
1

Doc: X3J16/96-0145=WG21/N0963
Date: July 9, 1996
By: Philippe Le Mouël

Stringstreams clarification

Discussion

The strinbuf model is different from both the filebuf and the strstreambuf models. When created in input
mode, the strinbuf has to associate the input sequence with the underlying sequence of characters. The
streambuf eback, gptr, and egptr pointers represent respectively the beginning, current position, and end
of the input sequence. When created in output mode, the stringbuf has to associate the output sequence
with the underlying sequence of characters. The streambuf pbase, pptr, and epptr pointers represent
respectively the beginning, current position, and end of the output sequence. When created in both input
and output mode, the stringbuf has to associate both the input sequence (eback, gptr, and egptr) and the
output sequence (pbase, pptr, and epptr) with the underlying sequence of characters. In this case, the
input and output sequences are independent from each other as in the strstreambuf (in contrast to filebuf,
where both sequences are tied together). An implementation may also have to maintain other information,
like the end of the underlying character sequence, which may not be equal to the end of the input or output
sequence.

Issue 27-702

Description:

The string streams are currently templatized on the character type (charT) and the traits type
(ios_traits). String template parameters need to be added.

Proposed Resolution:

The Santa Cruz meeting fixes part of the problem by accepting doc: 96-0036R1=N0854R1 (Unification of
Traits Revision1). But we are still left with the problem of taking or returning string arguments using a
different allocator than the default. See basic_stringbuf , basic_istringstream, basic_ostringstream, and
basic_stringstream constructors and str functions.

The solution is to add Allocator as a third template parameter to class basic_stringbuf , basic_istringstream,
basic_ostringstream, and basic_stringstream, with a default value of allocator<charT>.

Changes to the WP:

In 27.7 String-based streams [lib.string.streams]

change : template <class charT, class traits = char_traits<charT> >
 class basic_stringbuf ;

to : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_stringbuf ;

change : template <class charT, class traits = char_traits<charT> >
 class basic_istringstream;

2

to : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_istringstream;

change : template <class charT, class traits = char_traits<charT> >
 class basic_ostringstream;

to : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_ostringstream;

add : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_stringstream;

typedef basic_stringstream<char> stringstream;
typedef basic_stringstream<wchar_t> wstringstream;

In 27.7.1 Template class basic_stringbuf [lib.stringbuf]

change : template <class charT, class traits = char_traits<charT> >
 class basic_stringbuf : public basic_streambuf<charT, traits > {

to : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_stringbuf : public basic_streambuf<charT, traits > {

In 27.7.1 Template class basic_stringbuf [lib.stringbuf] and 27.7.1.1 basic_stringbuf constructors
[lib.stringbuf.cons]

change : explicit basic_stringbuf(const basic_string<char_type>& str, ios_base::openmode
 which = ios_base::in | ios_base::out);

to : explicit basic_stringbuf(const basic_string<charT, traits, Allocator>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

In 27.7.1 Template class basic_stringbuf [lib.stringbuf] and 27.7.1.2 Member functions
[lib.stringbuf.members]

change : basic_string<char_type> str() const;

to : basic_string<charT, traits, Allocator> str() const;

change : void str(const basic_string<char_type>& s);

to : void str(const basic_string<charT, traits, Allocator>& s);

In 27.7.2 Template class basic_istringstream [lib.istringstream]

change : template <class charT, class traits = char_traits<charT> >
 class basic_istringstream : public basic_istream<charT, traits > {

3

to : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_istringstream : public basic_istream<charT, traits > {

change: // basic_stringbuf<charT,traits> sb; exposition only

to: // basic_stringbuf<charT, traits, Allocator> sb; exposition only

change: The class basic_istringstream<charT, traits> supports reading objects of class
basic_string<charT, traits>. It uses a basic_stringbuf object to control the associated storage.

to : The class basic_istringstream<charT, traits, Allocator> supports reading objects of class
basic_string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object
to control the associated storage.

In 27.7.2 Template class basic_istringstream [lib.istringstream] and 27.7.2.1 basic_istringstream
constructors [lib.istringstream.cons]:

change : explicit basic_istringstream(const basic_string<char_type>& str, ios_base::openmode
 which = ios_base::in);

to : explicit basic_istringstream(const basic_string<charT, traits, Allocator>& str,
 ios_base::openmode which = ios_base::in);

In 27.7.2 Template class basic_istringstream [lib.istringstream] and 27.7.2.2 Member functions
[lib.istringstream.members]:

change : basic_string<charT> str() const;

to : basic_string<charT, traits, Allocator> str() const;

change : void str(const basic_string<charT>& s);

to : void str(const basic_string<charT, traits, Allocator>& s);

change : basic_stringbuf<charT, traits>* rdbuf() const;

to : basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

In 27.7.2.3 Class basic_ostringstream [lib.ostringstream]:

change : template <class charT, class traits = char_traits<charT> >
 class basic_ostringstream : public basic_ostream<charT, traits > {

to : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_ostringstream : public basic_ostream<charT, traits > {

4

change: // basic_stringbuf<charT,traits> sb; exposition only

to: // basic_stringbuf<charT, traits, Allocator> sb; exposition only

change: The class basic_ostringstream<charT, traits> supports writing objects of class
basic_string<charT, traits>. It uses a basic_stringbuf object to control the associated storage.

to : The class basic_ostringstream<charT, traits, Allocator> supports writing objects of class
basic_string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object
to control the associated storage.

