Doc No: X3J16/96-0181

WGE21/ N0999
Dat e: Sept enber 24, 1996
Project: Programm ng Language C++
Reply to: Bjarne Stroustrup

Al | ocators

As readers of -lib have noticed, |'munhappy with the definition of
all ocators in the current WP. I'mworried enough to want a serious
di scussion with the aimof either getting a better definition or a
much better understanding of why what is there is the best we can
gi ve peopl e.

My conjecture is that the current allocator definition doesn't serve
the needs for which we introduced allocators, is too conplicated to
use, and that a sinpler design will do what we intented - in a sinpler
and nore efficient way.

I n other words:
I think allocators are broken, and that | know a way to fix them
I think allocators address (or can address) three concerns:

(1) alternative allocators: That is, by supplying an non-standard
al | ocator a programmer can escape fromthe inplenentation
supplied default and provide a speci al - purpose all ocator
that supposedly will serve sone container inplenentors
(and their users) better.

Unl ess you really trust your inplenentor(s) always to
do better than you can, this an inportant facility.
My experience with vendor-supplied general purpose

al | ocators have been distinctly m xed.

(2) alternative pointers: That is, by non-standard allocator a
programer (or an inplenentor) can supply nore than one
poi nter type. The PC nenory nodels is an exanple, so
woul d a nore nodern architecture with 32 and 72 bit
poi nters be.

I am not convi nced we have seen the | ast architecture
with nore than one pointer type.

(3) alternative accessors: That is, allowing a user to design
poi nter (and reference) types that allows controlled
access to data holding nore than just a pointer.

I don’t think C++ can support a totally transparent

and perfectly general schene (the requirenment that a
poi nter type can be converted to a void* gives the

user a | oop-hole). However, |ess general and nore
application-specific accessors (such as range-checked
poi nters) are valuable. | consider accessors especially
useful for experinentation

Let me discuss sonme alternatives for allocators:
(1) **No allocators’
Pro:

It couldn’t be sinpler.

Con:
Requi res sweepi ng changes to the working paper.

No alternative allocators

No alternative pointers

No alternative accessors

We don’'t have any typedef to play with (ptrdiff_t and size_t is it).
My rating:

Unaccept abl e.

(2) *‘Status quo’

tenpl ate <class T> class allocator {
publi c:

typedef T val ue_type;

typedef size t size type;

typedef ptrdiff _t difference_type;

typedef T* pointer;
typedef const T* const_pointer;

typedef T& reference
typedef const T& const _reference;

tenpl ate <class U> struct rebind { typedef allocator<U> other; };

al l ocator() throw();

tenpl ate <class U> allocator(const allocator<U>& throw);

tenpl ate <class U> allocator& operator= (const allocator<U>& throw);
~allocator() throw);

poi nter address(reference r) const;
const _poi nter address(const_reference r) const;

poi nter allocate(size type, typenanme all ocator<void>::const_pointer hint = 0);
voi d deal | ocat e(poi nter p, size_type n);
size_type max_si ze() const throw();

voi d construct(pointer p, const T& val);
voi d destroy(pointer p);

It's status quo.
The wor ki ng group recommended it and we voted it in.
Al ternative allocators

Its use is very obscure/difficult to use/error-prone (have a
| ook at rebind).

Limted alternative pointers (only things that can be converted
to/fromvoi d* can be used to access objects).

No alternative accessors

My rating:
Not good enough. Too conplicated for what it does. Too hard
to understand, use, and teach.

(3) ‘‘Pre-Stockhol mstatus quo’

class allocator {
publi c:
typedef size_t size_type;
typedef ptrdiff_t difference_type;

tenpl at e<cl ass T> struct types {
typedef T* poi nter;
typedef const T* const_pointer;
typedef T& ref erence;

typedef const T& const_reference;
typedef T val ue_type;

H

al | ocator();
~al l ocator();

tenpl at e<cl ass T>
typename types<T>::pointer
addr ess(types<T>::reference) const;
tenpl at e<cl ass T>
typenane types<T>::const_pointer
addr ess(types<T>::const_reference) const;

tenpl ate<class T, class U>
typenane types<T>:: pointer
al | ocate(size_type, types<U>::const_pointer hint = 0);
tenpl at e<cl ass T> voi d deal | ocate(types<T>::pointer);
tenpl at e<cl ass T> size_type max_size() const;

tenpl ate <class T1, class T2> void construct(T1* p, const T2& val);
tenpl ate <class T> void destroy(T* p);

b
Pr o:
Alternative allocators
Al ternative pointers.
Al'ternative accessors
Con:
The working group replaced it; it must have deficiencies that
| have overl ooked. The "types" structure and the allocate()
that relies on it is sonmewhat obscure. A class of allocate
for an "other" type requires the use of one of the nbst obscure
notations in the | anguage (the "tenplate" qualification of
an explicitly qualified nenber tenplate):
al l ocator.tenpl ate all ocate<link>(1);
My rating:
I thought it was good enough (but not marvel ous). Unl ess there
is aflaw |l haven't spotted, | could live with it.

