespace scope is entirely
outside
 the template declaration.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 827
 Title: C is not equivalent to C<T> when C is qualified
 Section: 14.6.1 [temp.local]
 Status: resolved
 Description:
 Editorial Box 8:
 Resolution:
 The equivalence within the scope of a class template between the
name

 of a template and the corresponding template-id should not apply
when
 the name of the template is qualified.
 Resolution:
 Requestor: Editorial Box 8
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 784
 Title: The examples in 14.6.2 on dependent names need work
 Section: 14.6.2 [temp.dep]
 Status: resolved
 Description:
 The examples in paragraphs 2 and 3 of 14.6.2 are still there
 and are still nonsense. They need to be deleted.
 Also, ANSI CD2 Public Comment 7 & 23.
 Resolution:
 Some of the examples in this section are in disagreement with the
 textual description of dependent names and lookup rules. The
 examples should be corrected or removed.

 Also:
 [N1065 issue 3.30]
 The sentence "X<T>::a has type double." should be moved to a
comment
 in the example, as in:
 template<class T> struct X : B<T> {
 A a; // "a" has type "double"
 };
 Requestor: John Wilkinson
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 828
 Title: In what contexts is the use of a qualifier to look in the
 current template a special case not subject to the usual
 dependent type restrictions?
 Section: 14.6.2 [temp.dep]
 Status: active
 Description:
 [N1065 issue 1.14]
 In the following example:

 template<class T> struct A {
 typedef int B;
 A<T>::B b;
 };

 is the lookup of B considered dependent?
 If so, is the example ill-formed?
 In what contexts is the use of a qualifier to look in the current
 template a special case not subject to the usual dependent type
 restrictions?
 Under what circumstances is a base class member found using a
derived
 class qualifier of this form?
 Resolution:
 Requestor: Bill Gibbons

 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 829
 Title: 14.6.2 para 5 should not only apply when a base class is
 a template parameter but also when it is a dependent type
 Section: 14.6.2 [temp.dep]
 Status: resolved
 Description:
 Resolution:
 Para 5:
 The phrase "If a template-argument is a used as a base class..."
 should be changed to match the intent in para 4, e.g. "If a base
 class is a dependent type...".
 Requestor: ANSI CD2 Public Comment 8
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 737
 Title: How can dependant names be used in member declarations
 that appear outside of the class template definition?
 Section: 14.6.4 [temp.dep.res]
 Status: resolved
 Description:
 template <class T> class Foo {
 public:
 typedef int Bar;
 Bar f();
 };
 template <class T> typename Foo<T>::Bar Foo<T>::f() { return 1;}

 In the class template definition, the declaration of the member
 function is interpreted as:

 int Foo<T>::f();

 In the definition of the member function that appears outside
 of the class template, the return type is not known until the
 member function is instantiated. Must the return type of the
 member function be known when this out-of-line definition is
 seen (in which case the definition above is ill-formed)? Or is
 it OK to wait until the member function is instantiated to see
 if the type of the return type matches the return type in the
 class template definition (in which case the definition above
 is well-formed)?

 From John Spicer:
 > My opinion (which I think matches several posted on the
 > reflector recently) is that the out-of-class definition must
 > match the declaration in the template. In your example they
 > do match, so it is well formed.
 >
 > I've added some additional cases that illustrate cases that
 > I think either are allowed or should be allowed, and some
 > cases that I don't think are allowed.
 >
 > template <class T> class A { typedef int X; };

 >
 > template <class T> class Foo {
 > public:
 > typedef int Bar;
 > typedef typename A<T>::X X;
 > Bar f();
 > int g1();
 > Bar g2();
 > X h();
 > X i();
 > int j();
 > };
 >
 > // Declarations that are okay
 > template <class T> typename Foo<T>::Bar Foo<T>::f()
 > { return 1;}
 > template <class T> typename Foo<T>::Bar Foo<T>::g1()
 > { return 1;}
 > template <class T> int Foo<T>::g2() { return 1;}
 > template <class T> typename Foo<T>::X Foo<T>::h() { return 1;}
 >
 > // Declarations that are not okay
 > template <class T> int Foo<T>::i() { return 1;}
 > template <class T> typename Foo<T>::X Foo<T>::j() { return 1;}
 >
 > In general, if you can match the declarations up using only
 > information from the template, then the declaration is valid.
 >
 > Declarations like Foo::i and Foo::j are invalid because for
 > a given instance of A<T>, A<T>::X may not actually be int if
 > the class is specialized.
 >
 > This is not a problem for Foo::g1 and Foo::g2 because for
 > any instance of Foo<T> that is generated from the template
 > you know that Bar will always be int. If an instance of Foo
 > is specialized, the template member definitions are not used
 > so it doesn't matter whether a specialization defines Bar as
 > int or not.
 Resolution:
 When a member function of a class template is defined outside the
 class, and the return type is specified by a member of a dependent
 class, the typename keyword is needed to specify that the member
 name is a type. So the typename keyword should be allowed in this
 context.

 Core 3 agreed that this is largely editorial.
 Some work is needed to figure out exactly what needs to be said.
 Owner: Bill Gibbons/John Spicer (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 767
 Title: Where should the point of instantiation of class templates
be
 discussed?
 Section: 14.6.4.1[temp.point]
 Status: resolved
 Description:
 14.6.4.1[temp.point]:
 Shouldn't this subclause also discuss the point of
 instantiation of class templates?

 14.7.1 covers some aspect of the point of instantiation of
 class templates.