In 27.7.2.3 Class basic_ostringstream [lib.ostringstream] and 27.7.2.4 basic_ostringstream
constructors [lib.ostringstream.cons]:

change : explicit basic_ostringstream(const basic_string<char_type>& str, ios_base::openmode
 which = ios_base::out);

to : explicit basic_ostringstream(const basic_string<charT, traits, Allocator>& str,
 ios_base::openmode which = ios_base::out);

In 27.7.2.3 Class basic_ostringstream [lib.ostringstream] and 27.7.2.5 Member functions
[lib.ostringstream.members]:

change : basic_string<charT> str() const;

to : basic_string<charT, traits, Allocator> str() const;

change : void str(const basic_string<charT>& s);

to : void str(const basic_string<charT, traits, Allocator>& s);

change : basic_stringbuf<charT, traits>* rdbuf() const;

to : basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

In 27.7.3 Template class basic_stringstream [lib.stringstream]

change : template <class charT, class traits = char_traits<charT> >
 class basic_stringstream : public basic_iostream<charT, traits > {

to : template <class charT, class traits = char_traits<charT>, class Allocator = allocator<charT> >
 class basic_stringstream : public basic_iostream<charT, traits > {

change: // basic_stringbuf<charT,traits> sb; exposition only

to: // basic_stringbuf<charT, traits, Allocator> sb; exposition only

5

change: The class basic_stringstream<charT, traits> supports reading and writing from objects of class
basic_string<charT, traits>. It uses a basic_stringbuf<charT, traits> object to control the
associated storage.

to : The class basic_stringstream<charT, traits, Allocator> supports reading and writing objects of
class basic_string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator>
object to control the associated storage.

In 27.7.3 Template class basic_stringstream [lib.stringstream] and 27.7.4 basic_stringstream
constructors [lib.stringstream.cons]:

change : explicit basic_stringstream(const basic_string<charT>& str, ios_base::openmode
 which = ios_base::out | ios_base::in);

to : explicit basic_ostringstream(const basic_string<charT, traits, Allocator>& str,
 ios_base::openmode which = ios_base::out | ios_base::in);

In 27.7.3 Template class basic_stringstream [lib.stringstream] and 27.7.5 Member [functions]:

change : basic_string<charT> str() const;

to : basic_string<charT, traits, Allocator> str() const;

change : void str(const basic_string<charT>& s);

to : void str(const basic_string<charT, traits, Allocator>& s);

change : basic_stringbuf<charT, traits>* rdbuf() const;

to : basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

Issue 27-701

Description:

“Table 15 in [lib.stringbuf.members] describes the return values of basic_stringbuf::str(). What
does the "otherwise" mean?. Does it mean neither ios_base::in nor ios_base::out is set? What is
the return value supposed to be if _both_ bits are set?”

Proposed Resolution:

The description of function basic_string<charT, traits, Allocator> str() const; should be:

Returns: A basic_string object which contents is equal to the basic_stringbuf underlying character sequence.
If the buffer is only created in input mode, the underlying character sequence is equal to the input sequence;

6

otherwise, it is equal to the output sequence. In case of an empty underlying character sequence, the function
returns basic_string<charT, traits, Allocator> ().

Note: the table has to be removed.

Issue 27-703

Description:

basic_stringbuf::str(basic_string s) Postconditions requires that str() == s. This is true only if
which had in set at construction time. Condition should be restated.

Proposed Resolution:

The description of function void str(const basic_string<charT, traits, Allocator>& s); should be:

Effects: If the basic_stringbuf underlying character sequence is not empty, deallocats it. Then copies the
content of s into the basic_stringbuf underlying character sequence and initializes the input and output
sequences according to the mode stored when creating the basic_stringbuf object. If (mode &
ios_base::out) is true, initializes the output sequence with the underlying sequence. If (mode &
ios_base::in) is true, initializes the input sequence with the underlying sequence.

Postcondition: str() == s.

Note: the table has to be removed.

Issue 27-704

Description:

basic_stringbuf::basic_stringbuf(basic_string str, openmode which) Postconditions requires that
str() == str. This is true only if which has in set. Condition should be restated.

Proposed Resolution:

The description of constructor explicit: basic_stringbuf(const basic_string<charT, traits, Allocator>& str,
 ios_base::openmode which = ios_base::in | ios_base::out);

should be:

Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_streambuf()
(27.5.2.1), and initializing mode with which. Then copies the content of str into the basic_stringbuf
underlying character sequence and initializes the input and output sequences according to which. If (which
& ios_base::out) is true, initializes the output sequence with the underlying sequence. If (which &
ios_base::in) is true, initializes the input sequence with the underlying sequence.

Postcondition: str() == str.

Note: the table has to be removed.

7

Issues 27-705 and 706

Solved by proposed resolutions for issues 27-703 and 704.

basic_stringbuf::seekpos 27.7.1.3 Overridden virtual functions

The description of function: pos_type seekpos(pos_type sp, ios_base::openmode which = ios_base::in |
 ios_base::out);

should be :

Effects: Alters the stream position within the controlled sequences, if possible, to correspond to the
stream position stored in sp (as described below).

- if (which & ios_base::in) != 0, position the input sequence.
- if (which & ios_base::out) != 0, position the output sequence.

If sp is an invalid stream position, or if the function positions neither sequence, the positioning operation
fails. If sp has not been obtained by a previous successful call to one of the positioning functions
(basic_stringbuf::seekoff, basic_stringbuf::seekpos, basic_istream::tellg, basic_ostream::tellp), no
validity of the operation is ensured.

Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