(4) *“Utra light’

Here is an absolutely mninmal (and non-standard) allocator that Hans Bohm
has been playing wth:

/'l basic allocator, all allocators nmust provide these functions:

class alloc {
publi c:
static void * allocate(size_t positive_nunber_of bytes);
static void deallocate(void *non_null_pointer
size_t requested_size of _first_arg);
static void * reallocate(void *original _object,
size_t old_sz, size_ t new sz);

b
/'l exanple of a user-provided allocator for type T:

tenpl ate<class T, class alloc> class sinple_alloc {
publi c:
static T *allocate(size t n = 1)
{ return (T*) alloc::allocate(n * sizeof (T)); }
static void deallocate(T *p, size_t n = 1)
{ alloc::deallocate(p, n * sizeof (T)); }
11

H

Pr o:
Al ternative allocators

Con:
No alternative pointers
No alternative accessors

Observation
Qur designs haven't had a realloc(). | cannot rate its utility
in the context of allocators for containers. One reason, | use
containers is exactly to avoid witing calls to realloc().
Al'l menbers are static for maxinmal efficiency. Does an allocator
object really need to carry information?

My rating:
Too radical departure this late in the gane. Good basic idea
Good efficiency. Can be integrated into sonething like the current
al l ocator schene. 1'd nmiss alternative accessors and | suspect
the lack of alternative accessors would bit us/soneone.

(5) ‘‘Light"’

What would it take to support alternative allocators, alternative pointers
and alternative accessors w thout inposing overheads conpared to the ‘‘ultra
light’’ solution and without making it hard to use like the ‘*‘status quo?’
In addition, a solution should be close to ‘‘status quo’’ notationally

wher ever possi bl e.

In nore detail, what do we (in ny opinion) want to be able to do with
an all ocator:

the usual typedefs

all ocate N (uninitialized) objects of type T (an arbitrary type T)
del ete them

allocate N (initialized) objects of type T (an arbitrary type T)
del ete them

construct an all ocated object
destroy an object wi thout deallocating it

The current WP al |l ocator does that, but sonehow gets tangled in void*s
and sonewhat obscure "rebinding." The pre-Stockhol malso seens to do that.

all ow al ternative pointer types/"nodels"

al | ow contai ner operations to take and return "pointer" and
"reference" types for a type X rather that X* and X&

hi de the decision to use "pointer" and "reference" type from
the contai ner operations through an all ocator

The pre-Stockhol mseens to do that also
What would the mnimal class that did that | ook Iike?

First | take status quo and throw away rebind. The typedefs seem

nm ni mal and appropriate. So does the functions - provided we don't
constrain the typedefs or get tied up in knots when allocating objects
of "other" types. Then | take the 'static’ fromthe "ultra-Ilight"
approach (to force soneone to explain why an allocator object needs

to carry data). Finally, | use yet another technique for providing

an allocator for arbitrary types as part of an allocator (it is

a renmote cousin of the rebind struct).

tenpl ate<cl ass T> class allocator {

publi c:
typedef T val ue_type;
typedef size t size type;
typedef ptrdiff _t difference_type;

typedef T* pointer;
typedef const T* const_pointer;

typedef T& reference
typedef const T& const _reference;

al l ocator();
~al l ocator();

static pointer address(reference) const;
static const_pointer address(const _reference) const;

static pointer allocate(size_type, const_pointer hint = 0);
static void deal |l ocate(pointer);

static size_type nax_size() const;

static void construct(pointer p, const_reference val);
static void destroy(pointer p);

tenpl at e<cl ass T2> class other : public allocator<T2> { }

H

Now | can wite the canonical difficult exanple with what |ooks Iike
m ni mal fuss:

tenpl ate<class T, class A = allocator<T> >
class list {

1.,

iterator insert(iterator position, const T& x = T())

{
typenane A :other<link>: :pointer p = A:other<link>::allocate(1);
A::pointer q = A:allocate(l);
...

}

}

If - as | think we all assume - allocation of objects of "other" types is
rare the notational overhead is acceptable, and as usual a typedef could
be used:

typedef typename A::other<link> link_alloc;
typedef typenanme A::other<link>::pointer link_ptr;

link ptr p =1link_alloc::allocate(l);

Alternative allocators can be witten as specializations od allocator
or separately in the style of allocator

Pr o:

Alternative allocators

Al ternative pointers.

Al ternative accessors

Si npl e user interface.

Efficient.

Cl ose to status quo.
Con:

You didn't see it before Stockhol m
My rating:

Best, but it needs nore thought than status quo got before Stockholm

Bj ar ne