 Having a subclause called "point of instantiation" and only
 discuss function templates within it is somewhat confusing.
 Resolution:
 There should be cross-references between the various paragraphs
 discussing points of instantiation, with respect to class,
function
 and static data member templates.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 830
 Title: Are the rules describing the point of instantiation of a
 function templates too complex?
 Section: 14.6.4.1[temp.point]
 Status: active
 Description:
 Editorial Box 11:
 The rules describing the point of instantiation for function
 templates may be overly complex.
 Consideration should be given to simplifying them.
 Resolution:
 Requestor: Editorial Box 11
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 831
 Title: Should candidate functions without external linkage in
other
 translation units render a call ill-formed?
 Section: 14.6.4.2[temp.dep.candidate]
 Status: active
 Description:
 Editorial Box 12:
 This section says that if visibility of candidate functions with
 external linkage in additional translations units affects the
meaning
 of the program, the behavior is undefined. The possiblility of
 extending the rule to include candidate functions without external
 linkage should be considered.
 Resolution:
 Requestor: Editorial Box 12
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 832
 Title: Difference between the rules in 14.6.5 and 3.4.2 regarding
 friend function name look up
 Section: 14.6.5 [temp.inject]
 Status: active
 Description:
 14.6.5 para 2:

 The example does not match the argument-dependent name lookup
rules
 for friends stated in 3.4.2 [basic.lookup.koenig].

 The rules in 3.4.2 do not match those presented to the committee
when
 the extended argument-dependent name lookup rules were added.
 Resolution:
 Requestor: ANSI CD2 Public Comment 23
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 833
 Title: The definition of "specialization" for member templates is
 missing
 Section: 14.7 [temp.spec]
 Status: active
 Description:
 Editorial Box 13:
 Paragraph 1:
 This paragraph does not really describe the handling of member
 templates and of members of classes nested within class templates.
 The missing cases should be added.
 Resolution:
 Requestor: Editorial Box 13
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 834
 Title: Does "delete ap;", where ap's type is a template
 specialization, cause the template to be instantiated?
 Section: 14.7.1 [temp.inst]
 Status: resolved
 Description:
 Resolution:
 It should be made clear that a class template is instantiated in
 any context where the completeness of the type might have an
effect
 on the semantics of the program.
 Requestor: ANSI CD2 Public Comment 6
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 835
 Title: Does the instantiation of a class template cause the
 instantiation of the class static data members?
 Section: 14.7.1 [temp.inst]
 Status: resolved
 Description:
 Resolution:
 The working paper should explicitly state that the implicit
 instantiation of a class template does not cause the implicit
 instantiation of the definition of a static data member, and
 therefore does not (by itself) cause the initialization (and
 associated side-effects) of static data members to occur.

 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 786
 Title: The description of explicit instantiation does not allow
 the explicit instantiation of members of class templates
 (including member functions and static data members)
 Section: 14.7.2 [temp.explicit]
 Status: resolved
 Description:
 template<typename T>
 struct Outer {
 struct Inner { T* t_; };
 };

 template struct Outer<int>::Inner; // Or what?

 [temp.explicit]/2 seems to disallow this:
 "The syntax for explicit instantiation is:
 explicit-instantiation:
 template declaration
 where the unqualified-id in the declaration shall be either
 a template-id or, where all template arguments can be
 deduced, a template-name. [Note: the declaration may declare
 a qualified-id, in which case the unqualified-id of the
 qualified-id must be a template-id.]"

 This wording in [temp.explicit] is not correct. It disallows
 the instantiation of members of class templates (including
 member functions and static data members).
 Resolution:
 The description should be extended to include all the members, and
 members of members, for which explicit instantiation is
appropriate.
 Requestor: Daveed Vandevoorde
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 836
 Title: What is the point of instantiation for a specialization
 to which an explicit instantiation directive applies?
 Section: 14.7.2 [temp.explicit]
 Status: active
 Description:
 Editorial Box 14:
 An explicit instantiation directive should be a point of
 instantiation for each function and static data member to which
the
 directive applies. At other points of instantiation (except
 end-of-translation-unit) for functions and static data members,
the
 point of instantiation does not apply to the definition of the
 template unless the definition is needed at that point (e.g.
inline
 functions, and static data members for which the the value might
be
 required at compile time).

 Resolution:
 Requestor: Editorial Box 14
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 837
 Title: When can an empty template argument list "<>" be omitted?
 Section: 14.7.2 [temp.explicit] and 14.7.3 [temp.expl.spec]
 Status: active
 Description:
 The situations in which an empty template argument list "<>" may
be
 omitted should be more clearly explained, particularly in the
 examples in these sections.

 Also:
 14.7.3 para 6, para 16
 The examples in these two paragraphs contradict each other. It
 appears that the last line of the example in paragraph 16 should
not
 contain "<>" because the definition should not be an explicit
 specialization.
 Resolution:
 Requestor: ANSI CD2 Public Comment 23 and 28
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 787
 Title: Make it clear that a user must provide a definition for
 an explicitly specialized template; if not, the program
 is ill-formed
 Section: 14.7.3 [temp.expl.spec]
 Status: resolved
 Description:
 14.7 [temp.spec] says:
 "A template that has been used in a way that requires a
 specialization of its definition causes the specialization to
 be implicitly instantiated unless it has been either explicitly
 instantiated or explicitly specialized."

 14.7.3 [temp.expl.spec] paragraph 5 says:
 "If a template is explicitly specialized then that
 specialization shall be declared before the first use of that
 specialization that would cause an implicit instantiation to
 take place, in every translation unit in which such a use
 occurs."

