
Doc. No.: WG21/N0965=X3J16/96-0147Date: 9 Jul 1996Project: C++ Standard LibraryReply to: Nathan Myers<ncm@cantrip.org>Repair basic_string<> input/output ----------------------------------The description of input/output operations in Clause 22 areso broken as to require wholesale replacement. In particular:- the description of operator>> uses an undefined value n- it mentions nonexistent iostream members ipfx and isfx- it doesn’t reset the iostream member width after use- it doesn’t eat whitespace correctly- it doesn’t clear the string before appending- it claims to modify a private iostream member- it uses redundant traits templates in an undefined way- it uses a nonexistent traits member is_whitespace** Proposed Resolution:In 21.2.1.8.9 [lib.string.io] and in the corresponding prototypes21.2 [lib.string.classes]:Replace the definition of operator>> applied to basic_istream<>as follows:template<class charT, class traits, class Allocator>basic_istream<charT,traits>&operator>>(basic_istream<charT,traits>& is,basic_string<charT,traits,Allocator>& str);Effects:Begins by constructing a sentry object k as if bybasic_istream<charT,traits>::sentry k(is). If bool(k) is true, it calls str.erase() and then extracts characters fromis and appends them to str as if by calling str.append(1,c). If is.width() is greater than zero, the maximum number n of characters appended is is.width(); otherwise n is str.max_size(). Characters are extracted and appended until any of the followingoccurs:-- n characters are stored;-- end-of-file occurs on the input sequence;-- isspace(c,is.getloc()) is true for the next availableinput character c.After the last character (if any) is extracted, is.width(0) iscalled and the sentry object k is destroyed.Returns: is-----------Replace the declaration of operator<< applied to basic_string<>as follows:template<class charT, class traits, class Allocator>basic_ostream<charT,traits>&operator<<(basic_ostream<charT,traits>& os,const basic_string<charT,traits,Allocator>& str);----------------Replace the definition of function getline applied to basic_stringwith two functions getline as follows:template<class charT, class traits, class Allocator>basic_istream<charT,traits>&getline(basic_istream<charT,traits>& is,basic_string<charT,traits,Allocator>& str,charT delim);Effects:Begins by constructing a sentry object k as if bybasic_istream<charT,traits>::sentry k(is). If bool(k) is true, it calls str.erase() and then extracts characters fromis and appends them to str as if by calling str.append(1,c). Characters are extracted and appended until any of the followingoccurs:-- end-of-file occurs on the input sequence (in which case, callsis.setstate(ios_base::eofbit)-- end-of-file occurs on the input sequence (in which case, calls is.setstate(ios_base::eofbit)-- c == delim for the next available input character c (in which case,c is extracted but not appended) (_lib.iostate.flags_)-- str.max_size() characters are stored (in which case, the functioncalls is.setstate(ios_base::failbit) (_lib.iostate.flags_)The conditions are tested in the order shown. In any case, after the last character is extracted, the sentry object k isdestroyed.If the function extracts no characters, it callsis.setstate(ios_base::failbit) which may throw ios_base::failure(_lib.iostate.flags_).Returns: is.and, overloading with getline,template<class charT, class traits, class Allocator>basic_istream<charT,traits>&getline(basic_istream<charT,traits>& is,basic_string<charT,traits,Allocator>& str);Returns: getline(is,str,is.widen(’\n’));