 14.7.3 should be made clearer that the implementation expects
 to find a user-supplied definition for an explicit specialized
 template somewhere (and give an error if the implementation
 doesn't find one).
 Resolution:
 It should be clear that when a template is explicitly specialized,
 the unspecialized template is not used and so there is no implicit
 generation for the specialization. Therefore if the specialization
 is used it must be defined, following the rules for requiring
 definitions for non-template declarations. (In particular, there
are

 some cases where a diagnostic is required and some where no
 diagnostic is required.)
 Requestor: Bjarne Stroustrup
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 838
 Title: Does an explicit instantiation directive affect the
 compilation model for the specified instance?
 Section: 14.7.3 [temp.expl.spec]
 Status: active
 Description:
 [N1065 issue 1.17]
 Does an explicit instantiation directive affect the compilation
model
 for the specified instance? For example, does it imply the
 "inclusion" model instead of the "separation" model, even when the
 export keyword is used?
 Resolution:
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 839
 Title: The template compilation model rules render some explicit
 specialization declarations not visible during
instantiation
 Section: 14.7.3 [temp.expl.spec]
 Status: active
 Description:
 [N1065 issue 1.19]
 An explicit specialization declaration may not be visible during
 instantiation under the template compilation model rules, even
though
 its existence must be known to perform the instantiation
correctly.
 For example:

 translation unit #1
 template<class T> struct A { };
 export template<class T> void f(T) { A<T> a; }

 translation unit #2
 template<class T> struct A { };
 template<> struct A<int> { }; // not visible during
instantiation
 template<class T> void f(T);
 void g() { f(1); }
 Resolution:
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 840
 Title: Does the prohibition on default arguments in the

definition
 of a specialization prohibits them in the declarations of
 member functions of a class specialization?
 Section: 14.7.3 [temp.expl.spec]
 Status: resolved
 Description:
 [N1065 issue 3.34]
 14.7.3 para 3:
 "Default function arguments shall not be specified in a
declaration
 or a definition of an explicit specialization."
 Resolution:
 It should be made clear that the restriction on default arguments
 "in" explicit specializations applies only to function template
 explicit specializations (including member functions and member
 function templates where the enclosing class is not specialized),
and
 not to member functions of class template specializations (which
are
 not themselves specializations).
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 841
 Title: Are explicit template arguments only allowed in function
 calls?
 Section: 14.8.1 [temp.arg.explicit]
 Status: active
 Description:
 [N1065 issue 1.20]
 According to 14.8.1, explicit template arguments may be appended
to
 a function template name used in a call. Surely such template
 arguments should be allowed in other contexts in which a function
 name may be used, such as when taking the address of a function.
 Resolution:
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 677
 Title: Should the text on argument deduction be moved to a
subclause
 discussing both function templates and class template
partial
 specializations?
 Section: 14.8.2 [temp.deduct]
 Status: resolved
 Description:
 Template argument deduction is now used both for function
 templates and for class template partial specializations. The
 text for temp.deduct should be moved out of the function template
 specializations subclause.

 Here is the reorganization Bill Gibbons suggested in private
 email:

 > 14.2 Names of template specializations (including functions)
 > 14.3 Template arguments (including functions; cross-ref arg
 > deduction)
 > ...
 > 14.8 Template argument deduction
 > 14.8.1 Deducing a template argument from an expression
 > 14.8.2 Argument deduction for function calls
 > 14.8.3 Argument deduction for partial specialization ordering
 >
 > 14.9 Function calls
 > 14.9.1 Mixing explicit and deduced template arguments
 > 14.9.2 Overload resolution
 > 14.9.3 Overloading and template specializations
 Resolution:
 There should be cross-references between the various places where
 template argument deduction is done.
 Requestor: Sean Corfield
 Owner: Bill Gibbons/John Spicer (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 768
 Title: typename keyword missing in some examples
 Section: 14.8.2[temp.deduct]
 Status: resolved
 Description:
 14.8.2 paragraph 10 is an error

 template<int i, typename T>
 T deduce(A<T>::X x, // T is not deduced here
 T t, // but T is deduced here
 B<i>::Y y); // i is not deduced here
 A<int> a;
 B<77> b;
 int x = deduce<77>(a.xm, 62, y.ym);
 // T is deduced to be int, a.xm must be convertible to
 // A<int>::X
 // i is explicitly specified to be 77, y.ym must be
convertible
 // to B<77>::Y

 According to 14.6 paragraph 2
 "A qualified-name that refers to a type and that depends on a
 template-parameter shall be prefixed by the keyword typename"

 A<T>::X x above should be: typename A<T>::X x
 B<i>::Y y above should be: typename B<i>::Y y
 Resolution:
 Add the keyword typename in the two places suggested.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 842
 Title: Template argument deduction rules for template conversion
 functions are missing
 Section: 14.8.2[temp.deduct]
 Status: active
 Description:

 [N1065 issue 1.16]
 The working paper allows member template conversion functions, and
 implies that their template parameters may be deduced, but does
not
 specify the deduction rules. These rules must be stated
explicitly.
 Resolution:
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 15 - Exception Handling

 Work Group: Core
 Issue Number: 843
 Title: Are "recursive" exceptions allowed?
 Section: 15[except]
 Status: resolved
 Description:
 Resolution:
 Clause 15 should explicitly state that multiple exceptions may be
 active at the same time ("recursive" exceptions). The current
 wording implies this but never explicitly says that this is
allowed.
 Requestor: ANSI CD2 Public Comment 20
 Owner: Bill Gibbons (Exception Handling)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 844
 Title: Does a rethrow creates a new exception?
 Section: 15.1[except.throw]
 Status: active
 Description:
 It is not clear whether a rethrow creates a new exception which
 shares the exception object with the old exception, or whether the
 result of the rethrow is the old exception itself. If it is the
 latter, then the state of the exception should probably change
from
 "caught" to "uncaught" as a result of the rethrow. This issue is
not
 discussed in the working paper.
 Resolution:
 Requestor: ANSI CD2 Public Comment 26
 Owner: Bill Gibbons (Exception Handling)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 845
 Title: If a string literal is thrown, what handler can catch it?
 Section: 15.1[except.throw]
 Status: resolved
 Description:
 Resolution:
 The example in 15.1 para 1 needs to be updated to account for the
new

 type of string literals. Also it might be useful to point out
that
 the special implicit cv-qualification conversion for string
literals
 does not apply to throw-expressions.
 Requestor: ANSI CD2 Public Comment 26
 Owner: Bill Gibbons (Exception Handling)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 846
 Title: Where does the search for a handler starts if a handler
 throws an exception?
 Section: 15.1[except.throw]
 Status: resolved
 Description:
 Resolution:
 15.1 para 2:
 The wording in this paragraph about exiting a try block should
 actually refer to exiting just the "try" portion of the try
 construct. That is, a throw from within a handler should never be
 caught by that handler or by a handler associated with the same
try.
 Requestor: ANSI CD2 Public Comment 24
 Owner: Bill Gibbons (Exception Handling)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 769
 Title: Are the base class dtors called if the derived dtor
 throws an exception?
 Section: 15.2[except.dtor]
 Status: resolved
 Description:
 [Mike Ball, core-7288:]

 #include <iostream.h>

 struct base{
 ~base() { cerr << "base\\n";}
 };

 struct derived : public base{
 ~derived() { throw("error"); }
 };

 void doit() {
 derived x;
 }

 int main() {
 try {
 doit();
 } catch(...) {
 }
 return 0;
 }

 Should the destructor for "base" be executed? The answer is
 not in the DWP, though it does state that it will be executed

 if the destructor for "derived" has a function catch block.

 I would consider this an obvious editorial matter were it not
 that I can think of reasons that the programmer might want
 the base class destructors not to be executed. For example,
 there is otherwise no way to abort a destructor in the middle.
 The current specification provides a way to achieve that. The
 programmer could have the base destructors executed by
 providing a function catch block and have them skipped by not
 providing one.

 This is pretty thin reasoning, but it implies that this is not
 so obvious.

 [Jerry Schwarz, core-7289:]

 I assume that the destructor for the base class wouldn't be
 called.

 To clarify my reasoning: the calling of the base subobject's
 destructor is part of the execution of the derived class
 constructor, and it wouldn't be executed any more than would
 statements following the throw. And I'll note that the same
 question might be asked about the member subobjects. For which
 I assume the answer would be the same. (Whatever that is.)

 [Bjarne, core-7290:]

 It has been a principle throughout that constructed sub-objects
 are destroyed if a constructor throws an exception. Consider a
 base an unnamed member and it all works out.

 [John Skaller, core-7294:]

 I assume the base destructor IS called.

 There are TWO reasons to destroy the object, the first is that
 the user code invoked the destructor, and the second is that
 the exception requires object/stack unwinding.

 Even if the exception is somehow caught, that still leaves the
 program to continue destroying the object normally.

 The only way the destruction can be stopped is by calling a
 special handler, terminate() or perhaps unexpected().

 [Erwin Unruh, core-7297:]

 My opinion is that a compound statement can be seen as a corner
 case of a try statement which just has no handler. In this
 light I would argue to have the same semantics with a compound
 statement than with a handler whose catch clauses don't match.

 This would argue in calling the base destructors. This would
 not allow base destructors to be avoided. But if a programmer
 wants this, he can put a flag into the base object and have the
 destructor check this flag. So the restriction is not too hard.

 Current practice:
 [Anthony Scian, core-7299:]
 I tried the program under Watcom C++, MS VC++, and Borland C++
 with the result that all three C++ implementations destructed
 the base class.
 Resolution:

 When an exception is thrown from a derived class destructor, the
base
 class destructor(s) should be executed. That is, stack unwinding
due
 to the throw resumes the complete destruction of the object. This
 should be made more clear in the working paper.
 Requestor: Mike Ball
 Owner: Bill Gibbons (Exception Handling)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 788
 Title: Is it implementation defined whether the stack is unwound
 before calling terminate in all of the 8 situations
described
 in 15.5.1?
 Section: 15.3[except.handle]
 Status: resolved
 Description:
 15.3 /9 [except.handle] states that
 "If no matching handler is found in a program, the function
 terminate() is called. Whether or not the stack is unwound
 before calling terminate() is implementation-defined."

 It should be made clear that this implementation choice applies
 only to the "no matching handler" situation (of the eight
 situations described in 15.5.1 [except.terminate]).
 Resolution:
 It should be made clear that in all other cases where terminate is
 called (other than due to failure to find a matching handler), the
 stack is not unwound. Also, there are other cases where an
 implementation might determine, before finishing a stack unwind,
that
 terminate will be called during the unwind. The working paper
should
 specify whether that portion of the unwind must actually be done.
 Requestor: Jonathan Schilling
 Owner: Bill Gibbons (Exceptions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 847
 Title: The description of "unexpected" in 18.6.2.2 differs from
 15.5.2
 Section: 15.5.2[except.unexpected]
 Status: resolved
 Description:
 Resolution:
 The description of "unexpected" in 18.6.2.2 para 2 differs from
the
 description in 15.5.2. The description in 15.5.2 is correct; the
one
 in 18.6.2.2 should either be changed to match or be replaced with
a
 cross-reference to 15.5.2.
 Requestor:
 Owner: Bill Gibbons (Exceptions)
 Emails:
 Papers:
 .

. .
 ==
===
 Chapter 16 - Preprocessing Directives

 ==
===
 Annex C - Compatibility

 Work Group: Core
 Issue Number: 680
 Title: Annex C subclause C.1 is out of date
 Section: C.1 [diff.c]
 Status: resolved
 Description:
 Jonathan Schilling wrote the following:

 The introduction to Annex C (Compatibility) and subclause C.1
 (Extensions) both look like they were quickly edited from the
 base document for use in the standard, but the edit missed some
 spots and left others making no sense ("... from the dialects of
 Classic C used up till now", "... since the 1985 version of this
 manual"). More attention is given to Classic C than is now
 necessary, and the new features list is very incomplete.

 The proposed rewrite of the introduction and subclause C.1 is
 below.

 An alternative course of action would be to drop C.1 altogether,
 but I think that once made accurate it serves a useful purpose.
 Proposed Resolution:
 At the Nashua meeting, the core WG agreed that C.1 should be
 dropped.
 Resolution:
 Requestor: Jonathan Schilling
 Owner: Tom Plum (C compatibility)
 Emails:
 compat-352
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 743
 Title: Some anachronisms are missing from annex C
 Section: C.3 [diff.anac]
 Status: resolved
 Description:
 Annex C (Compatibility), subclause C.3 (Anachronisms), seems
 very odd as it stands. It covers only the oldest and probably
 least-used anachronisms supported by compilers. Only some of
 them relate to use of C programs as C++.

 A more current list would include lots of other things, such as
 anachronisms due to Cfront 3.0 peculiarities, anachronisms due
 to differences between the ARM and the WP, and so on (see the
 anachronism list for any commercial compiler for how long these
 can get, e.g. EDG).

 Jonathan proposes to reduce subclause C.3 to a single paragraph
 providing for anachronism support in general, without any
 specific items. The proposed wording:

 C.3 Anachronisms [diff.anac]

 Extensions to the C++ language may be provided by an
 implementation to ease the use of C programs as C++ programs or
 to provide continuity from earlier C++ implementations. Note
 that use of such extensions is likely to have undesirable
 aspects. An implementation providing them should also provide a
 way for the user to ensure that they do not occur in a source
 file. A C++ implementation is not obliged to provide these
 features.
 Resolution:
 At the Hawaii meeting, the C compatibility WG decided that annex
 C.3 should either be removed.
 Requestor: Jonathan Schilling
 Owner: Tom Plum (C compatibility)
 Emails:
 Papers:
 .
. .
 ==
===
 Annex E - Universal-character-names

 Work Group: Core
 Issue Number: 770
 Title: The title of Annex E needs to be made shorter
 Section: Annex E[extendid]
 Status: resolved
 Description:
 The top of page E-2 (Annex E) has the section title overlapping
 the date.

 Andrew Koenig responded the following:
 > The reason is that (major) clause titles aren't checked for
 > overlap with the date. The easiest fix is therefore to
 > rename clause E to something shorter.
 Resolution:
 The title of the annex should be changed.
 Possible candidate: "Universal-character-names".
 Requestor:
 Owner: Tom Plum (Annex E)
 Emails:
 Papers:
 .
. .
 ^L
 ==
===
 +---------------+
 | Closed Issues |
 +---------------+

 The following core issues were closed at the Nashua meeting with the Core
WG
 deciding to take no action.

 1.3 [intro.compliance]:
 619: Is the definition of "resource limits" needed?
 1.8 [intro.execution]:
 603: Do the WP constraints prevent multi-threading implementations?
 3.4.5 [basic.lookup.classref]:
 688: Rules for name lookup after :: . -> need to be clarified for
 conversion-function-id, template argument names and destructor
names
 3.9 [basic.types]:
 621: The terms "same type" need to be defined

 4.1 [conv.lval]:
 711: Is an lvalue-to-rvalue conversion on an incomplete type allowed
within
 a sizeof operand?
 5.2.2 [expr.call]:
 713: What argument type can be passed to va_arg?
 714: Is the term "default argument promotions" needed?
 5.4 [expr.cast]:
 718: Conversion to and from pointers to incomplete class types using old
 style casts - is this really implementation-defined?
 5.7 [expr.add]:
 720: Can you do &*p if p does not point to a valid object?
 9.2 [class.mem]:
 692: ";opt" after member "function-definition" should be omitted
 12.5 [class.free]:
 754: for new T, allocation functions in base classes of T are not
 considered
 12.8 [class.copy]:
 687: The WP prohobits the copy assignment of virtual base classes to
behave
 like the copy constructor
 755: Assignment of POD class objects: is the class copied as a block?
 14.6.2.2 [temp.dep.expr]:
 785: When is 'this' dependent?

 ==
===
 Chapter 1 - Introduction

 Work Group: Core
 Issue Number: 619
 Title: Is the definition of "resource limits" needed?
 Section: 1.3 [intro.compliance]
 Status: closed
 Description:
 1.3 para 2 says:
 "Every conforming C++ implementation shall, within its resource
 limits, accept and correctly execute well-formed C++
programs..."
 The term resource limits is not defined anywhere.
 Is this definition really needed?
 Resolution:
 At the Nashua meeting the Core WG decided that the definition of
 resource limits was not necessary.
 The Core WG also noted at the Nashua meeting that the C standard
 uses the term "resource limits" without defining it.
 Requestor: ANSI Public comment 7.12
 Owner: Josee Lajoie (Conformance Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 603
 Title: Do the WP constraints prevent multi-threading
 implementations?
 Section: 1.8 [intro.execution]
 Status: closed
 Description:
 UK issue 11:
 "No constraints should be put into the WP that preclude an
 implementation using multi-threading, where available and
 appropriate."

 Bill Gibbons notes:
 For example, do the requirements on order of destruction between
 sequence points preclude C++ implementations on multi-threading
 architectures?
 Resolution:
 At the Nashua meeting, it was judged that "multi-threading" is an
 implementation specific issue that is not to be addressed by the
 C++ Standard.
 Requestor: UK issue 11
 Owner: Steve Adamczyk (sequence points)
 Emails:
 Papers:
 .
. .
 ==
==
 Chapter 3 - Basic Concepts

 Work Group: Core
 Issue Number: 688
 Title: Rules for name lookup after :: . -> need to be clarified
for
 conversion-function-id, template argument names and
 destructor names
 Section: 3.4.5 [basic.lookup.classref]
 Status: closed
 Description:
 How is
 o a destructor name
 o an id-expression of a conversion-function-id
 o a template-id
 o the name of a template-argument
 looked up when used following a nested-name-specifier or a class
 member access operator . or -> .

 Bill Gibbons provided the following table, which I [Josee] filled up:

 look in must be look in must
be
 name to surrounding visible what
visible
 expression look up context there ? class there
 ========== ======= =========== ======= =======
======

 A::b b no --- A yes
 A::~T T yes --- --- ---
 A::Z::~T Z no --- A yes
 A::Z::~T T no --- A yes
 A::operator T T no --- A yes
 A::operator Z::T Z no --- A yes
 A::operator Z::T T no --- A::Z yes
 A::C<D> C no --- A yes
 A::C<D> D yes yes no ---

 A::X::b b no --- A::X yes
 A::X::~T T no --- A yes
 A::X::Z::~T Z no --- A::X yes
 A::X::Z::~T T no --- A::X yes
 A::X::operator T T no --- A::X yes
 A::X::operator Z::T Z no --- A::X yes

 A::X::operator Z::T T no --- A::X::Z yes
 A::X::C<D> C no --- A::X yes
 A::X::C<D> D yes yes no ---

 a.b b no --- A yes
 a.~T T yes yes A yes
 s.~T T yes yes --- ---
 a.operator T T yes yes A yes
 a.operator Z::T Z yes yes A yes
 a.operator Z::T T no --- Z yes
 a.C<D> C no --- A yes
 a.C<D> D yes yes no ---

 a.X::b X yes no A no
 a.X::b b no --- X yes
 a.X::~T T yes yes --- ---
 s.X::~T T yes yes --- ---
 a.X::operator T T no --- A::X yes
 a.X::operator Z::T Z no --- A::X yes
 a.X::operator Z::T T no --- A::X::Z yes
 a.X::C<D> C no --- A::X yes
 a.X::C<D> D yes yes --- ---

 where a is an object of class type A
 where s is an object of scalar type

 We have to clarify the WP to ensure that the above resolutions are
clear.

 Bill also raises the following issues:
 * The current rules for lookup of "T" in "a.operator T" break template
 because "T" must be visible in the class, which is impractical if "T"
is
 a template type parameter. I propose changing the rule so the lookup
is
 in the surrounding context only, as with template-id arguments.

 * The current rules for lookup of "X" in "a.X::b" break templates
because
 when "T" is a template type argument, the instantiation will fail if
 some base class of "A" (which might itself be a template type
argument)
 happens to have a typedef or class member "T". This might be fixed
as a
 special case in template name lookup, but I propose the simpler fix
of
 changing the rule so the lookup is in the surrounding context only.
 Resolution:
 At the Nashua meeting, the Core WG decided that the rules covering
 the examples in Bill Gibbons' table were already described in the
 WP. These rules may not be as clear as Bill would like, but the
 Core WG decided that it is too late in the standardization process
 to modify large amount of text to describe name look up
differently.
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (Name Lookup)
 Emails: core-6969
 Papers
 .
. .
 Work Group: Core
 Issue Number: 621

 Title: The terms "same type" need to be defined
 Section: 3.9 [basic.types]
 Status: closed
 Description:
 The WP needs to define what it means for two objects/expressions
 to have the same type. The phrase is used a lot throughout the WP.
 Resolution:
 At the Nashua meeting, the core WG decided that a definition for
 this term is not needed.
 Requestor:
 Owner: Steve Adamczyk (Types)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 4 - Standard Conversions

 Work Group: Core
 Issue Number: 711
 Title: Is an lvalue-to-rvalue conversion on an incomplete type
 allowed within a sizeof operand?
 Section: 4.1 [conv.lval]
 Status: closed
 Description:
 4.1 Paragraph 1 says:
 "An lvalue ... can be converted to an rvalue. If T is an
 incomplete type, a program that necessitates this conversion
 is ill-formed."
 Paragraph 2 says:
 "When an lvalue-to-rvalue conversion occurs within the
 operand of sizeof (5.3.3) the value contained in the
 referenced object is not accessed, since that operator does
 not evaluate its operand."

 It isn't entirely clear from this whether it is OK to have an
 lvalue-to-rvalue conversion on an incomplete type within a
 sizeof operand. And if we can, what does it mean.

 In general, the WP is somewhat vague on which restrictions are
 relaxed in a sizeof operand.
 Resolution:
 At the Nashua meeting, the core WG decided that the description of
 the lvalue-to-rvalue conversion within subclause 4.1 was clear
 enough.
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 5 - Expressions

 Work Group: Core
 Issue Number: 713
 Title: What argument type can be passed to va_arg?
 Section: 5.2.2 [expr.call]
 Status: closed
 Description:
 5.2.2/7 says:
 "The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and

 function-to-pointer (4.3) standard conversions are performed
 on the argument expression. After these conversions, if the
 argument does not have arithmetic, enumeration, pointer,
 pointer to member, or class type, the program is ill-formed."

 What else can it be? Is this really meaningful?
 Wouldn't be more explicit to say which argument is _disallowed_.
 Resolution:
 At the Nashua meeting, the core WG decided that the list above was
 exhaustive and that the draft was clear enough.
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 714
 Title: Is the term "default argument promotions" needed?
 Section: 5.2.2 [expr.call]
 Status: closed
 Description:
 5.2.2/7 says:
 "These promotions are referred to as the default argument
 promotions."

 This may be the ISO C name, but it is very confusing in C++.
 It makes one ask, why are only default arguments promoted?
 Can we use a different name?

 Steve Adamczyk:
 > It was added so it could be referenced in the 18.7
 > description of va_start, instead of repeating the words, but
 > that didn't happen.
 Resolution:
 At the Nashua meeting, the core WG decided that the draft was not
 broken and that the specification could stay as is.
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 718
 Title: Conversion to and from pointers to incomplete class types
 using old style casts - is this really unspecified?
 Section: 5.4 [expr.cast]
 Status: closed
 Description:
 p6 describes conversions to and from pointer to incomplete
 class type and it says:
 "whether the static_cast or reinterpret_cast interpretation
 is used is unspecified."

 Since static_cast does not allow incomplete types, does this
 mean that it's unspecified whether old-style casts allow
 conversion between pointers to incomplete types?
 Mike believes this should not be left unspecified but should be
 clearly specified by the standard as being ill-formed; i.e. the
 static_cast interpretation is chosen.
 Resolution:
 At the Nashua meeting, the core WG decided that the old style cast
 between pointers to incomplete class types should remain

unspecified
 with regard to the choice of static_cast vs reinterpret_cast
 interpretation.
 Requestor: Mike Miller
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 720
 Title: Can you do &*p if p does not point to a valid object?
 Section: 5.7 [expr.add]
 Status: closed
 Description:
 5.7p5:
 "If the result is used as an operand of the unary * operator, the
 behavior is undefined unless both the pointer operand and the
 result point to elements of the same array object, or the
 pointer operand points one past the last element of an array
 object and the result points to an element of the same array
 object, or the pointer operand points to the element of an
 array and the result points one past the last element of the
 same array."

 Mike Miller proposes to remove this wording.
 He says:
 > All the cases described as giving undefined behavior if the
 > result is used as the operand of unary * are already undefined
 > behavior according the preceding sentence, regardless of how
 > the result is used.

 Bill Gibbons:
 > Yes, but there still needs to be some editorial work here.
 > There should be a description of how a "one past the end"
 > pointer can be used.
 >
 > For example:
 >
 > void f() {
 > int x[3];
 > int *p = x + 3;
 > int &rx = *p; // defined behavior?
 > int y = rx[-1];
 > }
 >
 > There have been some changes in the last year which allow the
 > limited use of an lvalue for an incomplete object type. There
 > are at least three related situations for valid pointers which
 > do not refer to objects of the pointed-to type:
 >
 > * "(*p)", where "p" points just past the end of an array
 >
 > * "(*p)", where "p" points to zero-length array as in "p =
 > new int[n]" when "n" is zero. This is a variation
 > of the above, since the start of the array and the
 > "just past the end" point are the same.
 >
 > * "(*p)", where p is zero.
 >
 > Consider each of these in the context of "q = &*p".
 >
 > I think the first two should have the expected defined
 > behavior. The last case is questionable, but there may be

 > good reason to allow it.
 >
 > The current WP already supports 99% of this proposal.
 >
 > The following example is now well-formed, even if "q" is
 > initialized before "x":
 >
 > // translation unit #1
 > extern int p;
 > int *q = &*p;
 >
 > // translation unit #2
 > int f();
 > int x = f();
 > int *p = &x;
 >
 > So we have the concept of an lvalue which refers to raw
 > memory, suitably aligned, where the lvalue can be manipulated
 > as long as the uninitialized value is never used.
 >
 > (A similar example could be constructed using a direct call
 > to operator new and a deferred call to placement new
 > "new (p) int" where the raw memory does not have a type
 > explicitly associated with it.)
 >
 > Since a pointer to the end of an array is suitable aligned,
 > the memory and object models almost support the proposal
 > today.
 >
 > The only difference is whether it is required that a block of
 > raw memory to which an lvalue refers (but does not access),
 > and the address of which is a valid pointer, must actually
 > exist.
 >
 > (Plus the smaller question of whether it is valid for two
 > objects to overlap if one of them is never initialized or
 > accessed, since the address range of the implicit extra array
 > element may overlap another object.)
 >
 > The general rule that I would like is:
 >
 > Any pointer containing a valid value may be dereferenced.
 > If the resulting lvalue is used in a way which requires a
 > complete type, and the pointer does not actually refer to
 > an object, the behavior is undefined. [footnote - a
 > pointer may be valid and yet not refer to an object, e.g. a
 > pointer to just past the end of an array.]
 >
 > Since this would allow "&*(char*)0", it would require
 > additional wording to prohibit using null pointers this way.
 Resolution:
 At the Nashua meeting, the core WG decided that this was a
difficult
 issue that would require wording changes in sensitive areas of the
 WP. The core WG preferred to leave things the way they are for the
 first release of the C++ standard.
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 ==
===

 Chapter 9 - Classes

 Work Group: Core
 Issue Number: 692
 Title: ";opt" after member "function-definition" should be
omitted
 Section: 9.2 [class.mem]
 Status: closed
 Description:
 The syntax says:
 member-declaration:
 ...
 function-definition ;opt

 ";opt" should be omitted. Otherwise, the syntax is ambiguous.
 Resolution:
 At the Nashua meeting, the core WG decided that this modification
 is not necessary.
 Requestor:
 Owner: (Syntax)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 12 - Special Member functions

 Work Group: Core
 Issue Number: 754
 Title: for new T, allocation functions in base classes of T
 are not considered
 Section: 12.5[class.free]
 Status: closed
 Description:
 12.5 para 2 says:
 "When a new-expression is used to create an object of class T
 (or array thereof), the allocation function is looked up in the
 scope of class T; if no allocation function is found, the global
 allocation function is used."

 It should be made clearer that allocation functions in base
 classes are not considered.
 Resolution:
 The WP is already clear saying that allocation functions that are
 members of class T or of base classes of T are considered.
 See 12.5 para 2 and the example in para 5.
 Requestor: Dan Saks
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 Work Group: Core
 Issue Number: 687
 Title: The WP prohobits the copy assignment of virtual base
classes
 to behave like the copy constructor
 Section: 12.8 [class.copy]
 Status: closed
 Description:
 The ARM specified:
 "Objects representing virtual base classes will be assigned only
once

 by a generated assignment operator."

 This restriction has been removed.
 The current WP says in 12.8 para 13:
 "The direct base classes of X are assigned first, in the order of
 their declaration in the base-specifier-list, and then the
immediate
 nonstatic data members of X are assigned, in the order in which
 they were declared in the class definition.
 [...]
 It is unspecified whether subobjects representing virtual base
 classes are assigned more than once by the implicitlys-defined
copy
 assignment operator."

 The new specification does not allow the copy constructor
ordering.
 Resolution:
 The core WG decided that the current rule works, i.e. that the WP
is
 not broken, and that this change is too important to consider at
 this late stage in the standardization process.
 Requestor: Bill Gibbons
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers: 96-0107/N0925
 .
. .
 Work Group: Core
 Issue Number: 755
 Title: Assignment of POD class objects: is the class copied as
 a block?
 Section: 12.8[class.copy]
 Status: closed
 Description:
 [Tom MacDonald compat-353:]
 > Recently I became aware of an incompatibility between C and C++
 >
 > Consider the following example:
 >
 > struct S_Pair;
 >
 > typedef struct Object {
 > struct S_Pair *addr;
 > int tag;
 > } Object;
 >
 > struct S_Pair {
 > Object car;
 > Object cdr;
 > };
 >
 > Object x;
 >
 > void copy_it(void) {
 >
 > x = x.addr->cdr;
 >
 > }
 >
 > The C++ rules permit the following implementation of the
 > structure assignment inside the function copy_it.
 >
 > x.addr = x.addr -> cdr.addr;

 > x.tag = x.addr -> cdr.tag;
 >
 > The C rules are more strict as indicated in 6.3.16.1, the
 > first paragraph under Semantics says:
 >
 > In simple assignment(=), the value of the right operand is
 > converted to the type of the assignment expression and
 > replaces the value stored in the object designated by the left
 > operand.
 >
 > Note that the value is spoken of as a whole. There appears
 > to be nothing that allows the identity of the right operand to
 > change in the middle of the assignment, which is the effect
 > what the C++ rules permit.
 >
 > The second paragraph under Semantics forbids partial overlap.
 > This allows a more efficient implementation of a structure
 > assignment (between lvalues) as
 >
 > memcpy(&left_operand, &right_operand)
 >
 > or an inline equivalent, rather than as
 >
 > memmove(&left_operand, &right_operand)
 >
 > which would include the extra work needed to accommodate the
 > possibility of partial overlap (such as copying through a
 > temporary object, or deciding whether to copy bytes from the
 > beginning or from the end). Note that in either case, the
 > addresses of the two operands are computed before the copying
 > begins.
 >
 > The following implementation produces the expected C behavior.
 >
 > {
 > Object * tmp = &(x.addr->cdr);
 > x.addr = tmp->data;
 > x.tag = tmp->tag;
 > }

 It was not the intention of the C++ standards committee to make
 C++ different from C in this case. How could the WP be clarified
 to make this intent clearer?
 Resolution:
 At the Nashua meeting, the core WG decided that the WP was clear
 enough.
 Requestor: Tom MacDonald (C compatibility)
 Owner: Josee Lajoie (Memory Model)
 Emails:
 Papers:
 .
. .
 ==
===
 Chapter 14 - Templates

 Work Group: Core
 Issue Number: 785
 Title: When is 'this' dependent?
 Section: 14.6.2.2 [temp.dep.expr]
 Status: closed
 Description:
 para 2 says:
 "'this' is type-dependent if the class type of the enclosing

 member function is dependent."

 template<class T> struct A {
 // ...
 virtual void something();
 };
 template<class T> struct C : public A<T> {
 virtual void something();
 void f() {
 this->something();
 }
 };

 According to 16.6.2.1, C is not a dependent class.
 So it implies that 'this' cannot be used to refer to dependent
 base class members. How should one call the virtual function
 something from the dependent base class A<T>?
 Resolution:
 The claim in the issue is invalid. The type of "this" is based
 on "C<T>", not "C", and so it is dependent.
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
. .

